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L'aire de ce disque vaut donc A(x) =7 r2 =7y =7 [f(x0)]*.
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2
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k=1

est une approximation du volume V cherché, d'autant plus précise que n est

grand et les Ax, sont petits. Or

n

im > w[f(8)] - Ax
n— oo k=1
AXk —0

converge, car si f est continue sur [a, b], mf? l'est aussi. Donc = f? est

intégrable au sens de Riemann.
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