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1.1 Somme de Riemann et intégrale dé�nie

Soit f continue sur [ a , b ] , a < b .

On considère le domaine D du plan,

limité par y = 0 , y = f (x) , x = a et x = b .

L’aire analytique de ce domaine

est définie positive si f (x) ≥ 0

et négative si f (x) ≤ 0 .
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On cherche à déterminer, à définir, l’aire analytique du domaine D .
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est définie positive si f (x) ≥ 0

et négative si f (x) ≤ 0 .

+

−
x

y

O a
b
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Somme de Riemann

Pour cela,

• on partage l’intervalle [ a , b ] de façon arbitraire en n intervalles

[ xk−1 , xk ] , 1 ≤ k ≤ n :

a = x0 < x1 < · · · < xk−1 < xk < · · · < xn = b ,

• puis on choisit arbitrairement une abscisse tk (1 ≤ k ≤ n) dans chaque

intervalle [ xk−1 , xk ] de la partition.

Et on construit sur chaque intervalle [ xk−1 , xk ] un rectangle de ”hauteur

analytique” f (tk) , 1 ≤ k ≤ n .

my header

o



Somme de Riemann

Pour cela,

• on partage l’intervalle [ a , b ]
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Somme de Riemann

xi−1 xi
ti

xjxj−1

tj

x

y

O a
b

f (ti)

f (tj)

La somme
∑n

k=1 f (tk) ·∆xk où ∆xk = xk − xk−1 , (1 ≤ k ≤ n) , représente

la somme des aires analytiques des domaines rectangulaires.
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Somme de Riemann

C’est une approximation de l’aire cherchée,

d’autant plus précise que les ∆xk

sont petits.

Définition : La somme
∑n

k=1 f (tk) ·∆xk est appelée Somme de Riemann de

f sur [ a , b ] .

Cette somme dépend du partage de [ a , b ] et du choix de tk dans chaque

intervalle [ xk−1 , xk ] .
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Somme de Darboux

Cas particulier des sommes de Riemann,

les sommes de Darboux :

Pour une partition donnée de l’intervalle [ a , b ] , on définit

• la somme de Darboux inférieure :

sn =
∑n

k=1 mk ·∆xk où mk est le min de f sur [ xk−1 , xk ]

• la somme de Darboux supérieure :

Sn =
∑n

k=1 Mk ·∆xk où Mk est le max de f sur [ xk−1 , xk ]
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k=1 Mk ·∆xk où Mk est le max de f sur [ xk−1 , xk ]

my header

o



Somme de Darboux

Cas particulier des sommes de Riemann, les sommes de Darboux :

Pour une partition donnée de l’intervalle [ a , b ] , on définit

• la somme de Darboux inférieure :

sn =
∑n
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Somme de Darboux

Somme de Darboux inférieure
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Somme de Darboux supérieure

xi−1 xi

xjxj−1 x

y

a
b

Mi

Mj

my header

o



Somme de Darboux

Somme de Darboux supérieure
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Intégrale de Riemann

Définition :

Si pour n→∞ , tous les ∆xk → 0 et si lim
n→∞

n∑
k=1

f (tk) ·∆xk

existe indépendemment du choix des xk et des tk , alors f est dite intégrable

sur [ a , b ] au sens de Riemann.

Cette limite est appelée l’intégrale définie de f sur [ a , b ] .

On la note

∫ b

a

f (x) dx .
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existe indépendemment du choix des xk

et des tk , alors f est dite intégrable

sur [ a , b ] au sens de Riemann.
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Intégrale de Riemann

L’intégrale définie de f sur [ a , b ]

∫ b

a

f (x) dx = lim

n→∞
∆xk → 0

n∑
k=1

f (tk) ·∆xk

est par définition la mesure de l’aire

analytique du domaine D limité par

y = 0 , y = f (x) , x = a et x = b .

D

x

y

O

y = f (x)

a b
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y = 0 , y = f (x) , x = a et x = b .

D

x

y

O

y = f (x)

a b

my header

o



Intégrale de Riemann
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Théorème

Une question importante reste en suspend :

Quelles sont les fonctions intégrables au sens de Riemann ?

Une réponse très partielle à cette question difficile est donnée par le théorème

suivant :

Théorème : Toute fonction continue sur [ a , b ] est intégrable sur [ a , b ] au

sens de Riemann.
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suivant :
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Exemple

Calculons les sommes de Darboux

inférieure

et supérieure de la fonction

f (x) = x sur l’intervalle [ 0 , b ] ,

associées à une partition régulière de

[ 0 , b ] , (b > 0) .
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Exemple

Une partition régulière de [ 0 , b ]

consiste à partager cet intervalle en

n intervalles [ xk−1 , xk ] de même

longueurs.

Tous ces intervalles ont donc pour

longueur ∆xk =
b

n
, 1 ≤ k ≤ n .

Et les abscisses xk ont pour expression

xk = k · b
n
, 1 ≤ k ≤ n .

(k−1) b
n

k b
n

x

y
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Exemple

• Somme de Darboux inférieure

La fonction f (x) = x étant strictement croissante, le min de f sur

[ xk−1 , xk ] est atteint en xk−1 = (k − 1) b
n

.

On en déduit l’expresion de la somme de Darboux inférieure :

sn =
n∑

k=1

xk−1 ·∆xk =
n∑

k=1

[
(k − 1)

b

n

]
· b
n

=
b2

n2
·

n∑
k=1

(k − 1) ,

sn =
b2

n2
·
n−1∑
j=1

j =
b2

n2
· (n − 1) n

2
=

b2

2
· n

2 − n

n2
=

b2

2
·
[

1− 1

n

]
.
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On en déduit l’expresion de la somme de Darboux inférieure :

sn =
n∑

k=1

xk−1 ·∆xk =
n∑

k=1

[
(k − 1)

b

n

]
· b
n

=
b2

n2
·

n∑
k=1

(k − 1) ,

sn =
b2

n2
·
n−1∑
j=1

j =
b2

n2
· (n − 1) n

2
=

b2

2
· n

2 − n

n2
=

b2

2
·
[

1− 1

n

]
.

my header

o



Exemple

• Somme de Darboux inférieure

La fonction f (x) = x étant strictement croissante, le min de f sur

[ xk−1 , xk ] est atteint en xk−1 = (k − 1) b
n

.
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On en déduit l’expresion de la somme de Darboux inférieure :

sn =
n∑

k=1

xk−1 ·∆xk =
n∑

k=1

[
(k − 1)

b

n

]
· b
n

=
b2

n2
·

n∑
k=1

(k − 1) ,

sn =
b2

n2
·
n−1∑
j=1

j =
b2

n2
· (n − 1) n

2
=

b2

2
· n

2 − n

n2

=
b2

2
·
[

1− 1

n

]
.

my header

o



Exemple

• Somme de Darboux inférieure

La fonction f (x) = x étant strictement croissante, le min de f sur

[ xk−1 , xk ] est atteint en xk−1 = (k − 1) b
n

.
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On en déduit l’expresion de la somme de Darboux supérieure :

Sn =
n∑

k=1

xk ·∆xk =
n∑

k=1

[
k
b

n

]
· b
n

=
b2

n2
·

n∑
k=1

k ,

Sn =
b2

n2
· n (n + 1)

2
=

b2

2
· n

2 + n

n2
=

b2

2
·
[

1 +
1

n

]
.

my header

o



Exemple

• Somme de Darboux supérieure

La fonction f (x) = x atteint son max sur [ xk−1 , xk ] en xk = k b
n

.
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Exemple

• Conclusion :

Ces deux sommes de Darboux convergent vers la même valeur
b2

2
.

Ce n’est pas une surprise car la fonction f (x) = x est continue, donc

intégrable au sens de Riemann.∫ b

0

x dx =
b2

2
.
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intégrable au sens de Riemann.∫ b

0

x dx =
b2

2
.

my header

o



Exemple

• Conclusion :

Ces deux sommes de Darboux convergent vers la même valeur
b2

2
.

Ce n’est pas une surprise car la fonction f (x) = x est continue, donc
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Propriétés de l'intégrale dé�nie

Quelques conséquences de la définition :

•
∫ a

a

f (x) dx = 0

a

y = f (x)

x

y
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Propriétés de l'intégrale dé�nie

Cas particulier :

en posant c = a dans l’identité précédente, on obtient∫ b

a

f (x) dx +

∫ a

b

f (x) dx =

∫ a

a

f (x) dx = 0 ⇒
∫ a

b

f (x) dx = −
∫ b

a

f (x) dx

a b

y = f (x)

x

y

O

Sur cet exemple,

∫ a

b

f (x) dx est négative

car les ∆xk des partitions permettant de

décrire le cheminement de b vers a sont

tous négatifs. Les aires analytiques des do-

maines rectangulaires sont donc négatives.
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a

f (x) dx +

∫ a

b

f (x) dx =

∫ a

a

f (x) dx = 0 ⇒
∫ a

b

f (x) dx = −
∫ b

a

f (x) dx

a b

y = f (x)

x

y

O

Sur cet exemple,

∫ a

b

f (x) dx est négative

car les ∆xk des partitions permettant de

décrire le cheminement de b vers a sont

tous négatifs.

Les aires analytiques des do-

maines rectangulaires sont donc négatives.

my header

o



Propriétés de l'intégrale dé�nie

Cas particulier : en posant c = a dans l’identité précédente, on obtient∫ b
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Propriétés de l'intégrale dé�nie

•
∫ b

a

[ f (x) + g(x) ] dx

=

∫ b

a

f (x) dx +

∫ b

a

g(x) dx

• et

∫ b

a

λ · f (x) dx = λ ·
∫ b

a

f (x) dx , (λ ∈ R) .

y = f (x)

y = λ · f (x)

a b
x

y

O
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Propriétés de l'intégrale dé�nie

• Si a < b

et si f (x) ≤ g(x) , ∀ x ∈ [ a , b ] , alors∫ b

a

f (x) dx ≤
∫ b

a

g(x) dx .

y = f (x)
y = g(x)

a b
x

y

O

Attention : la réciproque est fausse !
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Propriétés de l'intégrale dé�nie

• Si f est paire sur [−a , a ]

alors

∫ a

−a
f (x) dx = 2

∫ a

0

f (x) dx .

• Si f est impaire sur [−a , a ] alors

∫ a

−a
f (x) dx = 0 .

Exemples :

∫ π
2

−π
2

cos(x) dx = 2

∫ π
2

0

cos(x) dx et

∫ π
2

−π
2

sin(x) dx = 0 .
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Exemple

Exemple :

Soient f (x) = 1 − x2 et A

l’aire du domaine limité par le graphe de f

et l’axe Ox . Or f est paire, on a donc

A =

∫ 1

−1
f (x) dx = 2

∫ 1

0

f (x) dx . x

y

O

1

1

Pour calculer A , on construit les sommes de Darboux inférieure et supérieure de

f sur une partition régulière de l’intervalle [ 0 , 1 ] .
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Somme de Darboux inférieure

• Somme de Darboux inférieure

La fonction f étant décroissante sur

[ 0 , 1 ] , la plus petite ordonnée sur

l’intervalle [ xk−1 , xk ] est égale à f (xk) .

∆xk

=
1

n
et xk =

k

n
, 1 ≤ k ≤ n ,

sn =
n∑

k=1

∆xk · f (xk)

=
∑n

k=1
1
n
· f
(
k
n
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y
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∆xk =
1

n
et xk =

k

n
, 1 ≤ k ≤ n ,

sn =
n∑

k=1

∆xk · f (xk)

=
∑n

k=1
1
n
· f
(
k
n

)

. x

y

O

1

1

my header

o



Somme de Darboux inférieure

• Somme de Darboux inférieure

La fonction f étant décroissante sur
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Somme de Darboux inférieure

sn =
1

n
·

n∑
k=1

f
(
k
n
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n
·
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(
k
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·

[
n∑

k=1

1−
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(
k
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n
·
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n −
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(
k
n

)2 ]
= 1− 1

n
·

n∑
k=1

(
k
n

)2
= 1− 1

n3
·

n∑
k=1

k2 .

Il ne nous reste plus qu’à déterminer la somme des carrés des n premiers entiers

consécutifs. Ouvrons une parenthèse pour calculer cette somme.
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Somme des carrés des n premiers entiers

Notons de la façon suivante

la somme des n premiers entiers, la somme des

carrés des n premiers entiers et la somme des cubes des n premiers entiers :

∗ σn = 1 + 2 + · · ·+ (n − 1) + n , c’est une somme connue : σn = n (n+1)
2

.

∗ σ2
n = 12 + 22 + · · ·+ (n − 1)2 + n2 , c’est la somme cherchée.

∗ σ3
n = 13 + 23 + · · ·+ (n − 1)3 + n3 .

Et nous allons déterminer σ2
n à partir du développement de (n + 1)3 .
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Notons de la façon suivante la somme des n premiers entiers,

la somme des

carrés des n premiers entiers et la somme des cubes des n premiers entiers :

∗ σn = 1 + 2 + · · ·+ (n − 1) + n , c’est une somme connue : σn = n (n+1)
2

.

∗ σ2
n = 12 + 22 + · · ·+ (n − 1)2 + n2 , c’est la somme cherchée.

∗ σ3
n = 13 + 23 + · · ·+ (n − 1)3 + n3 .

Et nous allons déterminer σ2
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Notons de la façon suivante la somme des n premiers entiers, la somme des

carrés des n premiers entiers et la somme des cubes des n premiers entiers :

∗ σn = 1 + 2 + · · ·+ (n − 1) + n ,

c’est une somme connue : σn = n (n+1)
2

.

∗ σ2
n = 12 + 22 + · · ·+ (n − 1)2 + n2 , c’est la somme cherchée.

∗ σ3
n = 13 + 23 + · · ·+ (n − 1)3 + n3 .

Et nous allons déterminer σ2
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Notons de la façon suivante la somme des n premiers entiers, la somme des

carrés des n premiers entiers et la somme des cubes des n premiers entiers :

∗ σn = 1 + 2 + · · ·+ (n − 1) + n , c’est une somme connue :

σn = n (n+1)
2

.

∗ σ2
n = 12 + 22 + · · ·+ (n − 1)2 + n2 , c’est la somme cherchée.

∗ σ3
n = 13 + 23 + · · ·+ (n − 1)3 + n3 .

Et nous allons déterminer σ2
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Somme des carrés des n premiers entiers
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n =
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6
[ 2 (n + 1)2 − 3n − 2 ] =
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[ 2n2 + n ] =

n (n + 1) (2n + 1)

6
.

my header

o



Somme des carrés des n premiers entiers

σ3
n+1 = σ3

n + 3σ2
n + 3σn + (n + 1) ⇔ σ3

n+1 − σ3
n = 3σ2

n + 3σn + (n + 1) .

Or σ3
n+1 − σ3

n = (n + 1)3 , on a donc (n + 1)3 = 3σ2
n + 3σn + (n + 1) .
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Et en revenant à la somme de Darboux inférieure, on obtient

sn = 1− 1

n3
·

n∑
k=1

k2 = 1− 1

n3
· n (n + 1) (2n + 1)

6

= 1−
(1 + 1

n
) (2 + 1

n
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n
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Somme de Darboux supérieure

• Somme de Darboux supérieure

De façon analogue, la plus grande

ordonnée sur l’intervalle [ xk−1 , xk ]

est égale à f (xk−1) .

∆xk =
1

n
et xk =

k

n
, 1 ≤ k ≤ n ,

Sn =
n∑

k=1

∆xk · f (xk−1)

=
n∑

k=1

1

n
· f
(
k−1
n

)
.
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Exemple

• Conclusion :

sn ≤
∫ 1

0

f (x) dx ≤ Sn , ∀ n ∈ N∗.

Et les deux sommes de Darboux convergent vers la même valeur :

∗ lim
n→∞

sn = lim
n→∞

[
1−

(1 + 1
n ) (1 +

1
2n )

3

]
=

2

3
,

∗ lim
n→∞

Sn = lim
n→∞

[
1−

(1− 1
n ) (1−

1
2n )

3

]
=

2

3
.

On en déduit que

∫ 1

0

f (x) dx =
2

3
et donc que A =

4

3
.
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