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Soit f continuesur [a, b], a< b. On considére le domaine D du plan,
limité par y =0, y=f(x), x=a et x=>.
y

L'aire analytique de ce domaine

est définie positive si f(x) > 0 o 2 X
et négative si f(x) <O0. \J

On cherche a déterminer, a définir, |'aire analytique du domaine D.
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Pour cela,

e on partage |'intervalle [a, b] de fagon arbitraire en n intervalles

[Xk—lyxk]7 ]-Skgn
Aa=x <X < - <X 1<X<--<x,=Db,

e puis on choisit arbitrairement une abscisse t;, (1 < k < n) dans chaque

intervalle [xx_1, xx] de la partition.

Et on construit sur chaque intervalle [xx_1, xx| un rectangle de "hauteur

analytique” f(tx), 1 < k <n.
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C'est une approximation de I|'aire cherchée, d'autant plus précise que les Axy

sont petits.

Définition : La somme >, f(t)- Axx est appelée Somme de Riemann de
f sur [a, b].

Cette somme dépend du partage de [a, b] et du choix de t, dans chaque

intervalle [xk_1, xk].
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Définition : Si pour n— oo, tousles Ax, — 0 etsi lim Z f(te) - Axk
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b
On la note / f(x)dx.
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Une question importante reste en suspend :
Quelles sont les fonctions intégrables au sens de Riemann?

Une réponse tres partielle a cette question difficile est donnée par le théoréme

suivant :

Théoreme : Toute fonction continue sur [a, b] est intégrable sur [a, b] au

sens de Riemann.
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b
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b 2
/ xdx:b—.
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Cas particulier : en posant ¢ = a dans l'identité précédente, on obtient
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Cas particulier : en posant ¢ = a dans l'identité précédente, on obtient

/abf(x)dx+/baf(x)dx:/aaf(x)dx:o = /baf(x)dx:—/abf(x)dx

Sur cet exemple, f(x) dx est négative
Y y = f(x) b

car les Ax, des partitions permettant de

décrire le cheminement de b vers a sont
o\ ;- ; w  tous négatifs. Les aires analytiques des do-

maines rectangulaires sont donc négatives.
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e Si a<b etsi f(x)<g(x), Vx€]a, b], alors

/f(x)dxg/ g(x)dx.
y
y =8(x)
y=f(x)
ol b )

Attention : la réciproque est fausse!
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Soient f(x) =1—x> et A
I'aire du domaine limité par le graphe de f
et 'axe Ox. Or f est paire, on a donc
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Pour calculer A, on construit les sommes de Darboux inférieure et supérieure
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Soient f(x) =1—x> et A
I'aire du domaine limité par le graphe de f
et 'axe Ox. Or f est paire, on a donc

A:/_llf(x)dx:Q/Olf(x)dx. 5 - x

Pour calculer A, on construit les sommes de Darboux inférieure et supérieure de

f sur une partition réguliere de l'intervalle [0, 1].
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La fonction f étant décroissante sur

[0, 1], la plus petite ordonnée sur

I'intervalle [xx_1, xx] est égalea f(x).
k

1
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S, = ZAxk - F(xx)
k=1
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Il ne nous reste plus qu'a déterminer la somme des carrés des n premiers entiers

consécutifs.
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Il ne nous reste plus qu'a déterminer la somme des carrés des n premiers entiers

consécutifs. Ouvrons une parenthése pour calculer cette somme.
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Notons de la facon suivante la somme des n premiers entiers, la somme des

carrés des n premiers entiers et la somme des cubes des n premiers entiers :

n(n+1)

* 0p=14+24---+(n—1)+n, cest une somme connue : 0, = =7

* 02=12422+... 4 (n—1)2+n?, c'est la somme cherchée.

« o3 =13+22+...+(n—13+n.
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Et nous allons déterminer o2 3 partir du développement de (n+ 1)3.
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o3, = o + 302 + 30, + (n+1)
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