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2.2.4 Intégration des fonctions rationnelles
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Soit f(x) = CP)(())g une fonction rationnelle, P, Q € R[x].

On commence par Vérifier que f est telle que deg(P) < deg(Q).

Si ce n'est pas le cas, on effectue la division euclidienne de P par Q@ :

P(x) = Pi(x) - Q(x) + R(x), d'ou f(x)= Pi(x)+ gg(; ;
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. f(x) = ;(:Ii :(X3_1)+>;—:—2x'
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Question : Comment déterminer les coefficients de la décomposition ?



Décomposition en éléments simples, exemples

3x2 +2x + 1 a b c
) — _ bceR.
=727 Txr2  xr2E  rap MPeE
xX*+x>4+1 a b ¢ d e
- - - _ 247 4 - b,c.d R.
g(x) X (x 1 2 x+x2+x3+x+2+(x+2)2’ a,b,c,d e €
343 b d
)= — 2> 2, betc | oxte abcdecR.

Tx(P4+x+2?2 x X24+x+2 (X+x+2)?’
Question : Comment déterminer les coefficients de la décomposition ?

Voici deux méthodes :
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3P+ x42

: f(x) =
(=212
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e Méthode par identification

32+ x +2
:L, B2 x=x-(x*+x+1),
x3 4+ x2 + x N
A<O0

f(x)
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e Méthode par identification

2
2
; f(x):%, B2 x=x-(x*+x+1),
X2 4+ X<+ X —_——
352 ) A<O
flx)= 2 FXF2

x-(x2+x+1)
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f(x) = =—+
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e Méthode par identification

3x2 2
; f(x):;H_—§+, B2 x=x-(x*+x+1),
X2 4+ X<+ X —_——
A<O
32+ x+2 a bx + ¢
f(x) = =—+

x-(x2+x+1) x x>+x+1

a(x*+x+1)+x(bx+c)
x-(x2+x+1)
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e Méthode par identification

3x2 2
; f(x):;H_—§+, B2 x=x-(x*+x+1),
X2 4+ X<+ X —_——
A<O
32+ x+2 a bx + ¢
f(x) = =—+

x-(x2+x+1) x x>+x+1

a(x*+x+1)+x(bx+c) (a+b)x*+(a+c)x+a
x-(x24+x+1) B x-(x24+x+1)

)
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e Méthode par identification

3x2 2
; f(x):;H_—§+, B2 x=x-(x*+x+1),
X2 4+ X<+ X —_——
A<O
32+ x+2 a bx + ¢
f(x) = =—+

x-(x2+x+1) x x>+x+1

Ca(x*+x+1)+x(bx+c) (at+b)x*+(atc)x+a
B x-(x24+x+1) B x-(x24+x+1)

a+b=3
= {a—l—c:l

a=>2

)
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3x2 2
; f(x):;H_—§+, B2 x=x-(x*+x+1),
X2 4+ X<+ X —_——
A<O
32+ x+2 a bx + ¢
f(x) = =—+

x-(x2+x+1) x x>+x+1
Ca(x*+x+1)+x(bx+c) (at+b)x*+(atc)x+a
B x-(x24+x+1) B x-(x24+x+1)

a+b=3 .
= {a—l—c:l & { B
a=2 -

)
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e Méthode par identification

3x2 2
; f(x):;H_—§+, B2 x=x-(x*+x+1),
X2 4+ X<+ X —_——
A<O
32+ x+2 a bx + ¢
f(x) = =—+

x-(x2+x+1) x x>+x+1

Ca(x*+x+1)+x(bx+c) (at+b)x*+(atc)x+a
B x-(x24+x+1) B x-(x24+x+1)

at+b=3
= 2 -1
= at+c=1 & {a_ 1 f(x):—+2x—.
2=02 c=-1, x x*+x+1

)
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e Méthode par évaluation

x2+2
o) = x(x +1)2
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x* 42 a b c
Cf(x) = —T= 2 bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,
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e Méthode par évaluation

x* 42 a b c
flx) = — < __12 bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

x en multipliant les deux expressions par x,
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flx) = ———c ="+ + , abceR,
() x(x+1)2 x x+1 (x+1)?
x en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f),
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fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,
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(péle de f), on obtient : 2 = a,
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x?+2 a b c
fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f), on obtient : 2 = a,

+ en multipliant les deux expressions par (x +1)2, puis en les évaluant en

x=-1
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fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f), on obtient : 2 = a,

+ en multipliant les deux expressions par (x +1)2, puis en les évaluant en
x =—1 (pdle de f),
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e Méthode par évaluation

x?+2 a b c
fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f), on obtient : 2 = a,

+ en multipliant les deux expressions par (x +1)2, puis en les évaluant en

x =—1 (pdlede f), on obtient: —3 =c,
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x?+2 a b c
fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f), on obtient : 2 = a,

+ en multipliant les deux expressions par (x +1)2, puis en les évaluant en

x =—1 (pdlede f), on obtient: —3 =c,

x en multipliant les deux expressions par x,
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x?+2 a b c
fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f), on obtient : 2 = a,

+ en multipliant les deux expressions par (x +1)2, puis en les évaluant en

x =—1 (pdlede f), on obtient: —3 =c,

x en multipliant les deux expressions par x, puis en les évaluant en x — oo,
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e Méthode par évaluation

x?+2 a b c
fx) = ———s == bceR
() x (x4 1)2 X+x—|—1+(x—|—1)2’ abee R,

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(péle de f), on obtient : 2 = a,

+ en multipliant les deux expressions par (x +1)2, puis en les évaluant en

x =—1 (pdlede f), on obtient: —3 =c,

x en multipliant les deux expressions par x, puis en les évaluant en x — oo,

onobtient: 1=a+ b, dou b=-1.
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2

2

Autre exemple : f(x) = %
x (x
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_X*+x+2 a  bx+c

f(xX)=—F——<=

-+ b,c e R,
x(x2+1) x+x2+1’ S

x en multipliant les deux expressions par x,
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_X*+x+2 a  bx+c

f(xX)=—F——<=

-+ b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0
(pdle de f),
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_X*+x+2 a  bx+c

f(xX)=—F——<=

-+ b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(pdle de f), on obtient: 2 =a,
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_X*+x+2 a  bx+c

f(x) =

—— ==t b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(pdle de f), on obtient: 2 =a,

x en multipliant les deux expressions par x,
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_X*+x+2 a  bx+c

f(x) =

—— ==t b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0

(pdle de f), on obtient: 2 =a,

« en multipliant les deux expressions par x, puis en les évaluant en x — oo,
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_X*+x+2 a  bx+c

f(x) =

—— ==t b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0
(pdle de f), on obtient: 2 =a,

x en multipliant les deux expressions par x, puis en les évaluant en x — oo,
on obtient: 1=a+ b, dou b=-1
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2
f(X):X +x+2: a bx+c

x(x2+1) ;+x2+1’

« en multipliant les deux expressions par x, puis en les évaluanten x =0

a,b,c e R,

(pdle de f), on obtient: 2 =a,

« en multipliant les deux expressions par x, puis en les évaluant en x — oo,

on obtient: 1=a+ b, dou b=-1

« et par évaluation en une valeur simple,
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_X*+x+2 a  bx+c

fxX)=———= =

-+ b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0
(pdle de f), on obtient: 2 =a,

« en multipliant les deux expressions par x, puis en les évaluant en x — oo,

on obtient: 1=a+ b, dou b=-1

« et par évaluation en une valeur simple, par exemple x =1,
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_X*+x+2 a  bx+c

fxX)=———= =

-+ b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0
(pdle de f), on obtient: 2 =a,

« en multipliant les deux expressions par x, puis en les évaluant en x — oo,

on obtient: 1=a+ b, dou b=-1

« et par évaluation en une valeur simple, par exemple x =1, on obtient :

2=+ 25,
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_X*+x+2 a  bx+c

fxX)=———= =

-+ b,c e R,
x(x2+1) x+x2+1’ S

« en multipliant les deux expressions par x, puis en les évaluanten x =0
(pdle de f), on obtient: 2 =a,

« en multipliant les deux expressions par x, puis en les évaluant en x — oo,

on obtient: 1=a+ b, dou b=-1

« et par évaluation en une valeur simple, par exemple x =1, on obtient :

2=a+5¢, dot c=1.
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a) Eléments simples de premiére espece :

*/ 2 dx=aln|x—a|+C, x#a,

X —«
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Intégration des éléments simples

a) Eléments simples de premiére espece :

*/ 2 dx=aln|x—a|+C, x#a,

X —«
*/ 2 5 dx = — 2 +C, x#a«
(x —a) X—«
a a 1
* mdx:_n—l(X—a)n_l—i_C’ X#a, n22,

ou C est une fonction constante sur | — oo, o[ etsur |a, oo]f.
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b) Eléments simples de deuxiéme espéce :

px+q
(x2+2ax+ b)"’

avec A'=a’>—b<0, n>1.

Remarque : Dans ce cours, nous n'intégrerons que des éléments simples de

deuxieme espece dont le dénominateur est de multiplicité un (n=1) :

px+q
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b) Eléments simples de deuxiéme espéce :

px+q
(x2+2ax+ b)"’

avec A'=a’>—b<0, n>1.

Remarque : Dans ce cours, nous n'intégrerons que des éléments simples de
deuxieme espece dont le dénominateur est de multiplicité un (n=1) :

px+gq

e — /: 2_
1 2ax+ B’ avec A'=a"—b<0.
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En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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f(x)

En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

X
T dx =
/x2+2x+2 x

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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f(x)

En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

/—X dx—l/—2xJr2 dx
X2 4+2x+2 2 ) xX242x+2

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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f(x)

En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

/;dx_l/ﬂdx_/;dx
X2 4+2x+2 2 ) xX242x+2 X2+ 2x + 2

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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: f(x)

En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

/;dx_l/ﬂdx_/;dx
X2 4+2x+2 2 ) xX242x+2 X2+ 2x + 2

1/ 2x + 2 d / 1 J
== | ——dx— | —————— dx
2 ) x24+2x+2 (x+1)2+1

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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: f(x)

En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

/ X J 1/ 2x + 2 J / 1 d
= dx = = - adx— [ ————F= dx
X2 4+2x+2 2 X2 4+2x +2 X2 4+2x +2
1 2x + 2 1
== | =" _dx— | ————— d
2/x2+2x+2 X /(x+1)2+1 X

:%In(x2+2x+2)

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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: f(x)

En l'intégrant, on obtient la somme d'un logarithme et d'une arctangente :

/ X J 1/ 2x + 2 J / 1 d
= dx = = - adx— [ ————F= dx
X2 4+2x+2 2 X2 4+2x +2 X2 4+2x +2
1 2x + 2 1
== | =" _dx— | ————— d
2/x2+2x+2 X /(x+1)2+1 X

1
=5 In (x* +2x +2) —arctan(x +1) + C.

= 5~ est un élément simple de deuxieme espece.
X% +2x+2
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m de sorte a faire
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De fagon plus générale, on décompose I'élément

apparaitre la dérivée d'une fonction logarithme :



Intégration des éléments simples

px+q

m de sorte a faire
X X

De fagon plus générale, on décompose I'élément
apparaitre la dérivée d'une fonction logarithme :

px—+gq i
x2+2ax+b
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px+q

m de sorte a faire
X X

De fagon plus générale, on décompose I'élément

apparaitre la dérivée d'une fonction logarithme :
px—+g P 2x+2a

x2+2ax+b 2 x2+2ax+b

————

=[In(x2+2ax+b)]’
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(. . V214 X+ < e
De fagon plus générale, on décompose I'élément __PxTq de sorte a faire
x2+2ax+b
apparaitre la dérivée d'une fonction logarithme :
px—+g P 2x+2a qg—ap

x2+2ax+b 2 x2+2ax+b + x2+2ax+ b’
—_——

=[In(x2+2ax+b)]’
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. , s px+q <.
De facon plus générale, on décompose |'élément ——————— de sorte a faire
con plus génér n mp men @+ 2ax b
apparaitre la dérivée d'une fonction logarithme :
px—+g _ P 2x+2a N q—ap
x2+2ax+b 2 x2+2ax+b x24+2ax+b’
————

=[In(x2+2ax+b)]’

q—ap

Et l'intégration de ——————
intégration 2+ 2ax b

donne une fonction arctangente.
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Intégration des éléments simples

En effet ————— peut s'écrire de la facon suivante :
x?+2ax+b

1 1
x24+2ax+b (x+a)2+b—a?’

avec b—a*>>0,



Intégration des éléments simples

En effet ————— peut s'écrire de la facon suivante :
x?+2ax+b

1 1
x24+2ax+b (x+a)2+b—a?’

avec b—a*>>0,

1 1
_ 2 2
b a |: x+32] 41
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En effet ————— peut s'écrire de la facon suivante :
x?+2ax+b

1 1

= , avec b—a’>>0,
x2+2ax+b (x+a)’+b—a?

1 1 1 —
— 32 2 o — 2 2
T (] e VT [Em]

—_———
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En conclusion :

JEEET P ST
x2+2ax+b 2] x24+2ax+b x24+2ax+b

-In(x2+2ax+b)—l—u-arctan( x+a >—|—C.
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e La décomposition en éléments simples de la fonction rationnelle

8x?

x34+x24+3x—5

g(x) =
se base sur la décomposition en facteurs irréductibles de son dénominateur.
Une racine évidente du dénominateur est donnée par x =1, ce polynome est

donc divisible par (x —1) :

P4+ x?+3x—-5=(x—1)- (x> +2x+5) .
~———
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