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Définition : On appelle arc paramétré dans le plan, la donnée d'un intervalle
D C R et d'une fonction de D dans R?:

D — R?
t — r(t)=OM(t).
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La fonction t > r'(t) est une fonction vectorielle et les fonctions scalaires x(t)

et y(t) sont appelées les fonctions coordonnées de r(t).

L'ensemble I = { M(t) € R? | a\_}l(t) =r(t), te D} est appelée la

trajectoire de I'arc paramétré.
Intuitivement, un arc paramétré est une trajectoire muni d'un mode de parcours.

Deux arcs paramétrés différents peuvent avoir une méme trajectoire.
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