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f(X):\/)_(, Df:R+.

f/(X):2 y Df/:Rj_.

<~



Point & tangente verticale

Soit f: Df — R continue sur | et dérivable sur | saufen xy € /.

Sit lim, f'(x) = oo, le graphe de f admet en xo une tangente
X*}XO

(demi-tangente) verticale.

f(X):\/)_(, Df:R+.

f'(x) = , Dp=R%. lim f'(x) =4o00.

2 x—0*t

<~



Point & tangente verticale

Soit f: Df — R continue sur | et dérivable sur | saufen xy € /.
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X*}XO
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y
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f'(x) = , Dp=R%. lim f'(x) =4o00.
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Sit lim, f'(x) = oo, le graphe de f admet en xo une tangente
X*}XO

(demi-tangente) verticale.
y

f(X):\/)_(, Df:R+.
f'(x)

Df’ = Rj— : X'i%L f,(X) = +00. O

1
N

L'origine est un point frontiere de Dy a demi-tangente verticale.
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f(X):\3/)_(, Df:R
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f/(X) = Df/ = R*.
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f(X):\3/;, Df:R

1
' _ L — R*
f(X)—3\3/p, Df R*.
lim f'(x) = +o0.
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L'origine est un point du graphe de f

a tangente verticale.
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Exemple 3 :
f(x) = Vx2, Df=R.
2
f'(x) =
=575
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Point & tangente verticale

\

Q’_\
o

0

L'origine est un point du graphe de f a demi-tangente verticale,



Point & tangente verticale

f(x)=vx2, Df=R. y

2 )
F(x) = Dy = R*. oL
(X) 3 \3/} Y f ﬂ =
lim f'(x) = —o0
x—0~
. / .
x|l>n(?+ f'(x) = +o0. 0

L'origine est un point du graphe de f a demi-tangente verticale,

(point de rebroussement).
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Point anguleux

Remarque : Un point anguleux n'est pas nécessairement un extremum.

y

Point anguleux et minimum. Point anguleux, non extremum.
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x—1
x+1]
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. Reprise de I'exercice 4. b) de la série 13.

Etude des points remarquables de b(x) =

x—1
x+1]

D, =R\ {—1}, b est continue sur D,.

x—1

x+1

b(x) = { xH

_2
b(x) = { e

2
(x+1)?

si x€]—o0, —-1[U][L, 4o00]
si xe]—1,1]

si x€]—o00, -1[U]L, 40|
sixe]—1,1]

Dy =R\{-1, 1}.
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Exemple

On en déduit le signe de b'(x) :

X —1 1
x = —1 n'est pas I'abscisse d'un extremum de b car —1 ¢ D,.

Mais que se passe-t-ilen x =17
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-1 1

B _@+h)-1 g
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Montrons que b est dérivable a droiteen x =1.

B (Leh-1 _
lim fA+h) — (1) = lim ath+1 7

h—0*+ h—07+

1

>



Exemple

Montrons que b est dérivable a gaucheen x=1.

1+h)—1
fAsh) Q) a0 11
lim = |lim —M————— = |m —— = ——.
h—0— h h—0— h h—0- 2+ h 2

Montrons que b est dérivable a droiteen x =1.

B (Leh-1 _
lim fA+h) — (1) = lim ath+l 7 lim !

h—0+ h—0+ h  hsot 24+ h




Exemple
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li = |lim ————— = lm —— =+4—.
hlq)h th& h hlg)]* 24+ h +2
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Exemple

Le point (1,0) est donc un point
anguleux du graphe de f dont
les pentes des deux demi-tangentes
sont m_=f'(17) = —5 et

my = f(17) = +1.
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anguleux du graphe de f dont
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Exemple

Le point (1,0) est donc un point
anguleux du graphe de f dont
les pentes des deux demi-tangentes
sont m_=f(1")=—1% et

2

Remarque : Pour calculer ces deux pentes, on peut se simplifier la vie en

utilisant le théoréme suivant.
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Soit f continue en xp et dérivable sur un voisinage épointé de xg .

Si lim f'(x) existe, alors f est dérivable en xo et lim f'(x) = f'(x).
X—rX0 X—X0

Plus précisément :

« si lim f'(x) existe, alors lim f'(x)="f"(xy),
X=X X=Xy

« si lim f'(x) existe, alors lim f'(x)=f"(x)).
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Démonstration :

f est continue en Xxp et dérivable sur un voisinage épointé de X .

Donc pour tout h tel que xp + h soit dans ce voisinage, on peut appliquer le
théoreme des accroissements finis sur l'intervalle [xg, xo + h] ou [xo+ h, xo]

selon que h est positif ou négatif :

39 €]0, 1]
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Démonstration :

f est continue en Xxp et dérivable sur un voisinage épointé de X .

Donc pour tout h tel que xp + h soit dans ce voisinage, on peut appliquer le
théoreme des accroissements finis sur l'intervalle [xg, xo + h] ou [xo+ h, xo]

selon que h est positif ou négatif :

d9€]0,1[ tel que f(X0+hf)'_f(X0) =f'(xo+9h).

Et lorsque h— 0 :
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Démonstration :

f est continue en Xxp et dérivable sur un voisinage épointé de X .

Donc pour tout h tel que xp + h soit dans ce voisinage, on peut appliquer le
théoreme des accroissements finis sur l'intervalle [xg, xo + h] ou [xo+ h, xo]

selon que h est positif ou négatif :
f(XO + h) — f(Xo)
h

39 €]0,1[ tel que =f'(xo+Vh).

Et lorsque h— 0: lim flxo + h) = f(xo)
h—0 h

:Lm f'(xo+0h).
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Or par hypothese, lim f'(x) existe. Posons lim f'(x) = L.

X—rX0 X—rX0

Cette limite est unique et ne dépend pas de la facon dont x tend vers xo. Donc

lim f/(x) =L

X—>X0
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Or par hypothese, lim f'(x) existe. Posons lim f'(x) = L.

X—rX0 X—rX0

Cette limite est unique et ne dépend pas de la facon dont x tend vers xo. Donc

lim f'(x) =L =lim f(xo+9h).
h—0

X—>X0



Démonstration du théoréme

Or par hypothese, lim f'(x) existe. Posons lim f'(x) = L.

X—rX0 X—rX0
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L'hypothése du théoreme n'étant pas vérifiée, on ne peut rien en conclure :

le théoreme ne s'applique pas dans ce cas-la.
Pour vérifier la dérivabilité de f en x = 0, il faut revenir a sa définition :

lim f0+h) — £(0) = lim h2.Sin(%)_O:|im h-sin(%) =0.

h—0 h h—0 h h—0

f est donc dérivableen x =0 et f/(0) =0, alors que Iim0 f'(x) n'existe pas.
X—r
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Définition : Soit f continue en x; et dérivable sur un voisinage épointé de xg .
Le point (xo, f(xp)) est un point de rebroussement du graphe de f si

lim f'(x) =+4oo etsi f'(x) change de signe en x.

X—x0
y
f(x)=vVx2, f(x)= 2 , X =0.
3/x
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Point de rebroussement

Définition : Soit f continue en x; et dérivable sur un voisinage épointé de xg .
Le point (xo, f(xp)) est un point de rebroussement du graphe de f si

lim f'(x) =+4oo etsi f'(x) change de signe en x.

X—rX0
y
f(x)=vVx2, f(x)= 2 x=0.
Y 3\3/)?7
lim f'(x) =— lim f'(x) = :
My PO = e, Jig MO0 = oo S

Remarque : Un point de rebroussement est toujours un extremum.
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: Détermination des points remarquables de f(x) = v/x3 + 3x2.

f(x) = +/x3(x+3), Df=[-3,+oo[, f estcontinuesur Ds.

3x2 + 6x 3 x(x+2) 3 x+2

f'(x) = == == -sgn(x), Ds = De\{—3,0}.
() 2Vx3+3x2 23432 2x+3 gn(x), D =Dr\{=3,0}
X ‘ -3 -2 0 +OO‘
Signe
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x——3*1
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Caractérisation des points remarquables :

En x=-3, f(x)=0 et Ilm f'(x)=+c0.
x——3*1

(—3,0) est un minimum, (point frontiere de Dr), a demi-tangente verticale.

En x=-2, f(x)=2 et f'(x)=0.

(—2, 2) est un maximum a tangente horizontale.

En x=0, f(x)=0, lim f(x)=—V3 et lim f(x)=+V3.
x—0~ x—0+

(0, 0) est un minimum et un point anguleux dont les demi-tangentes sont de
pente my = +4/3.



Exemple complet

Esquisse du graphe de f :



Exemple complet

Esquisse du graphe de f :




Exemple complet

Esquisse du graphe de f :

— o 5 T2




Exemple complet

Esquisse du graphe de f :




Exemple complet

Esquisse du graphe de f :




Exemple complet

Esquisse du graphe de f :
y =f(x)




