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Corrigé 18

1. Soient 0 <a <b<c¢, hy,hg € R, hy # hy, etsoit f: [0,00] - R définie par

0 si0<zr<a,
hi sia<z<b,
hy sib<z<e,

fz) =

0 siz>c.

a) Calculer la fonction-aire associée a f : A(z) = / f(t)dt (z > 0), et montrer
0

qu’elle est continue sur [0, col.
b) Déterminer I’ensemble des points ou A est dérivable, noté D 4/, et montrer que
A/(QT) = f(ZL‘) , VYx e Dy .

c) Esquisser f et Adanslecasou a=1, b=2, ¢=6, hy =2, hy = —1.

a) Pour commencer, comme f est nulle sur [0, a], on a que
A(x) =0 Vz€][0,q].

Ensuite, sur ]a,b], A(z) se calcule en considérant le rectangle de base |a,z| et de
hauteur hq, ce qui donne

A(x) =hy(z —a), Vz €la,b].
Sur b, ¢[, on commence par écrire
Alx) = A®) + (Alx) — AG))

Or A(z) — A(b) s’obtient en considérant le rectangle de base |b, z] et de hauteur hao,

ce qui donne
A(x) = A(b) + hao(x —b) .

Comme f s’annule a nouveau sur [c,o00[, on a A(z) = A(c) pour tout z > ¢. On

obtient donc:
0 si0<z<a,

hi(x — a) sia<xz<b,
hi(b—a)+ ha(z —b) sib<z<c,
hi(b—a)+ hao(c—0b) siz>c.

Az) =

Cette fonction est clairement continue a I'intérieur de chacun des intervalles |0, al,
Ja, b, 1b,¢], ¢, 00[. On observe qu’elle est également continue en chacun des points
a,b, c. Par exemple, en x = a,

lim A(z) = lim A(z) = hi(a —a) =0 = A(a),

T—a— z—at
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b) Comme A(z) est composée de quatre morceaux de droites, elle est dérivable
a l'intérieur de chacun de ces intervalles. Ensuite, a partir de ’expression obtenue
ci-dessus pour A(x), on obtient

A'(a”) = lim M =0, A(a")= lim M

T—a~ Tr—a z—at r—a

:h17

et comme h; # 0, on en déduit que A n’est dérivable en a. On montre de la méme
maniere que A n’est dérivable ni en b ni en ¢, ce qui implique

Dy =]0,00[\{a,b,c}.
On vérifie aussi immédiatement que

A,((L‘) = f(x) , VY e Dy .

c) Danslecasou a=1,b=2, c=6, hy =2, hy = —1,

f(z)

O
2
. b ¢
C'L * i
—1
O O
A(x)
¢ X
a p
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2. Soit P, une partition en n intervalles de y
méme longueur de l'intervalle [0, a], a > 0.

Calculer les sommes de Darboux inférieure et

supérieure de la fonction f(x) = 2, associées

a cette partition.

Montrer que ces deux sommes convergent vers flzr) 1
la méme valeur lorsque n tend vers l'infini. fze_1) 4

Indication :

2
Utiliser le résultat : > 7, k* = [”(n;rl)} .

Puis le démontrer par récurrence.

e
Oﬁ Tp—1 T, QA

e Description de la partition
Soit P, la partition de l'intervalle [0, a] en n intervalles isométriques

[p_1, 2;], 0<k<n-—1, avec 2o=0 et z, =a.

o Chaque intervalle [xy_1, 2| a pour longueur

a
Ax, = xp, —Tp1 = —, 1<k<n.
n

a
o Et chaque abscisse de la partition vaut zp =k-—, 0<k<n.
n

e Somme de Darboux inférieure

Soit Ay laire du rectangle construit sur Uintervalle [zp_1, 2], 1<k <n

Ap = (xr—xp-1) [ (Tp-1) = %'f (W) == {Mr: (k:—l)?’-Z—:

Soit s,, la somme de Darboux inférieure :

3

=

3

|
—

n 4 4

w3 A =3 (=1 = T ST k=1 = S
k=1

k=1 k=1 j=0

e Somme de Darboux supérieure

Soit By laire du rectangle construit sur Uintervalle [xg_1, 2], 1<k <n
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a

By = (= apa) - f (@) = —- [ (52) =

n

Soit S, la somme de Darboux supérieure :

g u B, — u 3 a4_a - kg_a n(n+1)2
S S BB S L=
k=1 k=1 k=1

x lim S, = lim
n—oo n—oo

la‘l a* 2n—|—1} a*
4

Ces deux sommes convergent bien vers la méme valeur.

La fonction f(z) = 2 étant continue, elle est intégrable au sens de Riemann
(et donc de Darboux).

a
Cette valeur % est donc par définition la valeur de 'intégrale définie / 3 de .
0

e Démonstration par récurrence de la proposition :

n 1 2
YR = {—"(”; )] . neN,
k=1

— Vérification pour n =1

> v
k=1

1

=) K =1"=1 et [”("Tﬂ)r

— Démonstration du pas de récurrence

2
« Hypothese : Y ;| k* = [@] ., pour un n € N* donné.

2
x Conclusion : Zzg A [(”+1)2(n+2)}
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* Preuve :
n+1 n

>k = Y F4n+1)]

k=1 k=1

= [@]Z(nﬂtlﬁ

2

= (n+1)*- [%+(n+1)]

n?+44n +4
(n+2)?
4

_ {(H 1)2(n+2)]2.

= (n+1)°

= (n+1)*.

n

1
3. On donne la relation suivante : Z cos(kx) = 5 +
k=0

cos(nzx) — cos[(n + 1) x]
2(1—cosz) '

us

a) Calculer I'intégrale définie / cos(x) dr en déterminant les deux sommes de
0

Darboux sur une partition régulicre de I'intervalle [0, ] et en vérifiant qu’elles
convergent vers la méme valeur.

b) Démontrer par récurrence, la relation donnée.

e Partition de l'intervalle [0, 7]

On partage I'intervalle [0, 5] en n intervalles isométriques [zp_1, Ty ],

)
1<k<n, z=0, z,=7%, delongueur Az = g-.

Les abscisses x;, du découpage, ont donc pour expression :

rp=Fk- -5, 0<k<n.

e Somme de Darboux inférieure
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@)

N

La hauteur du rectangle construit sur lintervalle |[zx_1, 3], est la plus
petite ordonnée cos(z) de cet intervalle, c’est donc cos(zy), car cos(z) est
décroissante sur [0, 7].

La somme de Darboux inférieure s’écrit donc
s:E Ax~cos:ck:E —.cos(k-Z)=—" cos (k- Z).
k=1 k=1 k=1

T _l_i_cos(g)—cos[%—i-%} T _1+ sm[%}
o 2 2(1—cos(%) o 2 2(1—005(%))

e Limite de la somme de Darboux inférieure
En utilisant les infiniment petits équivalents, on obtient :

AL LY S S
Y

nggo m 2 (1 — COS (%)) n—oo 21 (%)2

3

o W T sin 7] _
dot lim s == lim oo lim oo o — e = 1.

e Somme de Darboux supérieure
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@)

N

La hauteur du rectangle construit sur U'intervalle [zj_1, 2x], 1 <k <n, est
la plus grande ordonnée cos(x) de cet intervalle, c’est donc cos(zg_1), car
cos(x) est décroissante sur [0, 5 ].

La somme de Darboux supérieure s’écrit donc

S—ZAx cos (1) Z—cos 1)%}:21 cos (j- o).

k=1 j=0

5 et

5 [ 2 [ iy

e Limite de la somme de Darboux supérieure

lim S,, = lim i+ lim . sin [%}

o nsoo 4n nooo 2n 2 (1 — Cos (Ln)) =

e Conclusion

Les deux sommes de Darboux convergent vers la méme valeur :

lim s, = lim S, =1.
n—oo n—o0

Or cos(z) est une fonction continue, donc intégrable au sens de Riemann sur

[0,Z], dou
/Qcos(x)dle.
0

72
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e Démonstration par récurrence de la relation

n

1 cos(nw) —cos|[(n+1)x]
Z cos(kx) = 5 + :

— 2(1 —cosx)
o Vérification pour n =0 :
Z cos(kx) =cos(0-z) =1
k=0 n=0
ot 1 N cos(nz) — cos[(n + 1) z] 1 n cos(0 - z) — cos(x) 9
2 2(1 —cosx) o 2 2 (1 —cosx)
o Démonstration du pas de récurrence :
*x Hypothese :
- 1 — 1
Zcos(k:x) =—-+ cos(na) — cos(n + 1) a] , pour un n € N donné.
— 2 2(1 —cosx)
n+1
1 1 — 2
* Conclusion : kz_o cos(kz) = 3 4 o8 [(n +2)(f]_ szsx[)(n +2) 2] .
* Preuve :
n+1 n
Z cos(kx) = Z cos(kx) 4 cos[(n + 1) z]
k=0 k=0
1 cos(nz)—cos|(n+1)x
_ 1 cos(n) [( )]+COS[<H+1>$]

2 2(1 —cosx)

1+cos(na:) —cos[(n+1)z] 4+ 2cos[(n+1)x] —2cosz - cos[(n+ 1) z]
2 2(1 —cosx)

1 N cos(nz) + cos[(n+1)x] —2cosx - cos[(n + 1) z]
2 2(1 —cosx)

et en exprimant cos(nz) sous la forme cos|(n+ 1)z — 2] :
cos[(n+1)x —x] =cosx-cos[(n+1)z]+sinz-sin[(n+ 1)z,
on obtient :

1 cos[(n+1)a] —cosw-cos[(n+1)z]+sinz-sin[(n+1)z]
2(1 —cosx)

1 cos|[(n+1)z] —cos[(n+2)z]
2t 2(1 — cosx) '
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4. Exercice facultatif

Démontrer la relation donnée dans ’exercice 3 :

- 1 cos(nx) —cos[(n+1)z]
%COSU%) —3" 2(1 —cosx) ’

en utilisant dans C la relation : € = cos(x) + i sin(z), = € R.

Pour tout x réel, cos(x) peut étre considéré comme la partie réelle de €' :

n
E ezkx .
k=0

cosz = Re (¢") <« Z cos(kzr) = Re
k=0

n
La somme E e™™ est la somme partielle d'une série géométrique de premier terme
k=0
1 et de raison e, elle se réécrit de la facon suivante :

n i(n+1)x
S eite = 1 — ity
e - .
1 —ew
k=0
En vue d’en extraire la partie réelle, on rend le dénominateur réel :

1 — ellntz [1 — el’(ﬂ“)x} [1—e ] 1 it 4 gine _ gilnt 1)z

l—er  — [1—e#][l—e] 2(1—cosz)

Z cos(kx) = Re
k=0

i gikz | 1 —cosx + cos(nx) —cos [(n + 1) z]
2(1 —cosx) ’
k=0

& 1 cos(nw) —cos[(n+1)x]
P cos(kz) = 2 F 2(1 —cosx) '

n
70
5. Calculer, si elle existe, la limite suivante : lim — - Z sin (%’r) .
n—oo N 1

n
La somme Zsin (%’T) = T sin (l%r)
k=1 (Lt

est une somme de Riemann de la fonction sin(z) sur Uintervalle [0, 7].

Or cette fonction est continue, donc intégrable au sens de Riemann. On a donc

. ™ - . kr\ T . _ T
7};110105-28m(7)—/0 sin(x) dx = — cos(x) |0—2.

k=1
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6. Calculer la dérivée des fonctions suivantes :

2x 1 T :
a)A(:E):/ —dt, x>1; b)B(m):/ Sl—ntdt,O<x<1.
o argcosht o

rcsin x

1

a) Soient f(t) = m

et F(t) une primitive quelconque de f(t).

La fonction A(x) s’écrit donc A(x) = F(2x) — F(2).

2

Allx) = [FQ) - FQ) = (22)-F'(2x) = 2f(22) = arg cosh(2z) -

sint
b) Soient ¢(t) = — et G(t) une primitive quelconque de g(t).

La fonction B(x) s’écrit donc B(z) = G(z) — G(arcsinz) .
B'(z) = [G(z) — G(arcsinz)] = G'(x) — (arcsinz)’ - G'(arcsin z)

1 ) sin 1 x
arcsinz) = -

9(x) = V1= 22 9 x JV1_ 22 arcsinz

2

£ 2
/ [e(t ) — 1] dt
7. Déterminer, si elle existe, la limite suivante : lim 2 )
x—0 ,2136

Commencons par montrer que le numérateur tend vers 0 lorsque =z — 0.

2

La fonction N(z) = / [e(tQ) — 1} dt est une fonction continue, donc lim N(z) = N(0).
0

z—0

0
Et N(O)—/ [e(tQ)—l] dt=0.
0
9 09

Cette limite est donc une forme indéterminée de type ”§”, on leve 'indétermination
en utilisant la regle de Bernoulli-de I’'Hopital.

N N’
lim Niz) 2 i Niz) avec N'(z) = [e(tz) - 1] (2% = 2z [e(m4) — 1] :
z—0 6 z—0 6x° f—?
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W =
H B
1

o

&

S

()

lim —
x—0 4 1‘3

lim e®@"
x—0

Wl Wl W]

8. On considere la fonction f définie par

Va+l

f(z) = / e dt x>0.
NG

Déterminer x de sorte que f(z) soit maximale. Justifier rigoureusement votre
réponse.

On étudie le signe de la dérivée de f(z).

Soit G(t) une primitive de g(t) = e=***5

?

flz) =Gz +1) - G(Va)

On en déduit I'expression de f'(x) :

fll@) = [GWz+1)-GWa)]
- G(WVr+1) - (Vo+1) -G 7))

= GWEH) g eV

_ ! [ertVassaa _ mrsave]

2\/x
_ 1 |:€—a:—2\/5—1+5\/5+5 _ e—z+5\/5}

2\/x
_ e~ TH5VT [672\/§+4 B 1i|

2\/x '
e~ TtV
Le signe de f’(x) est égal au signe de [672\/@% — 1} car >0, Vx>0.

2Vx
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eV _ 1> o Ve > o e > 0 o 2/ +4>0
car la fonction exponentielle est croissante,
fllx) >0 & -2yr+4>0 & x<4.

Signe de f'(z) :
x ‘ 0

f'(x)

4
[
|

+

La fonction f atteint donc son maximum en = =4.

9. Soit f : R — R une fonction continue sur R et T-périodique. Montrer que pour tout
aeR

/a e = /0 " by,

Indications : utiliser les trois regles suivantes vues au cours

(i) /abf(m)dm:/acf(x)da:+/cbf(x)dx.
(i4) / :T F(a)dr = / ’ fa)de.

i) [ = [ s

On coupe l'intégrale entre a et a + 1" en intercalant 0, puis 7T :

/ R

T
|

=Jo f@)dz (i)

a+T 0 a+T 0 T

dr = d dr = d d
/a /(@) = / f(x)dat / /(@) = / f(x)dat / f(x)dz+
D’ou on a

/aa+Tf(x)dx = /aO f(z)dx + /Oa+T f(z)dx + /Oa f(x)dz

= [ [ g@a [ gwar= [ g
) 0 a 0

(i
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Interprétation graphique

Le résultat nous apprend que pour une fonction périodique, I'intégrale est la méme
sur chaque intervalle de longueur égale a la période. Géométriquement : 1’aire sous
la courbe est la méme sur chaque intervalle de longueur d’une période. Sur le dessin
ci-dessous, la surface grise et la surface hachurée ont la méme aire analytique : la
région entre 0 et a a été translantée en la région entre 7" et a + T'.




