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Dans le plan muni d'un repére orthonormé (O, €, &), on considere la

trajectoire ' de I'arc paramétré défini par 7 (t) = x(t)- € + y(t)- &, t€ D.
1) Symétries déductibles de la parité des fonctions coordonnées

Soient D, et D, le domaine de définition des fonctions coordonnées x(t)
et y(t). Sices deux domaines sont symétriques par rapport a |'origine, on

peut tester leur parité.
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e Sila trajectoire I admet une telle symétrie, on restreint le domaine d'étude a

la partie positive ou négative du domaine initial.

e De plus, si la fonction vectorielle 7(t) est périodique, c'est a dire si les
fonctions coordonnées x(t) et y(t) admettent une période commune, alors

on peut encore restreindre le domaine d'étude.
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y(—t) =sin(=3t) = —sin(3t) = —y(t), Vte[-m,n], y(t) estimpaire.
La courbe I est donc symétrique par rapport a I'axe Ox et on peut

restreindre I'étude de F(t) a l'intervalle [0, 7].
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. y t . . s e n Qn
alors donnée par m = lim M qui est une forme indéterminée de type % :
t—to X(t)
2
i x(t) = t
. Soit r:{ (2) 1;3” teR.
y(t) = 5,

Montrer que I admet un point stationnaire, puis faire I'esquisse de la trajectoire

au voisinage de ce point.
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La seule valeur de t qui annule a la fois x(t) et y(t) est t=0.
L’'arc I admet donc un point stationnaire en t =0, c'est I'origine O.

y(t)

La pente de la tangente en ce point est donnée par m = lim — :
t—0 x(t)
. —t*(4t—3) . t(4t-13)
’”—!'L% —2t(t—1) 0 2(t—1) =0

L'arc ' admet donc une tangente horizontale en ce point stationnaire.

Pour esquisser localement [ au voisinage de ce point, on détermine le signe de

x(t) etde y(t) au voisinge de t, =0.
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t 0
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x(t) - 0 + y
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~—

t
e Si X(t)) =0 et y(to) #0, alors lim ( = 00. La trajectoire ' admet
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v

en M(ty) une tangente verticale.
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La pente de la tangente est donnée par

. y(t) 3 cos(3t) : — cos(3t)

lim — = lim , = lim —

t—»2 Xx(t) t»Z —3sin(4t) cos(2t) t—2 sin(4t) cos(2t)
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= lim _ - =— =—.

t—2 4 cos(4t) cos(2t) — 2 sin(4t) sin(2t) —4 4

: . . : 3
C'est un point stationnaire a tangente oblique de pente m = 7
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Remarque 3 :
Les instants ty qui définissent les branches infinies de la trajectoire I sont a
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