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lever des indéterminations dans le calcul de certaines limites.

. X — ]. . ’ e nm QOn
Par exemples : lim , forme indéterminée de type %
x—=1 In(x?)
eX
lim —, forme indéterminée de type " ="
X—-+00 X2 00

lim x-In(x), forme indéterminée de type "0 x oo”
x—0+t

lim x*, sion a défini convenablement la fonction x*.
x—0t
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Soient f et g deux fonctions dérivables sur un voisinage de xp, telles que

* f(x0) =g(x) =0, |lim % est donc une forme indéterminée de type " 3" |.
X—>X0

« g(x) #£0 et g'(x) #0 sur un voisinage épointé de xq .

f’ f '
Alors si  |im (x) existe ou est infini, on a lim ﬁ = |lim (x) )
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Démonstration :

Soit h suffisamment petit tel que xp + h soit dans le voisinage épointé de Xxp .
On considere la fonction d définie par d(x) = f(xo+ h)-g(x) —g(xo+ h)-f(x).
d(x) =0 et d(xo+ h) =0, donc d'aprés le théoréme de Rolle, 3¢ € ]0, 1]
tel que d'(xo+vh)=0.

Or d'(x)="f(x+h)-g'(x)—g(x+ h)-f'(x), donc

dl(X0+19h) =0 & f(Xg+h)~g/(X0+19h)—g(Xo+h)' f/(X0+19h) =0.
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Or g(x) et g’(x) sont non nuls sur un voisinage épointé de xp, on a donc

f(xo+h) f(x+3h)
fixo+h) -g(xg+9h) =glxg+h) -fl(xg+-0h) < = .
(o-+h)-8'00+ 0 h) = gl +h)- o+ 0 h) & P = =

Et en passant a la limite, lorsque h — 0 :

. f(Xo + h) . f/(Xo + v h)
lim ——= = lim ———~,
h—-0 g(xo+h) h=0 g'(xo + U h)
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Or g(x) et g’(x) sont non nuls sur un voisinage épointé de xp, on a donc

f(xo+h) f(x+3h)
fixo+h) -g(xg+9h) =glxg+h) -fl(xg+-0h) < = .
(o-+h)-8'00+ 0 h) = gl +h)- o+ 0 h) & P = =

Et en passant a la limite, lorsque h — 0 :

f(xo + h) . f(xo+9h) f(x)

!
lim —~ = |lm —=~ ou [im —= = lim f(x)

) O]
h—0 g(Xo + h) h—0 g’(xo + 99 h) ' X—X0 g(x) X—X0 g’(x)




Forme indéterminée de type " 8

Remarque :



Forme indéterminée de type " %

Remarque : Ce résultat reste valable lorsque x — o0.

Théoréeme :



Forme indéterminée de type " 8

Remarque : Ce résultat reste valable lorsque x — o0.
Théoreme :

Soient f et g dérivables sur un voisinage de I'infini,



Forme indéterminée de type " 8

Remarque : Ce résultat reste valable lorsque x — o0.
Théoreme :
Soient f et g dérivables sur un voisinage de I'infini, telles que

lim f(x)= XIi_}n;(} g(x)=0.

X—00



Forme indéterminée de type " 8

Remarque : Ce résultat reste valable lorsque x — o0.

Théoreme :
Soient f et g dérivables sur un voisinage de I'infini, telles que

lim f(x)= XIi_}n;(} g(x)=0.

X—00

.. fi(x . e
Alors si  lim ) existe ou est infini,
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Remarque : Ce résultat reste valable lorsque x — o0.

Théoreme :
Soient f et g dérivables sur un voisinage de I'infini, telles que

XI|_>rr;o f(x)= XI|_>n;o g(x)=0.
! f

Alors si  lim - x) existe ou est infini, ona lim ﬁ = |im - )

x—00 g (x) X—$00 g(x) X—00 g(x)
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Théoréeme :

Soient f g deux fonctions dérivables sur un voisinage de xp, (xo fini ou

infini) et telles que lim f(x) =00 et lim g(x) = oc0.
X—X0 X—X0

f'(x) f(x)

Alors si lim existe ou est infini, ona |Iim —<% = |lim .
X—X0 g’(x) X—Xp g(x) X—X0 g’(x)

L'idée de la démonstration est de se ramener a la situation précédente en

f(x) 1/g(x)

écrivant ——= sous la forme

g(x) 1/f(x)
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f
On suppose que lim ﬁ =L, (L fini ou infini).
=% g(x)
Alors L = lim 1/g() est une forme indéterminée de type " %”.

T 1/F(x)

! 2
Et en utilisant la regle de Bernoulli - de I'Hospital : L ™ im M
o —F(x)/f

/ / 2
Etsi lim f(x) existe ou est infini, ona L= lim g'(x) - lim ()
X—X0 g’(x) X—$X0 f’( ) X—X0 g2(x)
/
= L= fim £ 2

X—rX0 f’ (X)
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On suppose que lim ——= =L, (L fini ou infini).

=% g(x)
Alors L = XILXO léi(( 3 est une forme indéterminée de type ”%”.

! 2
Et en utilisant la regle de Bernoulli - de I'Hospital : L ™ im M
xwo —f'(x)/F2(x)
f! / f2
Etsi lim (x) existe ou est infini, ona L= lim g(x) - lim (x)
X—+X0 g’(x) X—>X0 f’( ) X—>XQ g2(x)

/ /

Sol—im EX e gy €00 L
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On suppose que lim ——= =L, (L fini ou infini).
=% g(x)
Alors L = XILXO léi(( 3 est une forme indéterminée de type ”%”.
! 2
Et en utilisant la regle de Bernoulli - de I'Hospital : L ™ im M
xwo —f'(x)/F2(x)
f! / f2
Etsi lim (x) existe ou est infini, ona L= lim g(x) - lim (x)
X—+X0 g’(x) X—>X0 f’( ) X—>XQ g2(x)
/ / 1 f/
Sol—gm EX e gy €L OO

x=x0 f'(x) x=x f(x) L x=x0 g'(x)
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n'est pas une forme indéterminée :
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x—0t
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n'est pas une forme indéterminée :

Mais attention !

lim
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In(x)

lim n'est pas une forme indéterminée : lim

x—0*t X x—0t
. : . In(x)]’
Mais attention! |im M

x—0t [X],
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x—0F X x—0*t
. : . In(x)]’ . 1/x
Mais attention! lim M = lim L

x—0+ [X ], x—0t 1
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lim n'est pas une forme indéterminée : lim
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Mais attention! lim M = lim L = 400.
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sin

lim ( )

x—0+ In(x

X =

n'est pas une forme indéterminée :
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lim n'est pas une forme indéterminée : lim = —00.

x—0+ X x—=0t X
. : . In(x)]’ . 1/x
Mais attention! lim M = lim L = 400.
x—07t [X] x—=0t 1

__sin(3) R . sin(3)
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lim n'est pas une forme indéterminée : lim = —00.
x—0+ X x—=0t X
. : . In(x)]’ . 1/x
Mais attention! lim M = lim L = 400.
x—07t [X] x—=0t 1
__sin(3) R . sin(3)
lim n'est pas une forme indéterminée : lim =0.

x—=0t  In(x)

)]
S g 7

x—0+  In(x

~—
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In(x

- : o . . In(x)
lim n'est pas une forme indéterminée : lim = —00.
x—=0t X , x—=0t X
I 1
Mais attention | lim LML o 12X
x—0+ [X] x—0t 1
__sin(3) o . sin(3)
lim X~ n'est pas une forme indéterminée : lim = =0.
x—07F In(x) x—0+ In(x)
SN 1 1
sin (= —= -Ccos (=
Et lim [ (X)/] = lim x2 (x)

x—07F [ In(x) ] x—0t 1
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- : o . . In(x)
lim n'est pas une forme indéterminée : lim = —00.
x—0+ X , x—0*t X
I 1
Mais attention! lim M ~hm Y
x—0+ [X] x—0t 1
__sin(3) o . sin(3)
lim X~ n'est pas une forme indéterminée : lim = =0.
x—0+ In(x) x—0+ In(x)
(1N T/ 1 1
sin (= —= - COS (= 1
Et lim M = lim Xf() = lim —=cos (%)
x—0+ [In(x)] x—0+ 2 x—=0t X X
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In(x

- : o . . In(x)
lim n'est pas une forme indéterminée : lim = —00.
x—=0t X , x—=0t X
I 1
Mais attention! lim M ~hm Y
x—0+ [X] x—0t 1
__sin(3) o . sin(3)
lim X~ n'est pas une forme indéterminée : lim = =0.
x—07F In(x) x—0+ In(x)
(1N T/ 1 1
sin (= —= - COS (= 1
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On considére la fonction f définie sur R* par f(x) =
X

Montrons que les hypotheses de la regle de Bernoulli-de I'Hospital sont vérifiées :

: 3 o 2y _ : x3-sin(1/x2):
)|<ILHO x> -sin(l/x)=0 = lme 1,

—0 borné

car la fonction exponentielle est continue.

nQn

Donc Iirrz) f(x) est une forme indéterminée de type "j".
X—
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—0
imi 'existe pas, on ne peux donc rien dire quand a la convergence de
Cette limite n

f(x) lorsque x — 0.
La regle de Bernoulli-de |I'Hospital ne s'applique donc pas dans ce cas précis.
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On en déduit la limite de f(x) lorsque x — 0 :
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—0 borné
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Présentation sommaire des fonctions trigonométriques
hyperboliques.

Ces fonctions seront étudiées dans le cadre du cours d'Analyse 2.



Trigonométrie hyperbolique

Définitions :
_ el —e 7 e’ +e "
sinhx = : coshr = ——,
sinhxy e¥—e™™®
tanh x = = :
coshr et +e 7
coshx + sinhx = e*, cosh’? x —sinh’z = 1.
Parité :

Les fonctions sinh et tanh sont impaires, cosh est paire.
Formules d’addition :
sinh(x + y) = sinh x coshy + cosh x sinhy,

cosh(x + y) = cosh x coshy + sinh z sinhy |

tanh x + tanhy

tanh = :
anh(w +y) 1 + tanh x tanhy

Formules de bissection :

coshz — 1

9 9, coshx+1
sinh (5) = cosh (5) =
2 2
coshx — 1 sinh x
tanh(5) = — — :
sinh x coshx + 1
Dérivées :
sinh'z = coshz,  cosh'z =sinhz,
/ 1 2
tanh' © = 5s— =1—tanh"x.

cosh” x



Cosinus hyperbolique

el +e "
2

cosh(z) =




Sinus hyperbolique

€

sinh(z) =




Les fonctions cosinus et sinus hyperboliques peuvent étre décrites
comme l’abscisse et 'ordonnée d’un point qui parcourt I’arc d’hyperbole
d’équation v? —v* =1, u>0.

D’ou leur dénomination et leur analogie avec les fonctions cosinus
et sinus circulaires.



Tangente hyperbolique

T T

. o
tanh(x) — sinh(x) _e'—e
cosh(x) et 4e*
Y
14
0 1
14
r T 2
lim tanh(xz) = lim R [ L-c =1

T—=400 r—+o00 et 4+ e~ 7 z——+oo 1 + e 27
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