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Symétries de la trajectoire

Dans le plan muni d’un repère orthonormé (O , e⃗1 , e⃗2),

on considère la

trajectoire Γ de l’arc paramétré défini par r⃗ (t) = x(t) · e⃗1 + y(t) · e⃗2 , t ∈ D .

1) Symétries déductibles de la parité des fonctions coordonnées

Soient Dx et Dy le domaine de définition des fonctions coordonnées x(t)

et y(t) . Si ces deux domaines sont symétriques par rapport à l’origine, on

peut tester leur parité.
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Symétries de la trajectoire

i) Si x(t) est pair et y(t) impair,

alors Γ est symétrique par rapport

à l’axe Ox .

x
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x(−t) = x(t)
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Symétries de la trajectoire

iii) Si x(t) et y(t) sont impairs,

alors Γ est symétrique

par rapport à l’origine O .
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Restriction du domaine d'étude

Remarques :

• Si la trajectoire Γ admet une telle symétrie, on restreint le domaine d’étude à

la partie positive ou négative du domaine initial.

• De plus, si la fonction vectorielle r⃗ (t) est périodique, c’est à dire si les

fonctions coordonnées x(t) et y(t) admettent une période commune, alors

on peut encore restreindre le domaine d’étude.
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fonctions coordonnées x(t) et y(t) admettent une période commune, alors

on peut encore restreindre le domaine d’étude.

my header

o



Restriction du domaine d'étude

Remarques :

• Si la trajectoire Γ admet une telle symétrie, on restreint le domaine d’étude à
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la partie positive ou négative du domaine initial.

• De plus, si la fonction vectorielle r⃗ (t) est périodique, c’est à dire si les
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Restriction du domaine d'étude

Exemple :

On considère l’arc paramétré défini par Γ :

®
x(t) = cos3(2t)

y(t) = sin(3t),
t ∈ R .

Sur quel domaine étudier cet arc paramétré, pour éviter trop de redondances ?

• On commence par étudier la périodicité de r⃗ (t) .

La période de x(t) est Tx = π , celle de y(t) est Ty = 2π
3
.

La période T de r⃗ (t) est le PPCM (plus petit multiple commun) de Tx et

Ty , d’où T = 2π .
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La période de x(t)

est Tx = π , celle de y(t) est Ty = 2π
3
.

La période T de r⃗ (t) est le PPCM (plus petit multiple commun) de Tx et

Ty , d’où T = 2π .
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®
x(t) = cos3(2t)

y(t) = sin(3t),
t ∈ R .

Sur quel domaine étudier cet arc paramétré, pour éviter trop de redondances ?
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• On commence par étudier la périodicité de r⃗ (t) .
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Restriction du domaine d'étude

• On peut donc restreindre l’étude de r⃗ (t) à un intervalle de longueur T = 2π.

Pour pouvoir tester la parité des fonctions coordonnées, on choisit l’intervalle

centré à l’origine [−π , π ] .

• Parité des fonctions coordonnées

x(−t) = cos3(−2t) = cos3(2t) = x(t) , ∀ t ∈ [−π , π ] , x(t) est paire.

y(−t) = sin(−3t) = − sin(3t) = −y(t) , ∀ t ∈ [−π , π ] , y(t) est impaire.

La courbe Γ est donc symétrique par rapport à l’axe Ox et on peut

restreindre l’étude de r⃗ (t) à l’intervalle [ 0 , π ] .
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Pour pouvoir tester la parité des fonctions coordonnées, on choisit l’intervalle
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restreindre l’étude de r⃗ (t) à l’intervalle [ 0 , π ] .
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Restriction du domaine d'étude

Les fonctions trigonométriques peuvent admettre d’autres invariances que celles

liées à la parité ou à la périodicité :

• Evaluation en π − t :

x(π − t) = cos3 [2 (π − t)] = cos3(2t) = x(t) , ∀ t ∈ [ 0 , π ] ,

y(π − t) = sin [3 (π − t)] = sin(3t) = y(t) , ∀ t ∈ [ 0 , π ] .

En d’autres termes : x(π
2
+ t) = x(π

2
− t) et y(π

2
+ t) = y(π

2
− t) .

On peut donc restreindre l’étude de r⃗ (t) à l’intervalle [ 0 , π
2
] , car

r⃗ (π
2
+ t) = r⃗ (π

2
− t) , t ∈ [ 0 , π

2
] .
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2
] , car

r⃗ (π
2
+ t) = r⃗ (π

2
− t) , t ∈ [ 0 , π

2
] .

my header

o



Restriction du domaine d'étude

Les fonctions trigonométriques peuvent admettre d’autres invariances que celles
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2
] , car

r⃗ (π
2
+ t) = r⃗ (π

2
− t) , t ∈ [ 0 , π

2
] .

my header

o



Restriction du domaine d'étude

Les fonctions trigonométriques peuvent admettre d’autres invariances que celles
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Restriction du domaine d'étude

En résumé, le point courant M(t) de Γ,

∗ parcourt une certaine trajectoire lorsque

t ∈ [ 0 , π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ π
2
, π ] ,

∗ parcourt la trajectoire symétrique par

rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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En résumé, le point courant M(t) de Γ,

∗ parcourt une certaine trajectoire lorsque

t ∈ [ 0 , π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ π
2
, π ] ,

∗ parcourt la trajectoire symétrique par
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En résumé, le point courant M(t) de Γ,

∗ parcourt une certaine trajectoire lorsque

t ∈ [ 0 , π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ π
2
, π ] ,

∗ parcourt la trajectoire symétrique par
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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En résumé, le point courant M(t) de Γ,

∗ parcourt une certaine trajectoire lorsque

t ∈ [ 0 , π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ π
2
, π ] ,

∗ parcourt la trajectoire symétrique par
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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En résumé, le point courant M(t) de Γ,

∗ parcourt une certaine trajectoire lorsque

t ∈ [ 0 , π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ π
2
, π ] ,

∗ parcourt la trajectoire symétrique par
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En résumé, le point courant M(t) de Γ,

∗ parcourt une certaine trajectoire lorsque

t ∈ [ 0 , π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ π
2
, π ] ,

∗ parcourt la trajectoire symétrique par
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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rapport à l’axe Ox lorsque t ∈ [π , 3π
2
] ,

∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...

x

y

my header

o



Restriction du domaine d'étude
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∗ revient sur ses pas, lorsque t ∈ [ 3π
2
, 2π ]

etc ...
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Point double

Définition :

Soit Γ la trajectoire de r⃗ (t) =
−−→
OM(t) , t ∈ D .

A est un point double de Γ si ∃ t1 ̸= t2 ∈ D tels que A ≡ M(t1) ≡ M(t2) .

De même, A est un point multiple d’ordre k de Γ , (k ∈ N , k ≥ 2) , si

∃ t1 < t2 < · · · < tk ∈ D tels que A ≡ M(t1) ≡ M(t2) ≡ · · · ≡ M(tk) .

Exemple : Montrons que l’arc paramétré Γ :

 x(t) = t2 − 4t

y(t) =
3 + t2

t
,

t ∈ R
admet un point double.
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Point double

Γ admet un point double

s’il existe deux instants a < b tels que M(a) ≡ M(b) .

En d’autres termes, si r⃗ (a) = r⃗ (b) , donc si

®
x(a) = x(b)

y(a) = y(b) .

• x(a) = x(b) ⇔ a2 − 4a = b2 − 4b ⇔ (a − b) (a + b)− 4(a − b) = 0

⇔ (a − b) [ (a + b)− 4 ] = 0 ⇔ (a + b) = 4 , car (a − b) ̸= 0 .

• y(a) = y(b) ⇔ 3 + a2

a
=

3 + b2

b
⇔ b (3 + a2)− a (3 + b2) = 0

my header

o
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Point double

• ⇔ ab (a − b)− 3 (a − b) = 0

⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .
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• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .
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o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .
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o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé :

a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 ,

donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 ,

(formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0

⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 :

a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3

et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .

my header

o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 .

M(1) ≡ M(3) ≡ A (−3 , 4) .
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o



Point double

• ⇔ ab (a − b)− 3 (a − b) = 0 ⇔ (a − b) [ ab − 3 ] = 0 ⇔ ab = 3 .

• En résumé : a + b = 4 et ab = 3 , donc a et b sont solutions de

l’équation t2 − 4t + 3 = 0 , (formules de Viète).

t2 − 4t + 3 = 0 ⇔ (t − 1) (t − 3) = 0 : a = 1 , b = 3 .

• Le point double correspond donc à M(1) ou M(3) :

x(1) = x(3) = −3 et y(1) = y(3) = 4 . M(1) ≡ M(3) ≡ A (−3 , 4) .
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Point double

Esquisse locale de Γ :
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Point double

Esquisse locale de Γ :
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y
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4
A
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Point stationnaire

Définition :

M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y
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Point stationnaire

Définition : M(t0) est un point stationnaire de Γ

si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ ,

autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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y
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o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y
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o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t ,

un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y
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o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ

correspond à un arrêt du point courant M sur la trajectoire.

x

y
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o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y
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o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement

dit, si ẋ(t0) = 0 et ẏ(t0) = 0 .

Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point

stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire

Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.
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Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point
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Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire
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Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point
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Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point
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Si Γ est la trajectoire d’un point matériel M en fonction du temps t , un point
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Définition : M(t0) est un point stationnaire de Γ si ˙⃗r (t0) = 0⃗ , autrement
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stationnaire de Γ correspond à un arrêt du point courant M sur la trajectoire.

x

y

my header

o



Point stationnaire
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Point stationnaire

La pente de la tangente à Γ

au point stationnaire M(t0) , si elle existe, est

alors donnée par m = lim
t→t0

ẏ(t)

ẋ(t)
qui est une forme indéterminée de type ”0

0
”.

Exemple : Soit Γ :

{
x(t) = t2

1−2t

y(t) = t3

1−2t
,

t ∈ R .

Montrer que Γ admet un point stationnaire, puis faire l’esquisse de la trajectoire

au voisinage de ce point.
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ẏ(t)
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ẋ(t)
qui est une forme indéterminée de type ”0
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ẏ(t)
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Point stationnaire

On cherche donc les zéros de ẋ(t) et ẏ(t) :

• ẋ(t) =
2t (1− 2t) + 2t2

(1− 2t)2
=

−2t2 + 2t

(1− 2t)2
=

−2t (t − 1)

(1− 2t)2
.

ẋ(t) = 0 ⇔ t = 0 ou t = 1 .

• ẏ(t) =
3t2 (1− 2t) + 2t3

(1− 2t)2
=

−4t3 + 3t2

(1− 2t)2
=

−t2 (4t − 3)

(1− 2t)2
.

ẏ(t) = 0 ⇔ t = 0 ou t = 3
4
.
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• ẏ(t) =
3t2 (1− 2t) + 2t3

(1− 2t)2
=

−4t3 + 3t2

(1− 2t)2
=

−t2 (4t − 3)

(1− 2t)2
.
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ẋ(t) = 0 ⇔ t = 0 ou t = 1 .

• ẏ(t) =
3t2 (1− 2t) + 2t3

(1− 2t)2
=

−4t3 + 3t2

(1− 2t)2
=

−t2 (4t − 3)

(1− 2t)2
.
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• ẏ(t) =
3t2 (1− 2t) + 2t3

(1− 2t)2
=

−4t3 + 3t2

(1− 2t)2
=

−t2 (4t − 3)

(1− 2t)2
.
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Point stationnaire

La seule valeur de t qui annule à la fois ẋ(t) et ẏ(t)

est t = 0 .

L’arc Γ admet donc un point stationnaire en t = 0 , c’est l’origine O .

La pente de la tangente en ce point est donnée par m = lim
t→0

ẏ(t)

ẋ(t)
:

m = lim
t→0

−t2 (4t − 3)

−2t (t − 1)
= lim

t→0

t (4t − 3)

2 (t − 1)
= 0 .

L’arc Γ admet donc une tangente horizontale en ce point stationnaire.

Pour esquisser localement Γ au voisinage de ce point, on détermine le signe de

ẋ(t) et de ẏ(t) au voisinge de t0 = 0 .
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ẏ(t)
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L’arc Γ admet donc un point stationnaire en t = 0 , c’est l’origine O .

La pente de la tangente en ce point est donnée par m = lim
t→0
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ẏ(t) + 0 +

Lorsque t > 0 ,

∗ x croit, ”M va vers la droite”,

∗ y croit, ”M va vers le haut”.

Esquisse locale de Γ :

x

y

0

t < 0

my header

o



Point stationnaire

t 0
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ẋ(t) − 0 +
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Autres points remarquables

Soit t0 ∈ D

tel que r⃗ (t) soit dérivable en t0 .

• Si ẏ(t0) = 0 et ẋ(t0) ̸= 0 , alors
ẏ(t0)

ẋ(t0)
= 0 . La trajectoire Γ admet en

M(t0) une tangente horizontale.

• Si ẋ(t0) = 0 et ẏ(t0) ̸= 0 , alors lim
t→t0

ẏ(t)

ẋ(t)
= ∞ . La trajectoire Γ admet

en M(t0) une tangente verticale.

Reprise de l’exemple précédent Γ :

{
x(t) = t2

1−2t

y(t) = t3

1−2t
,

t ∈ R .
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ẋ(t)
= ∞ . La trajectoire Γ admet

en M(t0) une tangente verticale.

Reprise de l’exemple précédent Γ :
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ẋ(t0)
= 0 . La trajectoire Γ admet en

M(t0) une tangente horizontale.
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Soit t0 ∈ D tel que r⃗ (t) soit dérivable en t0 .

• Si ẏ(t0) = 0 et ẋ(t0) ̸= 0 , alors
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ẋ(t0)
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ẏ(t0)
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• Si ẋ(t0) = 0 et ẏ(t0) ̸= 0 , alors lim
t→t0
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Autres points remarquables
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Points remarquables

ẋ(t) = 0 ⇔ t = 0 ou t = 1

et ẏ(t) = 0 ⇔ t = 0 ou t = 3
4
.

M(0) est un point stationnaire que l’on a déjà étudié (tangente horizontale).

M(3
4
) est un point à tangente horizontale et M(1) est un point à tangente

verticale.

Reprise de l’exemple Γ :

{
x(t) = cos3(2t)

y(t) = sin(3t),
t ∈ R , étude sur [ 0 , π

2
] .
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4
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Points remarquables

ẋ(t) = 0 ⇔ t = 0 ou t = 1 et ẏ(t) = 0 ⇔ t = 0 ou t = 3
4
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M(3
4
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verticale.
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Points remarquables

ẋ(t) = 0 ⇔ t = 0 ou t = 1 et ẏ(t) = 0 ⇔ t = 0 ou t = 3
4
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Points remarquables

ẋ(t) = 0 ⇔ t = 0 ou t = 1 et ẏ(t) = 0 ⇔ t = 0 ou t = 3
4
.

M(0) est un point stationnaire que l’on a déjà étudié (tangente horizontale).

M(3
4
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Points remarquables

• ẋ (t)

= 3 cos2(2t) [−2 sin(2t)] = −3 sin(4t) cos(2t) ,

ẋ (t) = 0 ⇔ 4t = k π ou 2t = π
2
+ k π ⇔ t = k π

4
, k ∈ Z .

Donc sur [ 0 , π
2
] , on a ẋ (t) = 0 ⇔ t ∈

{
0 , π

4
, π

2

}
.

• ẏ (t) = 3 cos(3t) , ẏ (t) = 0 ⇔ cos(3t) = 0

⇔ 3t = π
2
+ k π ⇔ t = π

6
+ k π

3
, k ∈ Z .

Donc sur [ 0 , π
2
] , on a ẏ (t) = 0 ⇔ t ∈

{
π
6
, π

2

}
.
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ẏ (t) = 0 ⇔ cos(3t) = 0

⇔ 3t = π
2
+ k π ⇔ t = π

6
+ k π

3
, k ∈ Z .

Donc sur [ 0 , π
2
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• ẋ (t) = 3 cos2(2t) [−2 sin(2t)] = −3 sin(4t) cos(2t) ,
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] , on a ẋ (t) = 0 ⇔ t ∈

{
0 , π

4
, π

2

}
.
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] , on a ẏ (t) = 0 ⇔ t ∈

{
π
6
, π

2

}
.

my header

o



Points remarquables
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verticale.

∗ En t = π
6
, ẋ(t) ̸= 0 et ẏ(t) = 0 , M

(
1
8
, 1

)
est un point à tangente

horizontale.

∗ En t = π
4
, ẋ(t) = 0 et ẏ(t) ̸= 0 , M

Ä
0 ,

√
2
2

ä
est un point à tangente

verticale.
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, ẋ(t) ̸= 0 et ẏ(t) = 0 , M
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∗ En t = 0 , ẋ(t) = 0 et ẏ(t) ̸= 0 , M(1 , 0) est un point à tangente
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et ẏ (t) = 0 ⇔ t ∈

{
π
6
, π

2

}
.
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(
1
8
, 1

)
est un point à tangente
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(
1
8
, 1

)
est un point à tangente
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Points remarquables

∗ En t = π
2
,

ẋ(t) = ẏ(t) = 0 , M(−1 , −1) est un point stationnaire.

La pente de la tangente est donnée par

lim
t→π

2

ẏ(t)

ẋ(t)
= lim

t→π
2

3 cos(3t)

−3 sin(4t) cos(2t)
= lim

t→π
2

− cos(3t)

sin(4t) cos(2t)

BH
= lim

t→π
2

3 sin(3t)

4 cos(4t) cos(2t)− 2 sin(4t) sin(2t)
=

−3

−4
=

3

4
.

C’est un point stationnaire à tangente oblique de pente m =
3

4
.
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, ẋ(t) = ẏ(t) = 0 , M(−1 , −1) est un point stationnaire.

La pente de la tangente est donnée par

lim
t→π

2
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, ẋ(t) = ẏ(t) = 0 , M(−1 , −1) est un point stationnaire.

La pente de la tangente est donnée par

lim
t→π

2
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Points remarquables

Représentation de l’arc Γ

sur [ 0 , π
2
]

x

y

1−1
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1
8

1
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√
2
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Branches in�nies

On dit que la trajectoire Γ de r⃗ (t) =
−−→
OM(t) , t ∈ D ,

possède une branche

infinie au voisinage de t0 (t0 fini ou infini) , si lim
t→t0

∥
−−→
OM(t) ∥ = ∞ .

Autrement dit, si au moins une des fonctions coordonnées x(t) ou y(t) tend

vers l’infini.

Trois cas peuvent se présenter :

i) Si lim
t→t0

x(t) = x0 et lim
t→t0

y(t) = ∞ ,

alors Γ admet une asymptote verticale

d’équation x = x0 . x

y

0 x0
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y(t) = ∞ , on cherche une éventuelle asymptote

oblique d’équation y = ax + b , (a ̸= 0) , avec

a = lim
t→t0

y(t)

x(t)
et b = lim

t→t0
[ y(t)− a · x(t) ] .
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oblique d’équation y = ax + b , (a ̸= 0) , avec

a = lim
t→t0

y(t)

x(t)
et b = lim

t→t0
[ y(t)− a · x(t) ] .

my header

o



Branches in�nies

ii) Si lim
t→t0

y(t) = y0 et lim
t→t0

x(t) = ∞ ,

alors Γ admet une asymptote horizontale

d’équation y = y0 .
x

y

0

y0

iii) Si lim
t→t0

x(t) = ∞ et lim
t→t0

y(t) = ∞ , on cherche une éventuelle asymptote
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Branches in�nies

Remarque 1 :

Si lim
t→t0

x(t) = ∞ , lim
t→t0

y(t) = ∞ et lim
t→t0

y(t)

x(t)
= a ∈ R ,

alors

∗ si lim
t→t0

[ y(t)− a · x(t) ] = b , Γ admet une asymptote oblique : y = ax + b ,

∗ si lim
t→t0

[ y(t)− a · x(t) ] = ∞ , Γ admet une branche parabolique de direction

de pente a ,

∗ si a = 0 , Γ admet une branche parabolique horizontale.
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Remarque 2 :

Si lim
t→t0

x(t) = ∞ , lim
t→t0

y(t) = ∞ et lim
t→t0

y(t)

x(t)
= ∞ , alors

Γ admet une branche parabolique verticale.

Remarque 3 :

Les instants t0 qui définissent les branches infinies de la trajectoire Γ sont à

chercher aux ”points frontières” du domaine de définition et du domaine de

continuité de r⃗ (t) .

my header

o



Branches in�nies

Remarque 2 : Si lim
t→t0

x(t) = ∞ ,

lim
t→t0

y(t) = ∞ et lim
t→t0

y(t)

x(t)
= ∞ , alors

Γ admet une branche parabolique verticale.

Remarque 3 :
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continuité de r⃗ (t) .

my header

o



Branches in�nies

Remarque 2 : Si lim
t→t0

x(t) = ∞ , lim
t→t0

y(t) = ∞ et lim
t→t0

y(t)

x(t)
= ∞ , alors

Γ admet une branche parabolique verticale.

Remarque 3 :
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Branches in�nies

Reprise de l’exemple

Γ :

{
x(t) = t2

1−2t

y(t) = t3

1−2t
,

t ∈ R .

Ddef = R \ {1
2
} = ]−∞ , 1

2
[ ∪ ] 1

2
, +∞ [ . r⃗ (t) est continu sur Ddef .

• Lorsque t → ±∞ , lim
t→±∞

x(t) = ∓∞ et lim
t→±∞

y(t) = −∞ .

Recherche d’une éventuelle asymptote oblique : lim
t→±∞

y(t)

x(t)
= lim

t→±∞
t = ±∞ .

Γ admet, lorsque t → ±∞ , deux branches paraboliques verticales.
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Recherche d’une éventuelle asymptote oblique : lim
t→ 1

2

y(t)

x(t)
= lim

t→ 1
2

t =
1

2
.

lim
t→ 1

2

[
y(t)− 1

2
x(t)

]
= lim

t→ 1
2

t3 − 1
2
t2

1− 2t
=

1

2
lim
t→ 1

2

t2 (2t − 1)

1− 2t
= −1

8
.

Γ admet donc, lorsque t → 1
2
, une asymptote oblique d’équation :

y =
1

2
x − 1

8
.

my header

o



Branches in�nies

• Lorsque t → 1
2
, lim

t→ 1
2

±
x(t) = ∓∞ et lim

t→ 1
2

±
y(t) = ∓∞ .
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