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Conséquences de la définition

Si f est continue sur /, on a donc

—_— =

constante arbitraire

/f(x) dx = F(x) + C

- primitive particuliére
intégrale indéfinie

On en déduit les deux propriétés suivantes :

i) /F’(X)dXZF(XHC, i) Uf(x)dx]lzf(x)_
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Propriétés de linéarité de I'intégrale indéfinie :
1) /[f(x)—l—g(x)] dx = /f(x) dx+/g(x) dx.

2)/)\-f(x)dx:/\-/f(x)dx, VA ER".

Ces propriétés sont une conséquence de la linarité de la dérivation.
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1) /[f(x)+g(x)] dx:/f(x) dx—l—/g(x) dx.
Soient F et G des primitivesde f et g: F'(x) =f(x) et G'(x) = g(x).
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Démonstrations :

) [ 1700+ g00) o= [ Fl)der [ gx)ox.
Soient F et G des primitivesde f et g: F'(x) =f(x) et G'(x) = g(x).

f(x)+g(x)=F(x)+G(x) & f(x)+g(x)=[F(x)+G(x)].
/[f(x) +g(x)] dx = /[F(x)—l— G()] dx = [F(x) + G(x)] + C

= [F(x)+ Q]+ [G(x) + G] :/f(x)dx+/g(X)dX' =
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Soit F une primitive de f : F'(x) = f(x).
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=X [F(x)+£] Z/\-/f(x)dx. O
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1
k e o keR -1
o/x dx P +C, VkeR\{-1}

k

Remarque : si k < 0, la fonction x* est discontinueen x =0.

. i , k+1 .
Une primitive de x* est donnée par ‘g1 sur chaque intervalle de son

domaine de continuité (R’ et R*).

1
/ — dx= — = + C, (xeR"), ou C est une fonction
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1
e Qu'en est-il pour k= —17 Comment intégrer —, (x € R*)?
X
, 1 1
*In(x):;, Vx>0 = ;dx:ln(x)+C, Vx>0.

* Mais que se passe - t - il pour x <07

/dx_/dx—ln xX)+C, (x<0).

*« En conclusion : - dx =In|x|+ C, (x €R*), ou C est une fonction
X

constante sur chaque intervalle du domaine de continuité R% et R* .
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. /exdx:ex—i-C7 (x € R).

e Et pourtout a >0, ona

/ade: /ex~lnadXZL'ex-lna+C
Ina
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e Et pourtout a >0, ona

1 1
/axdx: /eX"”"dx:—-eX""a+C:—-aX+C, (x €R).
Ina Ina
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/
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cos(x) dx = sin(x) + C, (x € R).

1

cos?(x

dx—/ 1+ tan’(x) ] dx = tan(x) + C, (x € Dyan).

= —cot(x)+ C, (x € Deor) -
Sln

\\\

/1+ 5 dx = arctan(x) + C, (x € R).
x
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1
d
./coshz(x) X
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1

Ny
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/ 2 dx——coth()+C,(x€R*).
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/ x)dx = sinh(x)+ C, (x € R).

/ oo dX = / [1—tanh®(x) ] dx = tanh(x) + C, (x € R).

/S dx——coth()+C,(x€R*).
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Quelques intégrales indéfinies

. / sinh(x) dx = cosh(x) + C, (x € R).

/ x)dx = sinh(x) + C, (x € R).

/ oo dX = / [1—tanh®(x) ] dx = tanh(x) + C, (x € R).

/S dX_—COth()+C,(x€R*).

/1—x2 dx = argtanh(x)+ C, (xe€]—-1,1]).
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Voici une autre fagon d'intégrer la fonction sur R\ {£1}:

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

— x2

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré
a l'intégration des fonctions rationnelles.
1
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Quelques intégrales indéfinies

Voici une autre fagon d'intégrer la fonction sur R\ {£1}:

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

— x2

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré

a l'intégration des fonctions rationnelles.
1 1

1-x2  (1—x)(1+x)




Quelques intégrales indéfinies

Voici une autre fagon d'intégrer la fonction sur R\ {£1}:

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

— x2

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré

a l'intégration des fonctions rationnelles.

1 1 a b

1—x2_(1—x)(1+x)_1—x+1+x:




Quelques intégrales indéfinies

1
Voici une autre fagon d'intégrer la fonction T Sur R\ {£1}:

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré
a l'intégration des fonctions rationnelles.

1 B 1 a b

- (1-x)0+x) 1-x 1+x 1

1 1
2 2
—-x 1+x



Quelques intégrales indéfinies

1
Voici une autre fagon d'intégrer la fonction T Sur R\ {£1}:

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré
a l'intégration des fonctions rationnelles.

1 B 1 a b

- (1-x)0+x) 1-x 1+x 1

1
/1—x2 dx =

1 1
2 2
—-x 1+x




Quelques intégrales indéfinies

Voici une autre facon d'intégrer la fonction

—a Sur R\ {£1}:
Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions
plus simples. On étudiera en détail cette méthode dans un paragraphe consacré

a l'intégration des fonctions rationnelles.

1 1 a b

1
_ 2
- (1-x)0+x) 1-x T4x 1-x"

1 1 1 1
/1—x2 dX_E/l—de+§




Quelques intégrales indéfinies

Voici une autre facon d'intégrer la fonction

—a Sur R\ {£1}:
Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions
plus simples. On étudiera en détail cette méthode dans un paragraphe consacré

a l'intégration des fonctions rationnelles.

1 1 a b

1
_ 2
- (1-x)0+x) 1-x T4x 1-x"

1 1 1 1 1
dx = - dx + = d
/1—x2 X 2/1—x X+2/1+x x

1 1
=—3 |n|1—x|+5 In|l+x|+C




Quelques intégrales indéfinies

Voici une autre facon d'intégrer la fonction

— x2

sur R\ {£1}:

Il s’agit de décomposer cette fonction rationnelle en une somme de deux fractions

plus simples. On étudiera en détail cette méthode dans un paragraphe consacré

a l'intégration des fonctions rationnelles.

1 1 a

- (1-x)0+x) 1-x 1+x 1

1 1 1
/1—x2 dX_E/l—de

1
2
x 14+x

1 1
+§/1+de

1
:i_|_

1 1
=5 1—x|+5 I[L+x/+C=In/[{E]+C.



