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1) Domaine d'étude

On détermine en premier lieu le domaine de définition et le domaine de
continuité de f. De plus, si f est périodique ou paire ou impaire, on peut
restreindre le domaine d’'étude.

Si f est périodique et paire ou impaire, on commence par déterminer sa

période T et on restreint le domaine d'étude a un intervalle centré a I'origine

et de longueur T : [—%, %] . Puis on teste la parité et on se restreint a une

demi-période.
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f est périodique de période T =2
f(x+3)=tan [2(x + 3)] =tan(2x + 7) = tan(2x) = f(x).
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4
I'origine et de longueur T.

f estimpaire : f(—x) = —f(x), Vxe]— 7%, Z[, on restreint donc le

domaine d'étude a I'intervalle [0, 5[ ou |—%,0].
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3) Dérivée, extrema et points remarquables

C'est la deuxieme partie importante de I'étude d'une fonction.

On ne cherche pas les points d'inflexion du graphe (sauf si cela est demandé).
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4) Résumé sous forme d'un tableau de variation et tracé du graphe

Le tableau de variation n'est qu'un résumé condensé des différentes étapes

précedentes. |l doit étre le plus complet possible.

Avant de tracer le graphe, il est conseillé d'en faire une esquisse au brouillon

pour bien choisir la position de I'origine du repére et I'unité sur chaque axe.
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