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Corrigé 18

1. Soient 0 < a < b < c, h1, h2 ∈ R∗, h2 ̸= h1, et soit f : [0,∞[ → R définie par

f(x) =


0 si 0 ≤ x ≤ a ,

h1 si a < x ≤ b ,

h2 si b < x < c ,

0 si x ≥ c .

a) Calculer la fonction-aire associée à f : A(x) =

∫ x

0

f(t) dt (x ≥ 0), et montrer

qu’elle est continue sur [0,∞[.

b) Déterminer l’ensemble des points où A est dérivable, noté DA′ , et montrer que

A′(x) = f(x) , ∀x ∈ DA′ .

c) Esquisser f et A dans le cas où a = 1, b = 2, c = 6, h1 = 2, h2 = −1.

a) Pour commencer, comme f est nulle sur [0, a], on a que

A(x) = 0 ∀x ∈ [0, a] .

Ensuite, sur ]a, b], A(x) se calcule en considérant le rectangle de base ]a, x] et de
hauteur h1, ce qui donne

A(x) = h1(x− a) , ∀x ∈]a, b] .

Sur ]b, c[, on commence par écrire

A(x) = A(b) +
(
A(x)− A(b)

)
Or A(x)−A(b) s’obtient en considérant le rectangle de base ]b, x] et de hauteur h2,
ce qui donne

A(x) = A(b) + h2(x− b) .

Comme f s’annule à nouveau sur [c,∞[, on a A(x) = A(c) pour tout x ≥ c. On
obtient donc:

A(x) =


0 si 0 ≤ x ≤ a ,

h1(x− a) si a < x ≤ b ,

h1(b− a) + h2(x− b) si b < x < c ,

h1(b− a) + h2(c− b) si x ≥ c .

Cette fonction est clairement continue à l’intérieur de chacun des intervalles ]0, a[,
]a, b[, ]b, c[, ]c,∞[. On observe qu’elle est également continue en chacun des points
a, b, c. Par exemple, en x = a,

lim
x→a−

A(x) = lim
x→a+

A(x) = h1(a− a) = 0 = A(a) ,



EPF - Lausanne COURS DE MATHEMATIQUES SPECIALES Analyse I Corrigé 18

b) Comme A(x) est composée de quatre morceaux de droites, elle est dérivable
à l’intérieur de chacun de ces intervalles. Ensuite, à partir de l’expression obtenue
ci-dessus pour A(x), on obtient

A′(a−) = lim
x→a−

A(x)− A(a)

x− a
= 0 , A′(a+) = lim

x→a+

A(x)− A(a)

x− a
= h1 ,

et comme h1 ̸= 0, on en déduit que A n’est dérivable en a. On montre de la même
manière que A n’est dérivable ni en b ni en c, ce qui implique

DA′ =]0,∞[\{a, b, c} .

On vérifie aussi immédiatement que

A′(x) = f(x) , ∀x ∈ DA′ .

c) Dans le cas où a = 1, b = 2, c = 6, h1 = 2, h2 = −1,

x

f(x)

2

−1
a

b c

x

A(x)

a b

c
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2. Soit Pn une partition en n intervalles de
même longueur de l’intervalle [ 0 , a ] , a > 0 .

Calculer les sommes de Darboux inférieure et
supérieure de la fonction f(x) = x3 , associées
à cette partition.

Montrer que ces deux sommes convergent vers
la même valeur lorsque n tend vers l’infini.

Indication :

Utiliser le résultat :
∑n

k=1 k3 =
[
n (n+1)

2

]2
.

Puis le démontrer par récurrence.
x

y

O axk−1 xk

f(xk)

f(xk−1)

� Description de la partition

Soit Pn la partition de l’intervalle [ 0 , a ] en n intervalles isométriques
[xk−1 , xk ] , 0 ≤ k ≤ n− 1 , avec x0 = 0 et xn = a .

◦ Chaque intervalle [xk−1 , xk ] a pour longueur

∆xk = xk − xk−1 =
a

n
, 1 ≤ k ≤ n .

◦ Et chaque abscisse de la partition vaut xk = k · a
n
, 0 ≤ k ≤ n .

� Somme de Darboux inférieure

Soit Ak l’aire du rectangle construit sur l’intervalle [xk−1 , xk ] , 1 ≤ k ≤ n

Ak = (xk−xk−1) ·f (xk−1) =
a

n
·f

(
(k−1) · a

n

)
=

a

n
·
[
(k − 1) · a

n

]3
= (k−1)3 · a

4

n4
.

Soit sn la somme de Darboux inférieure :

sn =
n∑

k=1

Ak =
n∑

k=1

(k − 1)3 · a
4

n4
=

a4

n4
·

n∑
k=1

(k − 1)3 =
a4

n4
·
n−1∑
j=0

j3

=
a4

n4
·
n−1∑
j=1

j3 =
a4

n4
·
[
(n− 1)n

2

]2
=

a4

4
· (n− 1)2

n2
=

a4

4
− a4

4
· 2n− 1

n2
.

� Somme de Darboux supérieure

Soit Bk l’aire du rectangle construit sur l’intervalle [xk−1 , xk ] , 1 ≤ k ≤ n



EPF - Lausanne COURS DE MATHEMATIQUES SPECIALES Analyse I Corrigé 18

Bk = (xk − xk−1) · f (xk) =
a

n
· f

(
k · a
n

)
=

a

n
·
[
k · a
n

]3
= k3 · a

4

n4
.

Soit Sn la somme de Darboux supérieure :

Sn =
n∑

k=1

Bk =
n∑

k=1

k3 · a
4

n4
=

a4

n4
·

n∑
k=1

k3 =
a4

n4
·
[
n (n+ 1)

2

]2
,

=
a4

4
· (n+ 1)2

n2
=

a4

4
+

a4

4
· 2n+ 1

n2
.

� Limite des sommes de Darboux

∗ lim
n→∞

sn = lim
n→∞

[
a4

4
− a4

4
· 2n− 1

n2

]
=

a4

4
.

∗ lim
n→∞

Sn = lim
n→∞

[
a4

4
+

a4

4
· 2n+ 1

n2

]
=

a4

4
.

Ces deux sommes convergent bien vers la même valeur.

La fonction f(x) = x3 étant continue, elle est intégrable au sens de Riemann
(et donc de Darboux).

Cette valeur a4

4
est donc par définition la valeur de l’intégrale définie

∫ a

0

x3 dx .

� Démonstration par récurrence de la proposition :

n∑
k=1

k3 =

[
n (n+ 1)

2

]2
, n ∈ N∗.

– Vérification pour n = 1

n∑
k=1

k3

∣∣∣∣∣
n=1

=
1∑

k=1

k3 = 13 = 1 et

[
n (n+ 1)

2

]2 ∣∣∣∣∣
n=1

=

[
2

2

]2
= 1 .

– Démonstration du pas de récurrence

∗ Hypothèse :
∑n

k=1 k3 =
[
n (n+1)

2

]2
, pour un n ∈ N∗ donné.

∗ Conclusion :
∑n+1

k=1 k3 =
[
(n+1) (n+2)

2

]2
.
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∗ Preuve :
n+1∑
k=1

k3 =
n∑

k=1

k3 + (n+ 1)3

=

[
n (n+ 1)

2

]2
+ (n+ 1)3

= (n+ 1)2 ·
[
n2

4
+ (n+ 1)

]
= (n+ 1)2 · n

2 + 4n+ 4

4

= (n+ 1)2 · (n+ 2)2

4

=

[
(n+ 1) (n+ 2)

2

]2
.

3. On donne la relation suivante :
n∑

k=0

cos(kx) =
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
.

a) Calculer l’intégrale définie

∫ π
2

0

cos(x) dx en déterminant les deux sommes de

Darboux sur une partition régulière de l’intervalle [ 0 , π
2
] et en vérifiant qu’elles

convergent vers la même valeur.

b) Démontrer par récurrence, la relation donnée.

� Partition de l’intervalle [ 0 , π
2
]

On partage l’intervalle [ 0 , π
2
] en n intervalles isométriques [xk−1 , xk ] ,

1 ≤ k ≤ n , x0 = 0 , xn = π
2
, de longueur ∆x = π

2n
.

Les abscisses xk du découpage, ont donc pour expression :

xk = k · π
2n

, 0 ≤ k ≤ n .

� Somme de Darboux inférieure
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x

y

O

1

π
2

La hauteur du rectangle construit sur l’intervalle [xk−1 , xk ] , est la plus
petite ordonnée cos(x) de cet intervalle, c’est donc cos(xk) , car cos(x) est
décroissante sur [ 0 , π

2
] .

La somme de Darboux inférieure s’écrit donc

sn =
n∑

k=1

∆x · cos (xk) =
n∑

k=1

π

2n
· cos

(
k · π

2n

)
=

π

2n
·

n∑
k=1

cos
(
k · π

2n

)
.

=
π

2n
·

[
n∑

k=0

cos
(
k · π

2n

)
− 1

]
=

π

2n
·

[
1

2
+

cos
(
n · π

2n

)
− cos

[
(n+ 1) · π

2n

]
2
(
1− cos

(
π
2n

)) − 1

]

=
π

2n
·

[
−1

2
+

cos
(
π
2

)
− cos

[
π
2
+ π

2n

]
2
(
1− cos

(
π
2n

)) ]
=

π

2n
·

[
−1

2
+

sin
[

π
2n

]
2
(
1− cos

(
π
2n

))]

� Limite de la somme de Darboux inférieure

En utilisant les infiniment petits équivalents, on obtient :

lim
n→∞

π

2n
·

sin
[

π
2n

]
2
(
1− cos

(
π
2n

)) = lim
n→∞

π

2n
·

π
2n(
π
2n

)2 = 1 ,

d’où lim
n→∞

sn = − lim
n→∞

π

4n
+ lim

n→∞

π

2n
·

sin
[

π
2n

]
2
(
1− cos

(
π
2n

)) = 1 .

� Somme de Darboux supérieure
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x

y

O

1

π
2

La hauteur du rectangle construit sur l’intervalle [xk−1 , xk ] , 1 ≤ k ≤ n , est
la plus grande ordonnée cos(x) de cet intervalle, c’est donc cos(xk−1) , car
cos(x) est décroissante sur [ 0 , π

2
] .

La somme de Darboux supérieure s’écrit donc

Sn =
n∑

k=1

∆x · cos (xk−1) =
n∑

k=1

π

2n
· cos

[
(k − 1) · π

2n

]
=

π

2n
·
n−1∑
j=0

cos
(
j · π

2n

)
.

=
π

2n
·

[
1

2
+

cos
[
(n− 1) · π

2n

]
− cos

(
n · π

2n

)
2
(
1− cos

(
π
2n

)) ]

=
π

2n
·

[
1

2
+

cos
[
π
2
− π

2n

]
− cos

(
π
2

)
2
(
1− cos

(
π
2n

)) ]
=

π

2n
·

[
1

2
+

sin
[

π
2n

]
2
(
1− cos

(
π
2n

))]

� Limite de la somme de Darboux supérieure

lim
n→∞

Sn = lim
n→∞

π

4n
+ lim

n→∞

π

2n
·

sin
[

π
2n

]
2
(
1− cos

(
π
2n

)) = 1 .

� Conclusion

Les deux sommes de Darboux convergent vers la même valeur :

lim
n→∞

sn = lim
n→∞

Sn = 1 .

Or cos(x) est une fonction continue, donc intégrable au sens de Riemann sur
[ 0 , π

2
] , d’où ∫ π

2

0

cos(x) dx = 1 .
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� Démonstration par récurrence de la relation

n∑
k=0

cos(kx) =
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
.

◦ Vérification pour n = 0 :

n∑
k=0

cos(kx)

∣∣∣∣∣
n=0

= cos(0 · x) = 1

et
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)

∣∣∣∣
n=0

=
1

2
+

cos(0 · x)− cos(x)

2 (1− cosx)
= 1 .

◦ Démonstration du pas de récurrence :

∗ Hypothèse :
n∑

k=0

cos(kx) =
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
, pour un n ∈ N donné.

∗ Conclusion :
n+1∑
k=0

cos(kx) =
1

2
+

cos [(n+ 1)x]− cos [(n+ 2)x]

2 (1− cosx)
.

∗ Preuve :
n+1∑
k=0

cos(kx) =
n∑

k=0

cos(kx) + cos [(n+ 1)x]

=
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
+ cos [(n+ 1)x]

=
1

2
+
cos(nx)− cos [(n+ 1)x] + 2 cos [(n+ 1)x]− 2 cosx · cos [(n+ 1)x]

2 (1− cosx)

=
1

2
+

cos(nx) + cos [(n+ 1)x]− 2 cosx · cos [(n+ 1)x]

2 (1− cosx)

et en exprimant cos(nx) sous la forme cos [(n+ 1)x− x] :

cos [(n+ 1)x− x] = cos x · cos [(n+ 1)x] + sin x · sin [(n+ 1)x] ,

on obtient :

1

2
+

cos [(n+ 1)x]− cosx · cos [(n+ 1)x] + sin x · sin [(n+ 1)x]

2 (1− cosx)

=
1

2
+

cos [(n+ 1)x]− cos [(n+ 2)x]

2 (1− cosx)
.
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4. Exercice facultatif

Démontrer la relation donnée dans l’exercice 3 :

n∑
k=0

cos(kx) =
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
,

en utilisant dans C la relation : eix = cos(x) + i sin(x) , x ∈ R .

Pour tout x réel, cos(x) peut être considéré comme la partie réelle de eix :

cosx = Re
(
eix

)
⇔

n∑
k=0

cos(kx) = Re

[
n∑

k=0

eikx

]
.

La somme
n∑

k=0

eikx est la somme partielle d’une série géométrique de premier terme

1 et de raison eix , elle se réécrit de la façon suivante :

n∑
k=0

eikx =
1− ei(n+1)x

1− eix
.

En vue d’en extraire la partie réelle, on rend le dénominateur réel :

1− ei(n+1)x

1− eix
=

[
1− ei(n+1)x

]
[1− e−ix]

[1− eix] [1− e−ix]
=

1− eix + einx − ei(n+1)x

2 (1− cosx)
.

n∑
k=0

cos(kx) = Re

[
n∑

k=0

eikx

]
=

1− cosx+ cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
,

n∑
k=0

cos(kx) =
1

2
+

cos(nx)− cos [(n+ 1)x]

2 (1− cosx)
.

5. Calculer, si elle existe, la limite suivante : lim
n→∞

π

n
·

n∑
k=1

sin
(
kπ
n

)
.

La somme
n∑

k=1

sin
(
kπ
n

)
· π
n
=

π

n
·

n∑
k=1

sin
(
kπ
n

)
est une somme de Riemann de la fonction sin(x) sur l’intervalle [ 0 , π ] .

Or cette fonction est continue, donc intégrable au sens de Riemann. On a donc

lim
n→∞

π

n
·

n∑
k=1

sin
(
kπ
n

)
=

∫ π

0

sin(x) dx = − cos(x)
∣∣π
0
= 2 .
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6. Calculer la dérivée des fonctions suivantes :

a) A(x) =

∫ 2x

2

1

arg cosh t
dt , x > 1 ; b) B(x) =

∫ x

arcsinx

sin t

t
dt , 0 < x < 1 .

a) Soient f(t) =
1

arg cosh t
et F (t) une primitive quelconque de f(t) .

La fonction A(x) s’écrit donc A(x) = F (2x)− F (2) .

A′(x) = [F (2x)− F (2) ]′ = (2x)′ · F ′(2x) = 2 f(2x) =
2

arg cosh(2x)
.

b) Soient g(t) =
sin t

t
et G(t) une primitive quelconque de g(t) .

La fonction B(x) s’écrit donc B(x) = G(x)−G(arcsinx) .

B′(x) = [G(x)−G(arcsinx) ]′ = G′(x)− (arcsinx)′ ·G′(arcsinx)

B′(x) = g(x)− 1√
1− x2

· g(arcsinx) =
sinx

x
− 1√

1− x2
· x

arcsinx
.

7. Déterminer, si elle existe, la limite suivante : lim
x→0

∫ x2

0

[
e(t

2) − 1
]
dt

x6
.

Commençons par montrer que le numérateur tend vers 0 lorsque x → 0 .

La fonction N(x) =

∫ x2

0

[
e(t

2) − 1
]
dt est une fonction continue, donc lim

x→0
N(x) = N(0) .

Et N(0) =

∫ 0

0

[
e(t

2) − 1
]
dt = 0 .

Cette limite est donc une forme indéterminée de type ”0
0
”, on lève l’indétermination

en utilisant la règle de Bernoulli-de l’Hôpital.

lim
x→0

N(x)

x6

BH
= lim

x→0

N ′(x)

6x5
avec N ′(x) =

[
e(t

2) − 1
]
t=x2

·(x2)′ = 2x·
[
e(x

4) − 1
]
.
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lim
x→0

∫ x2

0

[
e(t

2) − 1
]
dt

x6

BH
= lim

x→0

2x ·
[
e(x

4) − 1
]

6x5

=
1

3
lim
x→0

e(x
4) − 1

x4
, FI ”0

0
”

BH
=

1

3
lim
x→0

4x3 · e(x4)

4x3

=
1

3
lim
x→0

e(x
4)

=
1

3
.

8. On considère la fonction f définie par

f(x) =

∫ √
x+1

√
x

e−t2+5t dt , x > 0 .

Déterminer x de sorte que f(x) soit maximale. Justifier rigoureusement votre
réponse.

On étudie le signe de la dérivée de f(x) .

Soit G(t) une primitive de g(t) = e−t2+5t ,

f(x) = G(
√
x+ 1)−G(

√
x)

On en déduit l’expression de f ′(x) :

f ′(x) =
[
G(

√
x+ 1)−G(

√
x)
]′

= G′(
√
x+ 1) · (

√
x+ 1)′ −G′(

√
x) · (

√
x)′

= g(
√
x+ 1) · 1

2
√
x
− g(

√
x) · 1

2
√
x

=
1

2
√
x

[
e−(

√
x+1)2+5(

√
x+1) − e−x+5

√
x
]

=
1

2
√
x

[
e−x−2

√
x−1+5

√
x+5 − e−x+5

√
x
]

=
e−x+5

√
x

2
√
x

[
e−2

√
x+4 − 1

]
.

Le signe de f ′(x) est égal au signe de
[
e−2

√
x+4 − 1

]
car

e−x+5
√
x

2
√
x

> 0 , ∀x > 0 .
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e−2
√
x+4 − 1 ≥ 0 ⇔ e−2

√
x+4 ≥ 1 ⇔ e−2

√
x+4 ≥ e0 ⇔ −2

√
x+ 4 ≥ 0

car la fonction exponentielle est croissante,

f ′(x) ≥ 0 ⇔ −2
√
x+ 4 ≥ 0 ⇔ x ≤ 4 .

Signe de f ′(x) :

x 0 4

f ′(x) + 0 −

La fonction f atteint donc son maximum en x = 4 .

9. Soit f : R → R une fonction continue sur R et T -périodique. Montrer que pour tout
a ∈ R

∫ a+T

a

f(x)dx =

∫ T

0

f(x)dx.

Indications : utiliser les trois règles suivantes vues au cours

(i)

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

(ii)

∫ b+T

a+T

f(x)dx =

∫ b

a

f(x)dx.

(iii)

∫ a

b

f(x)dx = −
∫ b

a

f(x).

On coupe l’intégrale entre a et a+ T en intercalant 0, puis T :

∫ a+T

a

f(x)dx =︸︷︷︸
(i)

∫ 0

a

f(x)dx+

∫ a+T

0

f(x)dx =︸︷︷︸
(i)

∫ 0

a

f(x)dx+

∫ T

0

f(x)dx+

∫ a+T

T

f(x)dx︸ ︷︷ ︸
=
∫ a
0 f(x)dx (ii)

.

D’où on a

∫ a+T

a

f(x)dx =

∫ 0

a

f(x)dx+

∫ a+T

0

f(x)dx+

∫ a

0

f(x)dx

=︸︷︷︸
(iii)

∫ 0

a

f(x)dx+

∫ T

0

f(x)dx−
∫ 0

a

f(x)dx =

∫ T

0

f(x)dx.
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Interprétation graphique

Le résultat nous apprend que pour une fonction périodique, l’intégrale est la même
sur chaque intervalle de longueur égale à la période. Géométriquement : l’aire sous
la courbe est la même sur chaque intervalle de longueur d’une période. Sur le dessin
ci-dessous, la surface grise et la surface hachurée ont la même aire analytique : la
région entre 0 et a a été translantée en la région entre T et a+ T .

0

a

T

a+ T

2T


