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Intégration par changement de variable

Cette méthode consiste à changer de variable en posant x = φ(t)

de sorte que

le nouvel intégrant fonction de t soit plus facile à intégrer.

On choisit φ bijectif de sorte à pouvoir expliciter x = φ(t) et t = φ−1(x) .

Posons donc x = φ(t) , (φ ∈ C 1) .

Comment s’écrit, en fonction de t , l’intégrale indéfinie

∫
f (x) dx ?

En d’autres termes, comment s’effectue le changement de variable ?

my header

o



Intégration par changement de variable
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le nouvel intégrant fonction de t soit plus facile à intégrer.
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Intégration par changement de variable

Soit F (x) une primitive de f (x)

: F ′(x) = f (x) ,∫
f (x) dx =

∫
F ′(x) dx = F (x) + C = F [φ(t) ] + C

=

∫
(F [φ(t) ] )′ dt =

∫
F ′ [φ(t) ] · φ′(t) dt =

∫
f [φ(t) ] · φ′(t) dt .

∫
f (x) dx =

∫
f [ φ(t)︸︷︷︸

x

] · φ′(t) dt︸ ︷︷ ︸
dx

.

Rappel :

Si z est une fonction de u , la differentielle de z s’écrit : dz = z ′(u) du .
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Intégration par changement de variable, exemples

Exemple 1 :

∫
x√
1 + x

dx ,

posons t =
√
1 + x , x > −1 , t > 0 , x = t2 − 1 ,

dx = (t2 − 1)′dt = 2t dt .∫
x√
1 + x

dx =

∫
t2 − 1

t
· 2t dt = 2

∫
(t2 − 1) dt = 2

[
t3

3
− t

]
+ C ,

∫
x√
1 + x

dx =
2

3

√
(1 + x)3 − 2

√
1 + x + C =

2

3
(x − 2)

√
1 + x + C .
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Intégration par changement de variable, exemples

Exemple 3 :

∫
dx√
1 + ex

,

posons y =
√
1 + ex , x ∈ R , y > 1 , x = ln(y 2 − 1) ,

dx = [ ln(y 2 − 1) ]
′
dy =

2y

y 2 − 1
dy .

∫
dx√
1 + ex

=

∫
1

y
· 2y

y 2 − 1
dy = 2

∫
1

y 2 − 1
dy .

Et soit on connâıt une primitive de
1

1− y 2
, pour y > 1 ( arg coth(y) ) , soit ...
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Suite de l'exemple 3

On décompose cette fraction en une somme de deux éléments plus simples :

2

∫
1

y 2 − 1
dy = 2

∫
1

(y − 1) (y + 1)
dy =

∫ [
1

y − 1
− 1

y + 1

]
dy

= ln(y − 1)− ln(y + 1) + C = ln
(

y−1
y+1

)
+ C , y > 1 .

Et en revenant à la variable initiale :∫
dx√
1 + ex

= ln
( √

1+ex−1√
1+ex+1

)
+ C .

my header

o



Suite de l'exemple 3
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Et en revenant à la variable initiale :

∫
dx√
1 + ex

= ln
( √

1+ex−1√
1+ex+1

)
+ C .

my header

o



Suite de l'exemple 3
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Intégration par changement de variable, exemples

Exemple 4 :

Un exemple un peu plus difficile :

∫
dx√

x + 3
√
x
,

posons x = y 6 , x > 0 , y > 0 , y = 6
√
x , dx = 6 y 5 dy .∫

dx√
x + 3

√
x
=

∫
1

y 3 + y 2
· 6 y 5 dy = 6

∫
y 3

y + 1
dy .

Pour effectuer agréablement cette division euclidienne, on pose z = y + 1 :

z = y + 1 , y > 0 , z > 1 , y = z − 1 , dy = dz .
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Pour effectuer agréablement cette division euclidienne, on pose z = y + 1 :

z = y + 1 , y > 0 , z > 1 , y = z − 1 , dy = dz .

my header

o



Intégration par changement de variable, exemples

Exemple 4 : Un exemple un peu plus difficile :

∫
dx√

x + 3
√
x
,

posons x = y 6 , x > 0 , y > 0 , y = 6
√
x , dx = 6 y 5 dy .∫

dx√
x + 3

√
x
=

∫
1

y 3 + y 2
· 6 y 5 dy

= 6

∫
y 3

y + 1
dy .
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Suite de l'exemple 4

∫
y 3

y + 1
dy =

∫
(z − 1)3

z
dz

=

∫
z3 − 3z2 + 3z − 1

z
dz

=

∫ [
z2 − 3z + 3− 1

z

]
dz =

1

3
z3 − 3

2
z2 + 3 z − ln(z) + C .

Et en revenant à la variable y , puis à x :∫
y 3

y + 1
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3
(y + 1)3 − 3

2
(y + 1)2 + 3 (y + 1)− ln(y + 1) + C ,∫

dx√
x + 3

√
x
= 2 ( 6

√
x + 1)3 − 9 ( 6

√
x + 1)2 + 18 ( 6

√
x + 1)− 6 ln( 6

√
x + 1) + C .
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Quelques changements de variable usuels

On présente ici, quelques changements de variable

qui se déduisent de l’équation

du cercle et de celle de l’hyperbole :

a) changements de variable déduits de la relation cos2(t) + sin2(t) = 1 ,

b) changements de variable déduits de la relation cosh2(t)− sinh2(t) = 1 .
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b) changements de variable déduits de la relation cosh2(t)− sinh2(t) = 1 .

my header

o



Quelques changements de variable usuels

On présente ici, quelques changements de variable qui se déduisent de l’équation
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du cercle et de celle de l’hyperbole :
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Quelques changements de variable usuels

a) Changements de variable déduits de la relation cos2(t) + sin2(t) = 1 .

Si l’intégrant est fonction de
√
1− x2 , on peut poser

• x = sin(t) , x ∈ [−1 , 1 ] , t ∈ [−π
2 ,

π
2 ] , t = arcsin(x) ,

dx = cos(t) dt ,
√
1− x2 = cos(t) ,

• ou x = cos(t) , x ∈ [−1 , 1 ] , t ∈ [ 0 , π ] , t = arccos(x) ,

dx = − sin(t) dt ,
√
1− x2 = sin(t) .
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Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh2(t)− sinh2(t) = 1 .

i) Si l’intégrant est fonction de
√
1 + x2 ,

on peut poser

x = sinh(t) , x ∈ R , t ∈ R ,

t = arg sinh(x) ,

dx = cosh(t) dt ,√
1 + x2 = cosh(t) .
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Quelques changements de variable usuels, exemples

Exemple 6 :∫ √
x2 + 4 dx =
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4
(

x2

4
+ 1

)
dx = 2
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x
2

)2
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Suite de l'exemple 6

Et on intègre 2 cosh2(t) en l’exprimant à l’aide de cosh(2t) :

cosh(2t) = cosh2(t) + sinh2(t) = 2 cosh2(t)− 1 ⇒ 2 cosh2(t) = 1+ cosh(2t) .

2

∫
2 cosh2(t) dt = 2

∫
[ 1 + cosh(2t) ] dt = 2t + sinh(2t) + C

= 2t + 2 sinh(t) · cosh(t) + C .

Et en revenant à la variable initiale :∫ √
x2 + 4 dx = 2 arg sinh

(
x
2

)
+

x

2
·
√
x2 + 4 + C .
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Et on intègre 2 cosh2(t) en l’exprimant à l’aide de cosh(2t) :
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Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh2(t)− sinh2(t) = 1 .

ii) Si l’intégrant est fonction de
√
x2 − 1 ,

x ∈ ]−∞ , −1 ] ∪ [ 1 , +∞ [ ,

on peut poser

• pour x ≥ 1 , x = cosh(t) , t ≥ 0 ,

dx = sinh(t) dt ,
√
x2 − 1 = sinh(t) ,

• pour x ≤ −1 , x = − cosh(t) , t ≥ 0 ,

dx = − sinh(t) dt ,
√
x2 − 1 = sinh(t) .

t

x
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−1

x = cosh(t)
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ii) Si l’intégrant est fonction de
√
x2 − 1 ,

x ∈ ]−∞ , −1 ] ∪ [ 1 , +∞ [ ,

on peut poser

• pour x ≥ 1 , x = cosh(t) , t ≥ 0 ,

dx = sinh(t) dt ,
√
x2 − 1 = sinh(t) ,

• pour x ≤ −1 ,

x = − cosh(t) , t ≥ 0 ,

dx = − sinh(t) dt ,
√
x2 − 1 = sinh(t) .

t

x

O

1

−1

x = cosh(t)

x = − cosh(t)

my header

o



Quelques changements de variable usuels

b) Changements de variable déduits de la relation cosh2(t)− sinh2(t) = 1 .
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Quelques changements de variable usuels, exemples

Exemple 7 :

∫ √
x2 − 1 dx , x ∈ ]−∞ , −1 ] ∪ [ 1 , +∞ [ .

• Si x ∈ [ 1 , +∞ [ , on pose x = cosh(t) , t ≥ 0 , t = arg cosh(x) ,

dx = sinh(t) dt ,
√
x2 − 1 = sinh(t) .∫ √

x2 − 1 dx =

∫
sinh(t) · [ sinh(t) dt ] =

∫
sinh2(t) dt .

Et on exprime sinh2(t) à partir de cosh(2t) de la façon suivante :

cosh(2t) = cosh2(t) + sinh2(t) = 1 + 2 sinh2(t) ⇔ sinh2(t) =
cosh(2t)− 1

2
.
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