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Comme pour I'étude d'une fonction f: R — R, [|'étude d'un arc paramétré

F: D—R? t—F(t)=x(t) & +y(t) &, sedécompose en quatre étapes :

1) Détermination du domaine d'étude : domaine de définition, parité, périodicité

2) Limite aux "points frontieres” du domaine, étude des branches infinies

3) Dérivées, variation des fonctions coordonnées, points remarquables

)
)
) D
) R

4) Résumé sous forme d'un tableau de variation et tracé de la trajectoire [
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teR,

r. { x(t) = cos®(2t)
y(t) = sin(3t),

On étudie cet arc paramétré sur [0, 7] et on en déduit la trajectoire pour

tout t € R par symétrie d'axe Ox.

La fonction vectorielle 7 (t) est continue sur R, en particulier aux points
frontieres du domaine d'étude : t =0 et t= 7.

La trajectoire I n'admet donc pas de branches infinies.

X0 =1. y0)=0 e x(5)=-1. y(Z)=-1
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Dérivée et signe des fonctions coordonnées

x (t) = —3 sin(4t) cos(2t) y (t) = 3 cos(3t)

NTR]
——

x(t)=0 & te{0, 1%,

— o—{an
— o—{nin
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Dérivée et signe des fonctions coordonnées

y (t) = 3 cos(3t)

x (t) = —3 sin(4t) cos(2t)
x()=0 & tef0, 1,1} y()=0 & te{f, 5}
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Dérivée et signe des fonctions coordonnées

x (t) = —3 sin(4t) cos(2t) y (t) = 3 cos(3t)

x()=0 & tef0, 1,1} y()=0 & te{f, 5}
e e il l e
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Points remarquables
Mi(1, 0) est un point a tangente verticale.

M, (%, est un point a tangente horizontale.

1)
M3 (0, ?) est un point a tangente verticale.

My(—1, —1) est un point stationnaire a tangente oblique de pente
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Le folium de Descartes (1638)

3t
x(t) =
1+
r: 2y teD:=R\{-1}.
t _

Les fonctions coordonnées x(t) et y(t) ne sont ni paires ni impaires : il n'y
a pas de symétrie évidente de la trajectoire I .

Elles ne sont pas non plus périodiques, on étudie 7 (t) sur son domaine de

définition : D =R\ {-1}.
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Limites aux point frontieres de Dy =] —o00, —1[U] -1, 400]

Lorsque t — 400 :

3t _ 3t2

S = A =0 e IR =

La trajectoire ' n'admet donc pas de branche infinie lorsque t — +o00.
Le point courant M(t) tend vers I'origine, mais comment ?

Il faudra étudier cette situation a l'aide de la dérivée des fonctions coordonnées.
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On recherche donc une éventuelle asymptote oblique :
2

im 2D i 35 i e =

t—-1 x(t) t—-1 3t t——1

: 3t2+3t 3t(t+1)

Jm, b(6) = (DX = lim = = im G e )
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lim x(t) = lim oo et lim = lim = F00
t——1%F ( ) ts—1%x 1 + t3 =T t——1 y( ) ts—1%x 1 + t3
On recherche donc une éventuelle asymptote oblique :
2
lim @ = lim 3t = lim t =-1
t—-1 x(t) t—-1 3t t——1
3t2+3t 3t(t+1)
tl—'>m1[}/( )= (E1x(0)] = 0 148 e (1+t)(1—t+1t?)

3t

m = —
t5—11—t+t2
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La trajectoire [ admet donc une asymptote oblique d'équation y = —x — 1,
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La trajectoire [ admet donc une asymptote oblique d'équation y = —x — 1,

lorsque t — —1.

Dérivée et signe des fonctions coordonnées

. t 1 . @1+e)—t(B) . 1-28

X() [1+t3} - A+e3)2 T a+s)R
x(t)=0

& t=



Le folium de Descartes

La trajectoire [ admet donc une asymptote oblique d'équation y = —x — 1,

lorsque t — —1.
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=3[ ia] - 2 MR-
J)=0 & =0 ou t=V2.

il -1 0 s 4

T

Pas de zéro commun entre X(t) et y(t), donc pas de point stationnaire.
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Points remarquables

En t=0, x=0 et y=0, l'origine O est un point a tangente horizontale.

En t= %, x =4 et y = 2, P(\3/Zl, \ﬁ) est un point a tangente
verticale.

En t=+v2, x=+v2 et y= 4, Q(\"/ﬁ,\:ﬁ) est un point a tangente

horizontale.
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Lorsque t — —oo, M(t) tend vers |'origine O et la pente de la tangente a

" tend vers ; v t(2 - t3) -

t——00 X(t) T to—oo 1283

Le point courant M(t) "quitte” I'origine le long d'une "tangente verticale”.

De méme, lorsque t — 400, M(t) tend vers 'origine O et

oy t(2-1%)
tkToo x(t) _tkToo 1-288

Le point courant M(t) "rejoint” I'origine le long d'une "tangente verticale”.
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Remarques historiques : Le folium est étudié par Descartes et Roberval et
apparait en 1638 lors d'une correspondance avec Mersenne. Cette étude fut
complétée par Huygens en 1692.

Cette courbe est, a I'origine, définie comme y
la cubique d’équation : x3+ y3>=3xy.

Sous cette forme, la symétrie du folium de
Descartes par rapport a I'axe y = x apparait (x,y)

facilement, en effet si (x,y) est un point de

[, alors (y,x) I'est aussi. 0
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On obtient une paramétrisation de cette courbe en posant : y =t x.

{ x}+y3=3xy - { x3+ (tx)® =3x(tx)

_ 3t2
y=1tx 1483 °
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