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2. L'intégrale indé�nie

2.1 Dé�nition et propriétés
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Dé�nition

Définition :

Soit f une fonction définie sur un intervalle I . On appelle intégrale indéfinie

de f l’ensemble de toutes les primitives de f sur I .

L’intégrale indéfinie de f se note

∫
f (x) dx .
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Conséquences de la dé�nition

Si f est continue sur I , on a donc

∫
f (x) dx︸ ︷︷ ︸

intégrale indéfinie

= F (x)︸ ︷︷ ︸
primitive particulière

+ C︸ ︷︷ ︸
constante arbitraire

On en déduit les deux propriétés suivantes :

i)

∫
F ′(x) dx = F (x) + C , ii)

[ ∫
f (x) dx

]′
= f (x) .
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Linéarité de l'intégrale indé�nie

Propriétés de linéarité de l’intégrale indéfinie :

1)

∫
[ f (x) + g(x) ] dx =

∫
f (x) dx +

∫
g(x) dx .

2)

∫
λ · f (x) dx = λ ·

∫
f (x) dx , ∀λ ∈ R∗.

Ces propriétés sont une conséquence de la linarité de la dérivation.
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my header

o



Linéarité de l'intégrale indé�nie

Propriétés de linéarité de l’intégrale indéfinie :
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Propriétés de linéarité de l'intégrale indé�nie

Démonstrations :

1)

∫
[ f (x) + g(x) ] dx =

∫
f (x) dx +

∫
g(x) dx .

Soient F et G des primitives de f et g : F ′(x) = f (x) et G ′(x) = g(x) .

f (x) + g(x) = F ′(x) + G ′(x) ⇔ f (x) + g(x) = [F (x) + G (x) ]′ .∫
[ f (x) + g(x) ] dx =

∫
[F (x) + G (x) ]′ dx = [F (x) + G (x) ] + C

= [F (x) + C1 ] + [G (x) + C2 ] =

∫
f (x) dx +

∫
g(x) dx .
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Propriétés de linéarité de l'intégrale indé�nie

2)
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f (x) dx , ∀λ ∈ R∗.
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Quelques intégrales indé�nies

Les intégrales indéfinies suivantes se déduisent du calcul différentiel :

•
∫

xk dx =
1

k + 1
· xk+1 + C , ∀ k ∈ R \ {−1}

Remarque : si k < 0 , la fonction xk est discontinue en x = 0 .

Une primitive de xk est donnée par xk+1

k+1
sur chaque intervalle de son

domaine de continuité (R∗+ et R∗−) .

Exemple :

∫
1

x2
dx = − 1

x
+ C , (x ∈ R∗), où C est une fonction

constante sur chaque intervalle du domaine de continuité de 1
x2 .
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x2 .

my header

o



Quelques intégrales indé�nies
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Exemple :

∫
1

x2
dx = − 1

x
+ C ,
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Quelques intégrales indé�nies

• Qu’en est-il pour k = −1 ?

Comment intégrer
1

x
, (x ∈ R∗) ?

∗ ln′(x) =
1

x
, ∀ x > 0 ⇒

∫
1

x
dx = ln(x) + C , ∀ x > 0 .

∗ Mais que se passe - t - il pour x < 0 ?∫
1

x
dx =

∫
−1

−x
dx = ln(−x) + C , (x < 0) .

∗ En conclusion :

∫
1

x
dx = ln |x |+ C , (x ∈ R∗), où C est une fonction

constante sur chaque intervalle du domaine de continuité R∗+ et R∗− .
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constante sur chaque intervalle du domaine de continuité R∗+ et R∗− .
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Quelques intégrales indé�nies

•
∫

ex dx =

ex + C , (x ∈ R) .

• Et pour tout a > 0 , on a∫
ax dx =

∫
ex ·ln a dx =

1

ln a
· ex ·ln a + C =

1

ln a
· ax + C , (x ∈ R) .
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Quelques intégrales indé�nies

Voici une autre façon d’intégrer la fonction
1

1− x2

sur R \ {±1} :

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré

à l’intégration des fonctions rationnelles.

1

1− x2
=

1

(1− x) (1 + x)
=

a

1− x
+

b

1 + x
=

1
2

1− x
+

1
2

1 + x
.∫

1

1− x2
dx =

1

2

∫
1

1− x
dx +

1

2

∫
1

1 + x
dx

= −1

2
ln |1− x |+ 1

2
ln |1 + x |+ C = ln

√∣∣1+x
1−x

∣∣+ C .
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à l’intégration des fonctions rationnelles.

1

1− x2
=

1

(1− x) (1 + x)
=

a

1− x
+

b

1 + x
=

1
2

1− x
+

1
2

1 + x
.∫

1

1− x2
dx =

1

2

∫
1

1− x
dx +

1

2

∫
1

1 + x
dx

= −1

2
ln |1− x |+ 1

2
ln |1 + x |+ C = ln

√∣∣1+x
1−x

∣∣+ C .

my header

o



Quelques intégrales indé�nies
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à l’intégration des fonctions rationnelles.

1

1− x2
=

1

(1− x) (1 + x)
=

a

1− x
+

b

1 + x
=

1
2

1− x
+

1
2

1 + x
.∫

1

1− x2
dx =

1

2

∫
1

1− x
dx +

1

2

∫
1

1 + x
dx

= −1

2
ln |1− x |+ 1

2
ln |1 + x |+ C = ln

√∣∣1+x
1−x

∣∣+ C .

my header

o



Quelques intégrales indé�nies
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Voici une autre façon d’intégrer la fonction
1

1− x2
sur R \ {±1} :
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à l’intégration des fonctions rationnelles.

1

1− x2
=

1

(1− x) (1 + x)
=

a

1− x
+

b

1 + x
=

1
2

1− x
+

1
2

1 + x
.∫

1

1− x2
dx =

1

2

∫
1

1− x
dx +

1

2

∫
1

1 + x
dx

= −1

2
ln |1− x |+ 1

2
ln |1 + x |+ C = ln

√∣∣1+x
1−x

∣∣+ C .

my header

o



Quelques intégrales indé�nies
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à l’intégration des fonctions rationnelles.

1

1− x2
=

1

(1− x) (1 + x)
=

a

1− x
+

b

1 + x
=

1
2

1− x
+

1
2

1 + x
.∫

1

1− x2
dx =

1

2

∫
1

1− x
dx +

1

2

∫
1

1 + x
dx

= −1

2
ln |1− x |+ 1

2
ln |1 + x |+ C

= ln
√∣∣1+x

1−x

∣∣+ C .

my header

o



Quelques intégrales indé�nies
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