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Schéma de l'étude d'un arc paramétré

Comme pour l’étude d’une fonction f : R → R ,

l’étude d’un arc paramétré

r⃗ : D → R2, t 7→ r⃗ (t) = x(t) · e⃗1 + y(t) · e⃗2 , se décompose en quatre étapes :

1) Détermination du domaine d’étude : domaine de définition, parité, périodicité

2) Limite aux ”points frontières” du domaine, étude des branches infinies

3) Dérivées, variation des fonctions coordonnées, points remarquables

4) Résumé sous forme d’un tableau de variation et tracé de la trajectoire Γ
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1) Détermination du domaine d’étude : domaine de définition, parité, périodicité
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Exemple

Reprise de l’exemple Γ :

{
x(t) = cos3(2t)

y(t) = sin(3t),
t ∈ R ,

• On étudie cet arc paramétré sur [ 0 , π
2
] et on en déduit la trajectoire pour

tout t ∈ R par symétrie d’axe Ox .

• La fonction vectorielle r⃗ (t) est continue sur R , en particulier aux points

frontières du domaine d’étude : t = 0 et t = π
2
.

La trajectoire Γ n’admet donc pas de branches infinies.

x(0) = 1 , y(0) = 0 et x(π
2
) = −1 , y(π

2
) = −1
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Exemple

• Dérivée et signe des fonctions coordonnées

ẋ (t) = −3 sin(4t) cos(2t)

ẋ (t) = 0 ⇔ t ∈
{
0 , π

4
, π

2

}
t 0 π

4
π
2

ẋ(t) 0 − 0 − 0

ẏ (t) = 3 cos(3t)

ẏ (t) = 0 ⇔ t ∈
{

π
6
, π

2

}
t 0 π

6
π
2

ẏ(t) + 0 − 0
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ẏ(t) + 0 − 0

my header

o



Exemple

• Points remarquables

∗ M1(1 , 0) est un point à tangente verticale.

∗ M2

(
1
8 , 1

)
est un point à tangente horizontale.

∗ M3

Ä
0 ,

√
2
2

ä
est un point à tangente verticale.

∗ M4(−1 , −1) est un point stationnaire à tangente oblique de pente m =
3

4
.
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3

4
.

my header

o



Exemple

• Points remarquables

∗ M1(1 , 0) est un point à tangente verticale.
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Exemple

• Tableau de variation

t 0 π
6

π
4

π
2

ẋ(t) 0 − − 0 − 0

x(t) 1 ↘ 1
8

↘ 0 ↘ −1

ẏ(t) + 0 − − 0

y(t) 0 ↗ 1 ↘
√
2
2

↘ −1

M1

TV
M2

TH
M3

TV
M4, PS
m = 3

4
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Exemple

• Représentation de l’arc Γ

x

y

1−1 1
8

1
2

M1

M2

M3

M4
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Exemple

Nouvel exemple :

Le folium de Descartes (1638)

Γ :


x(t) =

3t

1 + t3

y(t) =
3t2

1 + t3
,

t ∈ Dr⃗ = R \ {−1} .

• Les fonctions coordonnées x(t) et y(t) ne sont ni paires ni impaires : il n’y

a pas de symétrie évidente de la trajectoire Γ .

Elles ne sont pas non plus périodiques, on étudie r⃗ (t) sur son domaine de

définition : Dr⃗ = R \ {−1} .
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définition : Dr⃗ = R \ {−1} .

my header

o



Le folium de Descartes

• Limites aux point frontières de Dr⃗ = ]−∞ , −1 [ ∪ ]− 1 , +∞ [

∗ Lorsque t → ±∞ :

lim
t→±∞

x(t) = lim
t→±∞

3t

1 + t3
= 0 et lim

t→±∞
y(t) = lim

t→±∞

3t2

1 + t3
= 0 .

La trajectoire Γ n’admet donc pas de branche infinie lorsque t → ±∞ .

Le point courant M(t) tend vers l’origine, mais comment ?

Il faudra étudier cette situation à l’aide de la dérivée des fonctions coordonnées.
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Le folium de Descartes

∗ Lorsque t → −1± :

lim
t→−1±

x(t) = lim
t→−1±

3t

1 + t3
= ∓∞ et lim

t→−1±
y(t) = lim

t→−1±

3t2

1 + t3
= ±∞ .

On recherche donc une éventuelle asymptote oblique :

◦ lim
t→−1

y(t)

x(t)
= lim

t→−1

3t2

3t
= lim

t→−1
t = −1

◦ lim
t→−1

[ y(t)− (−1) x(t) ] = lim
t→−1

3t2 + 3t

1 + t3
= lim

t→−1

3t (t + 1)

(1 + t) (1− t + t2)

= lim
t→−1

3t

1− t + t2
= −1 .
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On recherche donc une éventuelle asymptote oblique :

◦ lim
t→−1

y(t)

x(t)
= lim

t→−1

3t2

3t
= lim

t→−1
t = −1

◦ lim
t→−1

[ y(t)− (−1) x(t) ] = lim
t→−1

3t2 + 3t

1 + t3
= lim

t→−1

3t (t + 1)

(1 + t) (1− t + t2)

= lim
t→−1

3t

1− t + t2
= −1 .

my header

o



Le folium de Descartes

∗ Lorsque t → −1± :

lim
t→−1±

x(t) = lim
t→−1±

3t

1 + t3
= ∓∞ et lim

t→−1±
y(t) = lim

t→−1±

3t2

1 + t3
= ±∞ .
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Le folium de Descartes

• La trajectoire Γ admet donc une asymptote oblique d’équation y = −x − 1 ,

lorsque t → −1 .

• Dérivée et signe des fonctions coordonnées

∗ ẋ(t) = 3

ï
t

1 + t3

ò·
= 3

(1 + t3)− t (3t2)

(1 + t3)2
= 3

1− 2t3

(1 + t3)2
.

ẋ(t) = 0

⇔ t = 1
3√2

t −∞ −1 1
3√2

+∞

ẋ(t) + + 0 −
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ẏ(t) − − 0 + 0 −
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• Points remarquables

∗ En t = 0 , x = 0 et y = 0 , l’origine O est un point à tangente horizontale.

∗ En t = 1
3√2

, x = 3
√
4 et y = 3

√
2 , P

Ä
3
√
4 , 3

√
2
ä

est un point à tangente

verticale.

∗ En t = 3
√
2 , x = 3

√
2 et y = 3

√
4 , Q

Ä
3
√
2 , 3

√
4
ä

est un point à tangente

horizontale.

my header

o



Le folium de Descartes

• Points remarquables

∗ En t = 0 ,

x = 0 et y = 0 , l’origine O est un point à tangente horizontale.
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horizontale.

my header

o



Le folium de Descartes

• Points remarquables

∗ En t = 0 , x = 0 et y = 0 , l’origine O est un point à tangente horizontale.
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verticale.

∗ En t = 3
√
2 , x = 3

√
2 et y = 3

√
4 , Q

Ä
3
√
2 , 3

√
4
ä

est un point à tangente
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∗ En t = 1
3√2

, x = 3
√
4 et y = 3

√
2 , P

Ä
3
√
4 , 3

√
2
ä

est un point à tangente
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horizontale.

my header

o



Le folium de Descartes

• ∗ Lorsque t → −∞ ,

M(t) tend vers l’origine O et la pente de la tangente à

Γ tend vers
lim

t→−∞

ẏ(t)

ẋ(t)
= lim

t→−∞

t (2− t3)

1− 2t3
= −∞ .

Le point courant M(t) ”quitte” l’origine le long d’une ”tangente verticale”.

∗ De même, lorsque t → +∞ , M(t) tend vers l’origine O et

lim
t→+∞

ẏ(t)

ẋ(t)
= lim

t→+∞

t (2− t3)

1− 2t3
= +∞ .

Le point courant M(t) ”rejoint” l’origine le long d’une ”tangente verticale”.
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ẋ(t)
= lim

t→−∞

t (2− t3)

1− 2t3
= −∞ .

Le point courant M(t) ”quitte” l’origine le long d’une ”tangente verticale”.

∗ De même, lorsque t → +∞ , M(t) tend vers l’origine O et

lim
t→+∞
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ẏ(t)
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ẋ(t)
= lim

t→−∞

t (2− t3)

1− 2t3
= −∞ .

Le point courant M(t) ”quitte” l’origine le long d’une ”tangente verticale”.

∗ De même, lorsque t → +∞ , M(t) tend vers l’origine O et

lim
t→+∞
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• Tableau de variation
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• Tableau de variation
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ẏ(t) − − 0 + + 0 −
+∞

y(t) 0 ↘ ↘ 0 ↗ 3
√
2 ↗ 3

√
4 ↘ 0

−∞

”TV” AO TH TV TH ”TV”

my header

o



Exemple

• Représentation du

folium de Descartes
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Le folium de Descartes

Remarques historiques :

Le folium est étudié par Descartes et Roberval et

apparâıt en 1638 lors d’une correspondance avec Mersenne. Cette étude fut

complétée par Huygens en 1692.

Cette courbe est, à l’origine, définie comme

la cubique d’équation : x3 + y 3 = 3 x y .

Sous cette forme, la symétrie du folium de

Descartes par rapport à l’axe y = x apparâıt

facilement, en effet si (x , y) est un point de

Γ , alors (y , x) l’est aussi. x

y

0

(x , y)

(y , x)
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facilement, en effet si (x , y) est un point de

Γ , alors (y , x) l’est aussi. x

y

0

(x , y)

(y , x)

my header

o



Le folium de Descartes

Remarques historiques : Le folium est étudié par Descartes et Roberval et

apparâıt en 1638 lors d’une correspondance avec Mersenne. Cette étude fut

complétée par Huygens en 1692.
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Le folium de Descartes

On obtient une paramétrisation de cette courbe

en posant : y = t x .{
x3 + y 3 = 3 x y

y = t x
⇔

{
x3 + (t x)3 = 3 x (t x)

y = t x

⇔

{
x2 [ x (1 + t3)− 3t ] = 0

y = t x
⇔

{
x = 3t

1+t3

y = 3t2

1+t3
.
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