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Volume d'un corps de révolution

Soient f une fonction continue sur

[ a , b ] et D le domaine du plan limité

par le graphe de f , l’axe Ox et les

deux droites verticales x = a et x = b .

D
x

y

O

y = f (x)

a b

On cherche à calculer le volume V du corps de révolution engendré par la

rotation du domaine D autour de l’axe Ox .
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Volume d'un corps de révolution

x

y

O

y = f (x)

a b

y0 = f (x0)

x0

dx

x

y

O

y = f (x)

a b

r = y0

dx
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Volume d'un corps de révolution
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r = y0
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La section du corps de révolution par le plan d’équation x = x0 , perpendiculaire à

l’axe de rotation, est un disque de rayon r = y0 = f (x0) .
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L’aire de ce disque vaut donc A(x0) = π r 2 = π y 2
0 = π [ f (x0) ]2 .
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Volume d'un corps de révolution

Associée à une partition de l’intervalle [ a , b ] ,

la somme de Riemann
n∑

k=1

π [f (tk)]2 ·∆xk

est une approximation du volume V cherché, d’autant plus précise que n est

grand et les ∆xk sont petits. Or

lim

n→∞
∆xk → 0

n∑
k=1

π [f (tk)]2 ·∆xk

converge, car si f est continue sur [ a , b ] , π f 2 l’est aussi. Donc π f 2 est

intégrable au sens de Riemann.
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intégrable au sens de Riemann.

my header

o



Volume d'un corps de révolution

Par définition,

V = lim

n→∞
∆xk → 0

n∑
k=1

π [f (tk)]2 ·∆xk =

∫ b

a

π f 2(x) dx .

Le ”volume élémentaire” a pour expression

dV = A(x) dx = π r 2 dx = π f 2(x) dx ,

où A(x0) est l’aire de la section du corps de

révolution par le plan perpendiculaire à l’axe

de rotation (plan d’équation x = x0).

r = f (x)

dx

Et le volume V s’obtient en sommant tous

les ”volumes élémentaires”.
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de rotation (plan d’équation x = x0).

r = f (x)

dx

Et le volume V s’obtient en sommant tous

les ”volumes élémentaires”.

my header

o



Volume d'un corps de révolution
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révolution par le plan perpendiculaire à l’axe
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où A(x0) est l’aire de la section du corps de
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Exemples

Exemple 1 :

Soient f (x) = 2 x3

et D le domaine limité par le graphe de f , l’axe Ox et

la droite verticale x = 1 . Calculer le volume V du corps de révolution

engendré par la rotation du domaine D autour de l’axe Ox .

x

y

O

y = 2x3

1

2

f (x0)

x0

dx

x

y

O

y = 2x3

1

2

r = f (x0)

dx
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la droite verticale x = 1 . Calculer le volume V du corps de révolution
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Exemple 1

La section de ce corps de révolution par le plan x = x0 ,

0 ≤ x0 ≤ 1 ,

(perpendiculaire à l’axe de rotation) est un disque de rayon r = f (x0) et d’aire

A(x0) = π r 2 = π f 2(x0) .

On en déduit le volume V de ce corps :

V =

∫ 1

0

A(x) dx =

∫ 1

0

π f 2(x) dx = π

∫ 1

0

f 2(x) dx = π

∫ 1

0

4 x6 dx ,

V = π

[
4

7
x7

]1

0

=
4 π

7
.

my header

o



Exemple 1
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Exemple 2

Exemple 2 :

Soient f (x) = 2 x3 et D le do-

maine limité par le graphe de f ,

l’axe Oy et la droite horizontale

y = 2 . Calculer le volume V

du corps de révolution engendré

par la rotation du domaine D

autour de l’axe Oy .
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du corps de révolution engendré
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maine limité par le graphe de f ,

l’axe Oy et la droite horizontale

y = 2 . Calculer le volume V
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du corps de révolution engendré
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Exemple 2

La section de ce corps de révolution

par le plan y = y0 , 0 ≤ y0 ≤ 2 ,

(perpendiculaire à l’axe de rotation) est un disque de rayon r = x0 et d’aire

A(y0) = π r 2 = π x2
0 . On en déduit le volume V de ce corps :

V =

∫ 2

0

A(y) dy =

∫ 2

0

π x2 dy =

∫ 2

0

π x2(y) dy ,

avec y(x) = 2 x3 ⇔ x(y) =
(

y
2

) 1
3 ⇔ x2(y) =

(
y
2

) 2
3 .

V = π

∫ 2

0

(
y
2

) 2
3 dy = π

[
6
5

(
y
2

) 5
3

]2

0
=

6 π

5
.
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La section de ce corps de révolution par le plan y = y0 , 0 ≤ y0 ≤ 2 ,
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(perpendiculaire à l’axe de rotation) est un disque de rayon r = x0 et d’aire

A(y0) = π r 2 = π x2
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Exemple 3

Exemple 3 :

Soient f (x) = 2 x3 et D le domaine

limité par le graphe de f , l’axe Ox

et la droite verticale x = 1 .

Calculer le volume V du corps de

révolution engendré par la rotation du

domaine D autour de la droite ver-

ticale x = 1 .

x

y

O

y = 2x3

1

2

x0

y0 dy

r = 1− x0

dy

my header

o



Exemple 3

Exemple 3 :

Soient f (x) = 2 x3

et D le domaine
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limité par le graphe de f , l’axe Ox

et la droite verticale x = 1 .

Calculer le volume V du corps de

révolution engendré par la rotation du
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Exemple 3

La section de ce corps de révolution par le plan y = y0 ,

0 ≤ y0 ≤ 2 ,

(perpendiculaire à l’axe de rotation) est un disque de rayon r = 1− x0 et d’aire

A(y0) = π r 2 = π (1− x0)2 . On en déduit le volume V de ce corps :

V =

∫ 2

0

A(y) dy =

∫ 2

0

π (1− x)2 dy =

∫ 2

0

π [ 1− x(y) ]2 dy ,

avec y(x) = 2 x3 ⇔ x(y) =
(

y
2

) 1
3 ⇔ [ 1− x(y) ]2 = 1− 2

(
y
2

) 1
3 +
(

y
2

) 2
3 .

V = π

∫ 2

0

[
1− 2

(
y
2

) 1
3 +

(
y
2

) 2
3

]
dy = π

[
y − 3

(
y
2

) 4
3 + 6

5

(
y
2

) 5
3

]2

0
=
π

5
.
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V =

∫ 2

0

A(y) dy =

∫ 2

0

π (1− x)2 dy =

∫ 2

0

π [ 1− x(y) ]2 dy ,

avec y(x) = 2 x3 ⇔ x(y) =
(

y
2

) 1
3 ⇔ [ 1− x(y) ]2 = 1− 2

(
y
2

) 1
3 +
(

y
2

) 2
3 .

V = π

∫ 2

0

[
1− 2

(
y
2

) 1
3 +

(
y
2

) 2
3

]
dy = π

[
y − 3

(
y
2

) 4
3 + 6

5

(
y
2

) 5
3

]2

0
=
π

5
.

my header

o



Exemple 3
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La section de ce corps de révolution par le plan y = y0 , 0 ≤ y0 ≤ 2 ,
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(perpendiculaire à l’axe de rotation) est un disque de rayon r = 1− x0 et d’aire

A(y0) = π r 2 = π (1− x0)2 . On en déduit le volume V de ce corps :
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Exemple 4

Exemple 4 :

Soient y = x2 , y =
√
x , 0 ≤ x ≤ 1

et D le domaine limité par les deux arcs

de paraboles .

Calculer le volume V du corps de

révolution engendré par la rotation du

domaine D autour de l’axe Ox .
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de paraboles .

Calculer le volume V du corps de
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Exemple 4

La section de ce corps par le plan

d’équation x = x0 , perpendiculaire

à l’axe de rotation,

est une couronne

de rayon extérieur R =
√
x0 et de

rayon intérieur r = x2
0 .

Son aire vaut

A(x0) = π R2− π r 2 = π [ x0 − x4
0 ] .
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Exemple 4

Les volumes élémentaires sont ici des tranches de couronnes,

de section d’aire

A(x) et d’épaisseur dx .

On en déduit le volume V du corps de révolution en sommant ces tranches de

x = 0 à x = 1 :

V =

∫ 1

0

A(x) dx =

∫ 1

0

π
[
x − x4

]
dx = π

∫ 1

0

[
x − x4

]
dx ,

V = π

[
x2

2
− x5

5

]1

0

= π

[
1

2
− 1

5

]
=

3π

10
.
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Exemple 5

Exemple 5 :

Soit Γ l’arc d’ellipse défini paramétriquement

par

Γ :

{
x(t) = 2 cos(t)

y(t) = sin(t) ,
t ∈ [−π

2
, π

2
] .

On considère le domaine D du plan, limité

par Γ , la droite verticale x = 1 , (x ≥ 1)

et la droite horizontale y = −1
2

, (y ≥ −1
2
).
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par Γ , la droite verticale x = 1 , (x ≥ 1)

et la droite horizontale y = −1
2

, (y ≥ −1
2
).

x

y

O

Γ

2

1

x = 1

−1
2

xD

my header

o



Exemple 5

Exemple 5 :

Soit Γ l’arc d’ellipse défini paramétriquement

par

Γ :

{
x(t) = 2 cos(t)

y(t) = sin(t) ,
t ∈ [−π

2
, π

2
] .

On considère le domaine D du plan, limité
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Exemple 5

On cherche à calculer le volume du corps

de révolution

engendré par la rotation du

domaine D autour de la droite verticale

d’équation x = 1 .
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Exemple 5

• Modélisation géométrique

La section de ce corps par le plan d’équation

y = y0 est un disque dont le rayon est la

différence d’abscisse entre l’arc Γ et la

droite verticale x = 1 : r = x Γ − 1 . L’aire

de cette section vaut donc

A = π r 2 = π [ x Γ − 1 ]2 .

Et le volume élémentaire est un cylindre dont

l’aire de la base vaut A et l’épaisseur dy .
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Exemple 5

On en déduit l’expression du volume V de ce corps :

V =

∫ yB

yA

A · dy =

∫ yB

yA

π [ x Γ − 1 ]2 dy .

• Traduction en fonction de la variable t :

∗ x Γ = x(t) = 2 cos(t) ,

∗ dy = ẏ(t) dt = cos(t) dt ,

∗ yA = −1
2 ⇒ sin(tA) = −1

2 ⇒ tA = −π
6 ,

∗ xB = 1 ⇒ 2 cos(tB) = 1 ⇒ cos(tB) =
1
2 ⇒ tB = π

3 .
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On en déduit l’expression du volume V de ce corps :

V =

∫ yB

yA

A · dy =

∫ yB

yA

π [ x Γ − 1 ]2 dy .

• Traduction en fonction de la variable t :

∗ x Γ = x(t) = 2 cos(t) ,
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V = π

∫ tB

tA

[ x(t)− 1 ]2 ẏ(t) dt

= π

∫ π
3

−π
6

[ 2 cos(t)− 1 ]2 cos(t) dt .

• Intégration :

V = π

∫ π
3

−π
6

[
4 cos2(t)− 4 cos(t) + 1

]
cos(t) dt

= π

∫ π
3

−π
6

[
4
(

1− sin2(t)
)
− 4 cos(t) + 1

]
cos(t) dt

= π

∫ π
3

−π
6

[
5 cos(t)− 4 sin2(t) cos(t)− 4 cos2(t)

]
dt
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[
cos(2t) = cos2(t)− sin2(t) = 2 cos2(t)− 1 ⇒ 2 cos2(t) = cos(2t) + 1

]

V = π

∫ π
3

−π
6

[
5 cos(t)− 4 sin2(t) cos(t)− 2− 2 cos(2t)

]
dt

= π
[

5 sin(t)− 4
3

sin3(t)− 2t − sin(2t)
]π

3

−π
6

= π
[ (

5
√

3
2
−
√

3
2
− 2π

3
−
√

3
2

)
−
(
−5

2
+ 1

6
+ π

3
+
√

3
2

) ]
= π

(√
3 + 7

3
− π

)
.
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