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Arcs paramétrés dans le plan

On considère le plan muni d’un repère orthonormé (O , ~e1 , ~e2).

Définition : On appelle arc paramétré dans le plan, la donnée d’un intervalle

D ⊂ R et d’une fonction de D dans R2 :

D −→ R2

t 7−→ ~r (t) =
−−→
OM(t) .
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Arcs paramétrés dans le plan

t
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~r (t) =
−−→
OM(t) = x(t) · ~e1 + y(t) · ~e2 =
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x(t)
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Arcs paramétrés dans le plan

La fonction t 7→ ~r (t)

est une fonction vectorielle et les fonctions scalaires x(t)

et y(t) sont appelées les fonctions coordonnées de ~r (t) .

L’ensemble Γ =
¦
M(t) ∈ R2

∣∣ −−→OM(t) = ~r (t) , t ∈ D
©

est appelée la

trajectoire de l’arc paramétré.

Intuitivement, un arc paramétré est une trajectoire muni d’un mode de parcours.

Deux arcs paramétrés différents peuvent avoir une même trajectoire.
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Arcs paramétrés dans le plan

Exemple :

Les deux arcs paramétrés

~r1 : [0 , 2π]−→R2

t 7−→~r1 (t) =

�
cos(t)
sin(t)

�

et ~r2 : [0 , 2π]−→R2

t 7−→~r2 (t) =

�
cos(−2t)
sin(−2t)

�

ont même trajectoire : le cercle unité.
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x

y

O

M1

M2

my header

o



Arcs paramétrés dans le plan

Exemple :

Les deux arcs paramétrés
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x

y

O

M1

M2

my header

o



Arcs paramétrés dans le plan

Exemple :

Les deux arcs paramétrés
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~r1 : [0 , 2π]−→R2

t 7−→~r1 (t) =

�
cos(t)
sin(t)

�

et ~r2 : [0 , 2π]−→R2

t 7−→~r2 (t) =

�
cos(−2t)
sin(−2t)

�

ont même trajectoire : le cercle unité.
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x

y

O

M1

M2

my header

o



Arcs paramétrés dans le plan

Exemple :

Les deux arcs paramétrés
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x

y

O

M1

M2

my header

o



Arcs paramétrés dans le plan

Exemple :

Les deux arcs paramétrés
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Limite d'une fonction vectorielle

Soit ~r (t) =

�
x(t)
y(t)

�
, t ∈ D,

une fonction vectorielle définie sur un voisinage

de t0 ∈ D.

i) Notion de limite

Définition : Soit ~r0 un vecteur du plan.

lim
t→t0

~r (t) = ~r0 si ∀ ε > 0 , ∃ δ > 0 tel que

0 < | t − t0 | < δ ⇒ ‖~r (t)− ~r0 ‖ < ε . x
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Définition : Soit ~r0 un vecteur du plan.

lim
t→t0

~r (t) = ~r0

si ∀ ε > 0 , ∃ δ > 0 tel que

0 < | t − t0 | < δ ⇒ ‖~r (t)− ~r0 ‖ < ε . x

y

0

~r0 ~r (t)

my header

o



Limite d'une fonction vectorielle

Soit ~r (t) =

�
x(t)
y(t)

�
, t ∈ D, une fonction vectorielle définie sur un voisinage
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de t0 ∈ D.

i) Notion de limite
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de t0 ∈ D.

i) Notion de limite
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Proposition :
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montrons que ∃ δ > 0 tel que 0 < | t − t0 | < δ ⇒ | x(t)− x0 | < ε .

Or lim
t→t0

~r (t) = ~r0 , donc pour cet ε > 0 donné, ∃ δ > 0 tel que
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∗ Or ‖~r (t)− ~r0 ‖ < ε ⇔
√

(x(t)− x0)2 + (y(t)− y0)2 < ε

⇒
√

(x(t)− x0)2 + 0 < ε ⇔ | x(t)− x0 | < ε . Donc lim
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x(t) = x0 .
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montrons que ∃ δ > 0 tel que 0 < | t − t0 | < δ ⇒ ‖~r (t)− ~r0 ‖ < ε .

my header

o



Limite d'une fonction vectorielle

∗ Or ‖~r (t)− ~r0 ‖ < ε ⇔
√

(x(t)− x0)2 + (y(t)− y0)2 < ε

⇒
√

(x(t)− x0)2 + 0 < ε ⇔ | x(t)− x0 | < ε .

Donc lim
t→t0

x(t) = x0 .

∗ De même,
√

(x(t)− x0)2 + (y(t)− y0)2 < ε ⇒ | y(t)− y0 | < ε .

Donc lim
t→t0

y(t) = y0 .

• Si lim
t→t0

x(t) = x0 et lim
t→t0

y(t) = y0 , montrons alors que lim
t→t0

~r (t) = ~r0 .

Soit ε > 0 donné,
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Limite d'une fonction vectorielle

Définitions analogues lorsque t → ±∞ :

• Soient ~r (t) définie sur un voisinage de +∞ et ~r0 un vecteur du plan.

lim
t→+∞

~r (t) = ~r0 si ∀ ε > 0 , ∃M > 0 tel que t > M ⇒ ‖~r (t)− ~r0 ‖ < ε .

• De même, si ~r (t) est définie sur un voisinage de −∞ , alors

lim
t→−∞

~r (t) = ~r0 si ∀ ε > 0 , ∃N < 0 tel que t < N ⇒ ‖~r (t)− ~r0 ‖ < ε .
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• De même, si ~r (t) est définie sur un voisinage de −∞ , alors

lim
t→−∞

~r (t) = ~r0 si ∀ ε > 0 , ∃N < 0 tel que t < N ⇒ ‖~r (t)− ~r0 ‖ < ε .

my header

o



Limite d'une fonction vectorielle

Comme précédemment, ces limites de fonctions vectorielles

peuvent être

caractérisées à l’aide des limites des fonctions coordonnées.

Soient ~r (t) = x(t) · ~e1 + y(t) · ~e2 et ~r0 = x0 · ~e1 + y0 · ~e2 .

• Si ~r (t) est définie sur un voisinage de +∞ , alors lim
t→+∞

~r (t) = ~r0 si et

seulement si lim
t→+∞

x(t) = x0 et lim
t→+∞

y(t) = y0 .

• De même, si ~r (t) est définie sur un voisinage de −∞ , alors

lim
t→−∞

~r (t) = ~r0 si et seulement si lim
t→−∞

x(t) = x0 et lim
t→−∞

y(t) = y0 .
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Continuité

ii) Notion de continuité

Définition : ~r (t) est continue en t0 si lim
t→t0

~r (t) = ~r (t0) .

En d’autres termes, ~r (t) est continue en t0 si

∀ ε > 0 , ∃ δ > 0 tel que | t − t0 | < δ ⇒ ‖~r (t)− ~r (t0) ‖ < ε .

Proposition : La fonction vectorielle ~r (t) est continue en t0 ssi les

fonctions coordonnées x(t) et y(t) sont toutes les deux continues en t0 .

En d’autres termes, si et seulement si lim
t→t0

x(t) = x(t0) et lim
t→t0

y(t) = y(t0) .

Ceci est une conséquence immédiate de la proposition précédente.
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Dérivabilité

iii) Notion de Dérivée

Définition : ~r (t) est dérivable en t0 si lim
t→t0

~r (t)− ~r (t0)

t − t0
existe.

Cette limite s’appelle le vecteur dérivé de ~r (t) en t0 et on le note

~̇r (t0) ou
d ~r

dt

∣∣∣∣
t0

. ~̇r (t0) =
d ~r

dt

∣∣∣∣
t0

= lim
h→0

~r (t0 + h)− ~r (t0)

h
.
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~̇r (t0)

ou
d ~r

dt

∣∣∣∣
t0

. ~̇r (t0) =
d ~r

dt

∣∣∣∣
t0

= lim
h→0

~r (t0 + h)− ~r (t0)

h
.

my header

o



Dérivabilité

iii) Notion de Dérivée
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~̇r (t0) ou
d ~r

dt

∣∣∣∣
t0

. ~̇r (t0)

=
d ~r

dt

∣∣∣∣
t0

= lim
h→0

~r (t0 + h)− ~r (t0)

h
.

my header

o



Dérivabilité

iii) Notion de Dérivée
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Proposition :

La fonction vectorielle ~r (t) est dérivable en t0 ssi les fonctions
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ẏ(t0)

�
.

Démonstration :

lim
h→0

~r (t0 + h)− ~r (t0)

h
= lim

h→0

1

h

��
x(t0 + h)
y(t0 + h)

�
−
�
x(t0)
y(t0)

��

= lim
h→0

1

h

�
x(t0 + h)− x(t0)
y(t0 + h)− y(t0)

�

= lim
h→0

(
x(t0+h)−x(t0)

h
y(t0+h)−y(t0)

h

)
.

my header

o



Dérivabilité

Proposition : La fonction vectorielle ~r (t) est dérivable en t0 ssi les fonctions
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Or cette limite existe

si et seulement si les limites des fonctions scalaires existent :

lim
h→0

~r (t0 + h)− ~r (t0)

h
existe, si et seulement si

lim
h→0

x(t0 + h)− x(t0)

h
et lim

h→0

y(t0 + h)− y(t0)

h
existent.

En d’autres termes, ~r (t) est dérivable en t0 ssi x(t) et y(t) le sont.

Et ~̇r (t0) = lim
h→0

~r (t0 + h)− ~r (t0)

h
= lim

h→0
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x(t0+h)−x(t0)
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ẋ(t0)
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En d’autres termes, ~r (t) est dérivable en t0 ssi x(t) et y(t) le sont.

Et ~̇r (t0) = lim
h→0

~r (t0 + h)− ~r (t0)

h
= lim

h→0

(
x(t0+h)−x(t0)

h
y(t0+h)−y(t0)

h

)
=

�
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Dérivabilité

Interprétation géométrique :

~r (t0+h)−~r (t0)
h

est un vecteur direc-

teur de la sécante passant par les

points M(t0) et M(t0 + h) de la

trajectoire Γ .

Lorsque h → 0 , ce vecteur tend

vers le vecteur dérivé ~̇r (t0) . x

y

O

Γ
M(t0)

M(t0 + h)

~r (t0+h)−~r (t0)
h~̇r (t0)

~r
(t
0
)

~r (t 0
+
h)
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x

y

O

Γ
M(t0)

M(t0 + h)

~r (t0+h)−~r (t0)
h~̇r (t0)

~r
(t
0
)

~r (t 0
+
h)

my header

o



Dérivabilité

Interprétation géométrique :
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Dérivabilité

Donc si ~̇r (t0) 6= ~0 ,

~̇r (t0) est un vecteur directeur de la tangente à Γ en

M(t0) .

La pente de la tangente est donc donnée par m =
ẏ(t0)

ẋ(t0)
, (ẋ(t0) 6= 0) .
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ẋ(t)
BH
= lim

t→t0
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ẏ(t0)
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ẏ(t)
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ẍ(t)
· · ·

my header

o



Dérivabilité
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, (ẋ(t0) 6= 0) .

Si ~̇r (t0) = ~0 ,

alors un vecteur directeur de la tangente est donné par ~̈r (t0) ,

(~r (3) (t0) si ~̈r (t0) = ~0 , etc ... ). Ceci résulte de la remarque suivante.

Si ~̇r (t0) = ~0 , la pente de la tangente est donnée par m = lim
t→t0
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ẋ(t)
, forme
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M(t0) .

La pente de la tangente est donc donnée par m =
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ẋ(t)
BH
= lim

t→t0
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ẋ(t)
, forme
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ẏ(t0)
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ẏ(t0)
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M(t0) .

La pente de la tangente est donc donnée par m =
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