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Règle de Bernoulli - de l'Hospital

La règle de de Bernoulli - de l’Hospital

(BH) est un outil puissant permettant de

lever des indéterminations dans le calcul de certaines limites.

Par exemples : ∗ lim
x→1

x − 1

ln(x2)
, forme indéterminée de type ” 0

0
”

∗ lim
x→+∞

ex

x2
, forme indéterminée de type ”∞∞”

∗ lim
x→0+

x · ln(x) , forme indéterminée de type ”0×∞”

∗ lim
x→0+

xx , si on a défini convenablement la fonction xx .
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, forme indéterminée de type ”∞∞”

∗ lim
x→0+
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lever des indéterminations dans le calcul de certaines limites.

Par exemples : ∗ lim
x→1

x − 1

ln(x2)
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Forme indéterminée de type ”0
0
”

Théorème :

Soient f et g deux fonctions dérivables sur un voisinage de x0 , telles que

∗ f (x0) = g(x0) = 0 ,

�
lim
x→x0

f (x)
g(x)

est donc une forme indéterminée de type ” 0
0
”

�
.

∗ g(x) 6= 0 et g ′(x) 6= 0 sur un voisinage épointé de x0 .

Alors si lim
x→x0

f ′(x)

g ′(x)
existe ou est infini, on a lim

x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)
.
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Théorème :
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Forme indéterminée de type ”0
0
”

Démonstration :

Soit h suffisamment petit tel que x0 + h soit dans le voisinage épointé de x0 .

On considère la fonction d définie par d(x) = f (x0 +h) · g(x)− g(x0 +h) · f (x) .

d(x0) = 0 et d(x0 + h) = 0 , donc d’après le théorème de Rolle, ∃ϑ ∈ ] 0 , 1 [

tel que d ′(x0 + ϑ h) = 0 .

Or d ′(x) = f (x0 + h) · g ′(x)− g(x0 + h) · f ′(x) , donc

d ′(x0 + ϑ h) = 0 ⇔ f (x0 + h) · g ′(x0 + ϑ h)− g(x0 + h) · f ′(x0 + ϑ h) = 0 .
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tel que d ′(x0 + ϑ h) = 0 .

Or d ′(x) = f (x0 + h) · g ′(x)− g(x0 + h) · f ′(x) ,

donc

d ′(x0 + ϑ h) = 0 ⇔ f (x0 + h) · g ′(x0 + ϑ h)− g(x0 + h) · f ′(x0 + ϑ h) = 0 .

my header

o



Forme indéterminée de type ”0
0
”

Démonstration :

Soit h suffisamment petit tel que x0 + h soit dans le voisinage épointé de x0 .
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Forme indéterminée de type ”0
0
”

Or g(x) et g ′(x) sont non nuls sur un voisinage épointé de x0 , on a donc

f (x0 + h) · g ′(x0 + ϑ h) = g(x0 + h) · f ′(x0 + ϑ h) ⇔ f (x0 + h)

g(x0 + h)
=

f ′(x0 + ϑ h)

g ′(x0 + ϑ h)
.

Et en passant à la limite, lorsque h→ 0 :

lim
h→0

f (x0 + h)

g(x0 + h)
= lim

h→0

f ′(x0 + ϑ h)

g ′(x0 + ϑ h)
, ou lim

x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)
.
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f (x0 + h) · g ′(x0 + ϑ h) = g(x0 + h) · f ′(x0 + ϑ h) ⇔ f (x0 + h)

g(x0 + h)
=

f ′(x0 + ϑ h)

g ′(x0 + ϑ h)
.
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Remarque :

Ce résultat reste valable lorsque x →∞ .

Théorème :

Soient f et g dérivables sur un voisinage de l’infini, telles que

lim
x→∞

f (x) = lim
x→∞

g(x) = 0 .
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Théorème :

Soient f g deux fonctions dérivables sur un voisinage de x0 , (x0 fini ou

infini) et telles que lim
x→x0

f (x) =∞ et lim
x→x0

g(x) =∞ .

Alors si lim
x→x0

f ′(x)

g ′(x)
existe ou est infini, on a lim

x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)
.

L’idée de la démonstration est de se ramener à la situation précédente en

écrivant
f (x)

g(x)
sous la forme

1/g(x)

1/f (x)
.
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Théorème :
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en

écrivant
f (x)

g(x)
sous la forme

1/g(x)

1/f (x)
.

my header

o



Forme indéterminée de type ”∞∞”
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On suppose que lim
x→x0

f (x)

g(x)
= L ,

(L fini ou infini).

Alors L = lim
x→x0

1/g(x)

1/f (x)
est une forme indéterminée de type ” 0

0
”.

Et en utilisant la règle de Bernoulli - de l’Hospital : L
BH
= lim

x→x0

−g ′(x)/g 2(x)

−f ′(x)/f 2(x)
.

Et si lim
x→x0

f ′(x)

g ′(x)
existe ou est infini, on a L = lim

x→x0

g ′(x)

f ′(x)
· lim
x→x0

f 2(x)

g 2(x)

⇒ L = lim
x→x0

g ′(x)

f ′(x)
· L2 ⇒ lim

x→x0

g ′(x)

f ′(x)
=

1

L
⇒ lim

x→x0

f ′(x)

g ′(x)
= L .
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Exemples

1) lim
x→0+

ln(x)

x
n’est pas une forme indéterminée : lim

x→0+

ln(x)

x
= −∞ .

Mais attention ! lim
x→0+

[ ln(x) ]′

[ x ]′
= lim

x→0+

1/x

1
= +∞ .

2) lim
x→0+

sin
(

1
x

)
ln(x)

n’est pas une forme indéterminée : lim
x→0+

sin
(

1
x

)
ln(x)

= 0 .

Et lim
x→0+

[
sin
(

1
x

) ]′
[ ln(x) ]′

= lim
x→0+

− 1
x2 · cos

(
1
x

)
1
x

= lim
x→0+

−1

x
· cos

(
1
x

)
n’existe pas.

Il est essentiel de vérifier les hypothèses de la règle de Bernoulli - de l’Hospital

avant de l’utiliser.
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x→0+

sin
(

1
x

)
ln(x)

= 0 .

Et lim
x→0+

[
sin
(

1
x

) ]′
[ ln(x) ]′

= lim
x→0+

− 1
x2 · cos

(
1
x

)
1
x

= lim
x→0+

−1

x
· cos

(
1
x

)
n’existe pas.

Il est essentiel de vérifier les hypothèses de la règle de Bernoulli - de l’Hospital

avant de l’utiliser.

my header

o



Exemples

1) lim
x→0+

ln(x)

x
n’est pas une forme indéterminée : lim
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avant de l’utiliser.

my header

o



Exemples

1) lim
x→0+

ln(x)

x
n’est pas une forme indéterminée : lim
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avant de l’utiliser.

my header

o



Exemples

1) lim
x→0+

ln(x)

x
n’est pas une forme indéterminée : lim
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x→0+

ln(x)

x
= −∞ .

Mais attention ! lim
x→0+

[ ln(x) ]′

[ x ]′
= lim

x→0+

1/x

1
= +∞ .

2) lim
x→0+

sin
(

1
x

)
ln(x)

n’est pas une forme indéterminée : lim
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est une forme indéterminée de type ”∞∞”,

lim
x→+∞

ex

x2

BH
= lim

x→+∞

ex

2x
qui est toujours une forme indéterminée de type ”∞∞”,
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est une forme indéterminée de type ” 0

0
”,

lim
x→1

x − 1

ln(x2)
BH
= lim

x→1

1

2/x
= lim

x→1

x

2
=

1

2
.

4) lim
x→+∞

ex

x2
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lim
x→0+

x · ln(x) = lim
x→0+

ln(x)

1/x
BH
= lim

x→0+

1/x

−1/x2

= lim
x→0+

−x = 0 .

my header

o



Exemples

5) lim
x→0

ex − 1

x
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Fonction puissance généralisée

Définition :

Soient u(x) et v(x) deux fonctions définies sur un domaine D .

Si u(x) > 0 , ∀ x ∈ D , on définit la fonction puissance généralisée [ u(x) ]v(x)

par
[ u(x) ]v(x) = ev(x)·ln[ u(x) ] , x ∈ D .

7) lim
x→0+

xx = lim
x→0+

ex ·ln(x) = e limx→0+ [ x ·ln(x) ] , car l’exponentielle est continue.

Et lim
x→0+

x · ln(x) = 0 , donc lim
x→0+

xx = lim
x→0+

ex ·ln(x) = e0 = 1 .
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Si u(x) > 0 , ∀ x ∈ D , on définit la fonction puissance généralisée [ u(x) ]v(x)
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Exemples

Encore un exemple :

On considère la fonction f définie sur R∗ par f (x) =
ex

3· sin(1/x2) − 1

x
.

Montrons que les hypothèses de la règle de Bernoulli-de l’Hospital sont vérifiées :

lim
x→0

x3︸︷︷︸
→0

· sin(1/x2)︸ ︷︷ ︸
borné

= 0 ⇒ lim
x→0

ex
3· sin(1/x2) = 1 ,

car la fonction exponentielle est continue.

Donc lim
x→0

f (x) est une forme indéterminée de type ”0
0
”.
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Suite de l'exemple

Posons N(x) = ex
3· sin(1/x2) − 1 et D(x) = x :

lim
x→0

N ′(x)

D ′(x)
= lim

x→0

[
3x2 · sin(1/x2) + x3 ·

(
− 2

x3

)
· cos(1/x2)

]
· ex3· sin(1/x2)

1

= lim
x→0

[
3x2 · sin(1/x2)︸ ︷︷ ︸

→0

− 2 cos(1/x2)︸ ︷︷ ︸
diverge

]
· ex3· sin(1/x2)︸ ︷︷ ︸

→1

.

Cette limite n’existe pas, on ne peux donc rien dire quand à la convergence de

f (x) lorsque x → 0 .

La règle de Bernoulli-de l’Hospital ne s’applique donc pas dans ce cas précis.
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Suite de l'exemple

Mais alors, comment étudier cette limite ?

Nous avons montré dans l’exemple 5) que ex − 1 et x sont des infiniment

petits équivalents au voisinage de x = 0 :

lim
x→0

x = 0 , lim
x→0

(ex − 1) = 0 et lim
x→0

ex − 1

x
= 1 .

Remarque : on aurait aussi pu montrer que limx→0
ex−1
x

= 1 de la façon

suivante :

lim
x→0

ex − 1

x
= lim

x→0

ex − e0

x − 0
= [ex ]′

∣∣∣
x=0

= ex
∣∣∣
x=0

= 1 .
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Nous avons montré dans l’exemple 5) que ex − 1 et x sont des infiniment
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petits équivalents au voisinage de x = 0 :

lim
x→0

x = 0 , lim
x→0

(ex − 1) = 0 et lim
x→0

ex − 1

x
= 1 .

Remarque : on aurait aussi pu montrer que limx→0
ex−1
x

= 1 de la façon
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Suite de l'exemple

On en déduit la limite de f (x) lorsque x → 0 :

lim
x→0

f (x) = lim
x→0

ex
3· sin(1/x2) − 1

x
= lim

x→0

ex
3· sin(1/x2) − 1

x · x2 · sin(1/x2)
· x2 · sin(1/x2)

= lim
x→0

ex
3· sin(1/x2) − 1

x3 · sin(1/x2)
· x2 · sin(1/x2) = 0 ,

car lim
x→0

ex
3· sin(1/x2) − 1

x3 · sin(1/x2)
= 1 et lim

x→0
x2︸︷︷︸
→0

· sin(1/x2)︸ ︷︷ ︸
borné

= 0 .
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Présentation sommaire des fonctions trigonométriques

hyperboliques.

Ces fonctions seront étudiées dans le cadre du cours d’Analyse 2.
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Trigonométrie hyperbolique

Définitions :

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
,

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
,

coshx + sinhx = ex , cosh2 x− sinh2 x = 1 .

Parité :

Les fonctions sinh et tanh sont impaires, cosh est paire.

Formules d’addition :

sinh(x + y) = sinhx cosh y + coshx sinh y ,

cosh(x + y) = coshx cosh y + sinhx sinh y ,

tanh(x + y) =
tanhx + tanh y

1 + tanh x tanh y
.

Formules de bissection :

sinh2(x2) =
coshx− 1

2
, cosh2(x2) =

coshx + 1

2
,

tanh(x2) =
coshx− 1

sinhx
=

sinhx

coshx + 1
.

Dérivées :

sinh′ x = coshx , cosh′ x = sinhx ,

tanh′ x =
1

cosh2 x
= 1− tanh2 x .



Cosinus hyperbolique

cosh(x) =
ex + e−x

2

x

y

O

1
2

1

1

y = 1
2 e

x y = 1
2 e
−x



Sinus hyperbolique

sinh(x) =
ex − e−x

2

x

y

O

1
2

−1
2

1
y = 1

2 e
x

y = −1
2 e
−x



cosh2(x)− sinh2(x) = 1

u

v

O
1

u = cosh(x)

v = sinh(x) M(x)

Les fonctions cosinus et sinus hyperboliques peuvent être décrites

comme l’abscisse et l’ordonnée d’un point qui parcourt l’arc d’hyperbole

d’équation u2 − v2 = 1 , u ≥ 0 .

D’où leur dénomination et leur analogie avec les fonctions cosinus

et sinus circulaires.



Tangente hyperbolique

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x

x

y

O 1

1

−1

lim
x→+∞

tanh(x) = lim
x→+∞

ex − e−x

ex + e−x
= lim

x→+∞

1− e−2x

1 + e−2x
= 1 .
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