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Cette méthode consiste a changer de variable en posant x = ¢(t) de sorte que

le nouvel intégrant fonction de t soit plus facile a intégrer.
On choisit ¢ bijectif de sorte a pouvoir expliciter x = p(t) et t= ¢ (x).
Posons donc x = ¢(t), (¢ € Ch).

Comment s'écrit, en fonction de t, l'intégrale indéfinie /f(x) dx?

En d'autres termes, comment s'effectue le changement de variable ?
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Si z est une fonction de u, la differentielle de z s'écrit : dz = z'(u) du.
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Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :



Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

1
2 dy =
/yz—ly




Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

1 1
2/y2—1"y:2/(y—1>(y+1) W=




Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2/yzl—l"y:2/(y—1)1(y+1) C’y:”y—il‘ﬁ]dy




Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2/yzl—l"y:2/(y—1)1(y+1) C’y:”y—il‘ﬁ]dy

=In(y—1)—In(y+1)+C




Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2/yzl—l"y:2/(y—1)1(y+1) C’y:”y—il‘ﬁ]dy

:ln(y—1)—|n(y+1)+cz|n(§—;})+C,




Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2/yzl—l"y:2/(y—1)1(y+1) C’y:”y—il‘ﬁ]dy

—In(y —1)—In(y + 1)+ C = |n(y+})+c, y>1.




Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2/yzl—l"y:2/(y—1)1(y+1) C’y:”y—il‘ﬁ]dy

—In(y —1)—In(y + 1)+ C = |n(y+})+c, y>1.

Et en revenant a la variable initiale :



Suite de 'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2/yzl—l"y:2/(y—1)1(y+1) dy:”y—il‘ﬁ]dy

—In(y —1)—In(y + 1)+ C = |n(y+})+c, y>1.

Et en revenant a la variable initiale :

x In ( \/@71> e
Vite VIFer |



Intégration par changement de variable, exemples



Intégration par changement de variable, exemples

: Un exemple un peu plus difficile :



Intégration par changement de variable, exemples

: Un exemple un peu plus difficile :



Intégration par changement de variable, exemples

dx
. Un exemple un peu plus difficile : i ——
ple un peu p | =
posons x = y°,



Intégration par changement de variable, exemples

d
. Un exemple un peu plus difficile : /—\/)_(_:\3/)—(

posons x =% x>0,



Intégration par changement de variable, exemples

d
. Un exemple un peu plus difficile : /—\/)_(_:\3/)—(

posons x=y% x>0, y>0,



Intégration par changement de variable, exemples

d
. Un exemple un peu plus difficile : /—\/)_(_:\3/)—(

posons x=y° x>0, y>0, y=x,



Intégration par changement de variable, exemples

d
. Un exemple un peu plus difficile : /—\/)_(_:\3/)—(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.



Intégration par changement de variable, exemples

d
. Un exemple un peu plus difficile : /—\/)_(_:\3/)—(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.



Intégration par changement de variable, exemples

d
. Un exemple un peu plus difficile : /—\/)_(_:\3/)—(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.

dx 1 5
Va7 RSt




Intégration par changement de variable, exemples

. d
: Un exemple un peu plus difficile : /\/)_(TX\%_(
posons x=y% x>0, y>0, y=x, dcx=6y>dy.

3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 el /y+1 Y




Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne,




Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne, on pose z=y +1:




Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne, on pose z=y +1:

z=y+1,



Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne, on pose z=y +1:

z=y+1, y>0,



Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne, on pose z=y +1:

z=y+1, y>0, z>1,



Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne, on pose z=y +1:

z=y+1, y>0, z>1, y=z-1,



Intégration par changement de variable, exemples

. d

: Un exemple un peu plus difficile : /\/;TX\%_(

posons x=y% x>0, y>0, y=x, dcx=6y>dy.
3

dx 1 y
= -6y°dy =6 dy .
/ﬁw/y /y3+y2 e /y+1 Y

Pour effectuer agréablement cette division euclidienne, on pose z=y +1:

z=y+1, y>0, z>1, y=z—-1, dy=dz.



Suite de I'exemple 4

3 3

y (z—-1)
dy = [ 27 ¢
/y+1 d / z ‘




Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z




Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

:/[22—3z+3—ﬂdz




Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

1
:/[zz—3z+3—ﬂdz:§23—222+3z—|n(z)+C.




Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

1
:/[zz—3z+3—ﬂdz:§23—222+3z—|n(z)+C.

Et en revenant a la variable y,



Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

1
:/[zz—3z+3—ﬂdz:§23—222+3z—|n(z)+C.

Et en revenant a la variable y, puisa x:




Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

1
:/[zz—3z+3—ﬂdz:§23—222+3z—|n(z)+C.

Et en revenant a la variable y, puisa x:

3
y 1 3 3 2
dy = = 1P -= 1 1) —1 1)+ C
/y T 3(y+) 2(y+)+3(y+) ny+1)+C,



Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

1
:/[zz—3z+3—ﬂdz:§23—222+3z—|n(z)+C.

Et en revenant a la variable y, puisa x:

3
y 1 3 3 2
dy = = 1P -= 1 1) —1 1)+ C
/y T 3(y+) 2(y+)+3(y—|—) ny+1)+C,



Suite de I'exemple 4

3 —1)3 32,2 _
/ y dy:/(z 1) dz:/z 3z°+ 3z 1dz
y+1 z z

1
:/[zz—3z+3—ﬂdz:§23—222+3z—|n(z)+C.

Et en revenant a la variable y, puisa x:

3
y 1 3 3 2
dy = = 1P -= 1 1) —1 1)+ C
/y T 3(y+) 2(y+)+3(y+) ny+1)+C,

dx 6 3 % 2 V% o n(-&x
/mzz(ﬁﬂ) 9(v/x+1)°+18(vx+1)—6In(v/x+1)+ C.
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On présente ici, quelques changements de variable qui se déduisent de I'équation

du cercle et de celle de I'hyperbole :

a) changements de variable déduits de la relation cos?(t) + sin?(t) =1,



Quelques changements de variable usuels

On présente ici, quelques changements de variable qui se déduisent de I'équation

du cercle et de celle de I'hyperbole :
a) changements de variable déduits de la relation cos?(t) + sin?(t) =1,

b) changements de variable déduits de la relation cosh?(t) — sinh?(t) = 1.



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x?,
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a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser

o x =sin(t),



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser

e x=sin(t), xe[-1,1],



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser

.X:Sin(t)7 XG[—].,].], te[‘%a%h



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser

o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.
Si I'intégrant est fonction de /1 — x2?, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),

dx = cos(t) dt,



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser

o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),

dx = cos(t)dt, +1—x?=cos(t),



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),
dx = cos(t)dt, +1—x?=cos(t),

e ou x = cos(t),



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),
dx = cos(t)dt, +1—x?=cos(t),

e ou x=cos(t), xe[-1,1],



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),
dx = cos(t)dt, +1—x?=cos(t),

e ou x=cos(t), xe[-1,1], te[0,n],



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2?, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),
dx = cos(t)dt, +1—x?=cos(t),

e ou x=cos(t), xe[-1,1], te[0,n], t=arccos(x),



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),
dx = cos(t)dt, /1—x2=cos(t),
e ou x=cos(t), xe[-1,1], te[0,n], t=arccos(x),

dx = —sin(t) dt,



Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos?(t) + sin®(t) = 1.

Si I'intégrant est fonction de /1 — x2, on peut poser
o x=sin(t), xe[-1,1], te[-5,75], t=arcsin(x),
dx = cos(t)dt, /1—x2=cos(t),
e ou x=cos(t), xe[-1,1], te[0,n], t=arccos(x),

dx = —sin(t)dt, 1—x2=sin(t).



Quelques changements de variable usuels, exemples
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: /x3-\/1—x2 dx .

Posons  x = sin(t),



Quelques changements de variable usuels, exemples

: /x3-\/1—x2 dx .

Posons x =sin(t), xe€[-1,1],



Quelques changements de variable usuels, exemples

: /x3-\/1—x2 dx .

Posons x =sin(t), xe[-1,1], te[-5, 7],



Quelques changements de variable usuels, exemples

: /x3-\/1—x2 dx .

Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),



Quelques changements de variable usuels, exemples

: /x3-\/1—x2 dx .

Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),

dx = cos(t) dt,



Quelques changements de variable usuels, exemples

I/X3-\/1—X2dX.
Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),

dx = cos(t)dt, +/1—x2=cos(t).



Quelques changements de variable usuels, exemples

:/x3-de.
Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),
dx = cos(t) dt, +/1—x2=cos(t).
/x3-de:



Quelques changements de variable usuels, exemples

: /x3-\/1—x2 dx .

Posons x =sin(t), xe[-1,1], te[-% t = arcsin(x),

2’2

dx = cos(t)dt, +/1—x2=cos(t).
/x3 -V1—x2dx = /sin3(t) - cos(t) - [cos(t) dt]



Quelques changements de variable usuels, exemples

; /x3-\/1—x2 dx .
Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),
dx = cos(t)dt, +/1—x2=cos(t).
/x3 -V1—x2dx = /sin3(t) - cos(t) - [cos(t) dt] = /sin3(t) - cos?(t) dt



Quelques changements de variable usuels, exemples

; /x3-\/1—x2 dx .
Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),
dx = cos(t)dt, +/1—x2=cos(t).
/x3 -V1—x2dx = /sin3(t) - cos(t) - [cos(t) dt] = /sin3(t) - cos?(t) dt

_ /sinz(t) cos2() - sin(t) dt



Quelques changements de variable usuels, exemples

; /x3-\/1—x2 dx .
Posons x =sin(t), xe[-1,1], te[-5,5], t=arcsin(x),
dx = cos(t)dt, +/1—x2=cos(t).
/x3 -V1—x2dx = /sin3(t) - cos(t) - [cos(t) dt] = /sin3(t) - cos?(t) dt

= /sinz(t) - cos?(t) - sin(t) dt = / [1—cos?(t)] - cos®(t) - sin(t) dt,



Suite de I'exemple 5

/sin3(t)-cos2(t) = /cosz(t)~sin(t) dt—/cos4(t)-sin(t) dt
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=-3 cos*(t) + 3 cos’(t) + C.
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1 1
=-3 cos*(t) + 3 cos’(t) + C.
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Suite de I'exemple 5

/sin3(t)-cos2(t) = /cosz(t)~sin(t) dt—/cos4(t)-sin(t) dt

1 1
=-3 cos*(t) + 3 cos’(t) + C.

Et en revenant a la variable initiale, on obtient :

/X3-\/1—X2dX—— \/1—X2 —l— \/1—X2 +C
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b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

i) Sil'intégrant est fonction de /1 + x2,

on peut poser



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
i) Sil'intégrant est fonction de /1 + x2,
on peut poser

x =sinh(t), xe€R, teR,



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
i) Sil'intégrant est fonction de /1 + x2, sinh t
on peut poser

x =sinh(t), xe€R, teR,




Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
i) Sil'intégrant est fonction de /1 + x2, sinh t
on peut poser

x =sinh(t), xe€R, teR,

t = argsinh(x),




Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
i) Sil'intégrant est fonction de /1 + x2, sinh t
on peut poser

x =sinh(t), xe€R, teR,

t = argsinh(x),

dx = cosh(t) dt,




Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
i) Sil'intégrant est fonction de /1 + x2, sinh t
on peut poser

x =sinh(t), xe€R, teR,

t = argsinh(x),
dx = cosh(t) dt,

V' 1+ x2 = cosh(t).




Quelques changements de variable usuels, exemples

/\/x2+4 dx =



Quelques changements de variable usuels, exemples

/\/mdx:/\/mdxz
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/mdx: /,/4<X{+1) dx:2/\/(§)2+1dx,
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/mdx: /,/4<X{+1) dx:2/\/(§)2+1dx, x€ER.
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/mdx: /,/4<X{+1) dx:2/\/(§)2+1dx, x€ER.

On pose 5= sinh(t),



Quelques changements de variable usuels, exemples

/mdx: /,/4<X{+1) dx:2/\/(§)2+1dx, x€ER.

On pose 5= sinh(t), x = 2sinh(t),



Quelques changements de variable usuels, exemples

/mdx: /,/4<X{+1) dx:2/\/(§)2+1dx, x€ER.

On pose 5= sinh(t), x=2sinh(t), dx =2 cosh(t)dt,



Quelques changements de variable usuels, exemples

/\/x2+4dx:/1/4<%2+1> dx:2/\/(§)2+1dx, x€ER.
On pose )2—(:sinh(t), x =2 sinh(t), dx =2 cosh(t)dt,

t = argsinh (%) ,



Quelques changements de variable usuels, exemples

/¢F?2dp:/}m<§+1)wzz/}u§2+1¢, x€ER.

On pose 5= sinh(t), x=2sinh(t), dx =2 cosh(t)dt,

t =argsinh (%), /(%)°+1=cosh(t).



Quelques changements de variable usuels, exemples

/\&Z+4¢::/,M(§+q)dx:z/\u§2+1¢, x€ER.
On pose )2—( =sinh(t), x=2sinh(t), dx =2 cosh(t)dt,

t =argsinh (%), /(%)°+1=cosh(t).

/\/X2+4 dx =



Quelques changements de variable usuels, exemples

/\&Z+4¢::/,M(§+q)dx:z/\u§2+1¢, x€ER.
On pose )2—( =sinh(t), x=2sinh(t), dx =2 cosh(t)dt,

t =argsinh (%), /(%)°+1=cosh(t).

/\/X2 +4 dx = 2/cosh(t) - [2 cosh(t) dt] =



Quelques changements de variable usuels, exemples

/\&Z+4¢::/,M(§+q)dx:z/\u§2+1¢, x€ER.
On pose )2—( =sinh(t), x=2sinh(t), dx =2 cosh(t)dt,

t =argsinh (%), /(%)°+1=cosh(t).

/\/m dx = 2/cosh(t) -[2 cosh(t) dt] = 2/2 cosh?(t) dt.



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) 4 sinh?(t)



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) + sinh?(t) = 2 cosh?(t) — 1



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) 4 sinh?(t) = 2 cosh®(t) —1 = 2 cosh?(t) = 1+ cosh(2t).



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) 4 sinh?(t) = 2 cosh®(t) —1 = 2 cosh?(t) = 1+ cosh(2t).

2/2 cosh?(t) dt =



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) 4 sinh?(t) = 2 cosh®(t) —1 = 2 cosh?(t) = 1+ cosh(2t).

2/2 cosh?(t) dt = 2/[1 + cosh(2t)] dt =



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) 4 sinh?(t) = 2 cosh®(t) —1 = 2 cosh?(t) = 1+ cosh(2t).

2/2 cosh?(t) dt = 2/ [1+4 cosh(2t)] dt = 2t + sinh(2t) + C



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :

cosh(2t) = cosh®(t) 4 sinh?(t) = 2 cosh®(t) —1 = 2 cosh?(t) = 1+ cosh(2t).
2/2 cosh?(t) dt = 2/ [1+4 cosh(2t)] dt = 2t + sinh(2t) + C

= 2t + 2 sinh(t) - cosh(t) + C.



Suite de I'exemple 6

Et on integre 2 cosh®(t) en I'exprimant a I'aide de cosh(2t) :
cosh(2t) = cosh®(t) 4 sinh?(t) = 2 cosh®(t) —1 = 2 cosh?(t) = 1+ cosh(2t).
2/2 cosh?(t) dt = 2/ [1+4 cosh(2t)] dt = 2t + sinh(2t) + C

= 2t + 2 sinh(t) - cosh(t) + C.

Et en revenant a la variable initiale :

/\/x2+4 dx = 2 argsinh (%)—l—g-\/x2+4+ C.



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
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Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1,

x€]—o00, —-1]U[1, +oo],



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.
ii) Sil'intégrant est fonction de v/x? —1,
x€]—o00,-1]U[1, +o0],

on peut poser



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1,

x€]—o00, —-1]U[1, +oo],

on peut poser

t

\ 1 ‘%osh(t)
0
-1

/

.\ cosh(t)



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1 x = cosh(t)
e pour x>1, 0]

-1 x = — cosh(t)

/



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1 x = cosh(t)
e pour x >1, x=cosh(t), )

-1 x = — cosh(t)

/



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1 x = cosh(t)
e pour x >1, x=cosh(t), t>0, 0]

-1 x = — cosh(t)

/



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1 x = cosh(t)
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt,
-1 x = — cosh(t)

/



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1 x = cosh(t)
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt, +v/x?2—1=sinh(t),
-1 x = — cosh(t)

/



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt, +/x2 —1 =sinh(t),
-1

e pour x < —1, /

x = cosh(t)
t
x = — cosh(t)



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt, +/x2 —1 =sinh(t),
-1

e pour x < —1, x = —cosh(t), /

x = cosh(t)
t
x = — cosh(t)



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt, +/x2 —1 =sinh(t),
-1

e pour x < -1, x= —cosh(t), t>0, /

x = cosh(t)
t
x = — cosh(t)



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1 x = cosh(t)
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt, +v/x?2—1=sinh(t),

e pour x < —1, x=—cosh(t), t>0,
dx = —sinh(t) dt, /

-1 x = — cosh(t)




Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh®(t) — sinh?(t) = 1.

ii) Sil'intégrant est fonction de v/x? —1, X
x€]—o00,-1]U[1, +o0], \
on peut poser 1
e pour x >1, x=cosh(t), t>0, 0]

dx = sinh(t) dt, +/x2 —1 =sinh(t),
-1

e pour x < —1, x=—cosh(t), t>0,
dx = —sinh(t)dt, +/x?>—1=sinh(t). /

x = cosh(t)
t
x = — cosh(t)



Quelques changements de variable usuels, exemples



Quelques changements de variable usuels, exemples

: /\/X2—1dx,



Quelques changements de variable usuels, exemples

; /\/x2—1dx, x€]—o0, -1]U[L, +oo].



Quelques changements de variable usuels, exemples

; /\/x2—1dx, x€]—o0, -1]U[L, +oo].

Si x€e[1, 400,



Quelques changements de variable usuels, exemples

; /\/x2—1dx, x€]—o0, -1]U[L, +oo].

Si x€[1,4+o00[, on pose x = cosh(t),



Quelques changements de variable usuels, exemples

; /\/x2—1dx, x€]—o0, -1]U[L, +oo].

Si x€[1,4+o0[, onpose x=cosh(t), t>0, t=argcosh(x),



Quelques changements de variable usuels, exemples

:/\/x2—1dx, x€]—o0, -1]U[L, +oo].
Si x€[1,4+o0[, onpose x=cosh(t), t>0, t=argcosh(x),

dx = sinh(t) dt,



Quelques changements de variable usuels, exemples

:/\/x2—1dx, x€]—o0, -1]U[L, +oo].
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