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Corrigé 14

1. Déterminer et caractériser les extrema et les points remarquables du graphe de la
fonction f définie par

f(x) = 3

√
x2 + 2x+ 9− 8 |x| .

On ne demande pas de déterminer ses éventuels points d’inflexion.

Domaine de définition de f : Df = R , f continue sur R .

f(x) =

{
3
√

x2 − 6x+ 9 si x ≥ 0
3
√
x2 + 10x+ 9 si x < 0

=

{
3
√

(x− 3)2 si x ≥ 0
3
√

(x+ 9) (x+ 1) si x < 0

Dérivée de f :

� y = 3
√

(x− 3)2 ⇒ y′ =
2

3
3
√

x− 3
,

� y = 3
√

(x+ 9) (x+ 1) ⇒ y′ =
2x+ 10

3 3
√

(x+ 9)2 (x+ 1)2
=

2 (x+ 5)

3 3
√

(x+ 9)2 (x+ 1)2
,

f ′(x) =


2

3
3
√
x− 3

si x > 0

2 (x+ 5)

3 3
√
(x+ 9)2 (x+ 1)2

si x < 0
Df ′ = R \ {−9 , −1 , 0 , 3 } .

La fonction dérivée f ′(x) change de signe en x = −5 , x = 0 et x = 3 . Elle ne
change pas de signe en x = −9 et x = −1 . Plus précisément :

x −9 −5 −1 0 3

f ′(x) − − 0 + + − +

Le graphe de f possède donc cinq points remarquables dont trois sont des extrema :

◦ lim
x→−9

f ′(x) = −∞ , (−9, 0) est un point à tangente verticale, mais ce n’est pas

un extremum,

◦ (−5,−2 3
√
2 ) est un minimum à tangente horizontale,

◦ lim
x→−1

f ′(x) = +∞ , (−1, 0) est un point à tangente verticale, mais ce n’est

pas un extremum,

◦ lim
x→0−

f ′(x) = +
10
3
√
37

et lim
x→0+

f ′(x) = − 2
3
√
34

. (0, 3
√
9 ) est un maximum et

un point anguleux dont les demi-tangentes sont de pente + 10
3√
37

et − 2
3√
34
,

◦ lim
x→3−

f ′(x) = −∞ et lim
x→3+

f ′(x) = +∞ , (3, 0) est un minimum et un point

de rebroussement.
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2. On donne les fonctions f(x) = x2 + x+ 2 et g(x) = x3 + 3x2 + p x+ q .

Déterminer les coefficients p et q de telle sorte qu’au point d’inflexion du graphe
de g , celui-ci touche tangentiellement le graphe de f .

Figure d’étude.

x
x0

f

gI

Recherche de l’abscisse x0 du point d’inflexion I du graphe de g .

g′(x) = 3x2 + 6x+ p , g′′(x) = 6x+ 6 = 6 (x+ 1) .

g′′(x) s’annule et change de signe en x0 = −1 , g(−1) = 2− p+ q .

Le point I (−1 ; 2− p+ q) est un point d’inflexion du graphe de g dont la pente
de la tangente vaut g′(−1) = −3 + p .

Le graphe de f passe par I et est tangent à celui de g en I si et seulement si

f(−1) = g(−1) et f ′(−1) = g′(−1) .

f(−1) = 2 , f(−1) = g(−1) ⇔ 2 = 2− p+ q ⇔ p = q .

f ′(x) = 2x+ 1 , f ′(−1) = g′(−1) ⇔ −1 = −3 + p ⇔ p = 2 .

Les deux courbes sont tangentes en I si et seulement si p = 2 et q = 2 .

3. Soit f la fonction définie par f(x) =
√

x2 + n |x+ 2| , n ∈ N .

Pour quelles valeurs de n ∈ N , le graphe de f admet-il en x0 = −2 , un point
anguleux qui n’est pas un extremum ?
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� Existence d’un point anguleux en x0 = −2

Le graphe de f admet en x0 un point anguleux si et seulement si

◦ f est continue en x0 : c’est le cas.

◦ f est dérivable à gauche et à droite en x0 et lim
x→x−

0

f ′(x) ̸= lim
x→x+

0

f ′(x) .

Calcul de la dérivée de f :

f(x) =


√
x2 − nx− 2n si x < −2

√
x2 + nx+ 2n si x ≥ −2

, Df = R .

f ′(x) =


2x− n

2
√
x2 − nx− 2n

si x < −2

2x+ n

2
√
x2 + nx+ 2n

si x > −2
.

Comparaison des nombres dérivés à gauche et à droite en x0 = −2 :

lim
x→−2−

f ′(x) =
−4− n

4
et lim

x→−2+
f ′(x) =

−4 + n

4
.

lim
x→−2−

f ′(x) ̸= lim
x→−2+

f ′(x) ⇔ −4− n ̸= −4 + n ⇔ n ̸= 0 .

Pour tout n ∈ N∗ , le graphe de f possède un point anguleux en
x0 = −2 .

� Le point anguleux n’est pas un extremum

Le graphe de f n’admet pas d’extremum en x0 = −2 si et seulement si la
dérivée f ′ ne change pas de signe en x0 = −2 .

lim
x→−2−

f ′(x) =
−4− n

4
< 0 , ∀ n ∈ N .

La dérivée à gauche en x0 = −2 étant négative pour tout n ∈ N , il faut que
la dérivée à droite en x0 = −2 soit aussi négative (éventuellement nulle).

Voici deux méthodes de résolution :

– Première méthode : étude du signe du nombre dérivé à droite en x0 = −2 .

◦ lim
x→−2+

f ′(x) < 0 ⇔ −4 + n

4
< 0 ⇔ n < 4 .

◦ Que se passe-t-il si lim
x→−2+

f ′(x) = 0 ?

lim
x→−2+

f ′(x) = 0 ⇔ n = 4 .
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La demi-tangente à droite est horizontale, il y a deux possibilités :

f ' (x) < 0
f ' (x) > 0

x
-2

Extremum en  x = -2

f ' (x) < 0

f ' (x) < 0

x
-2

Pas d'extremum en  x = -2

Pour ce cas limite : n = 4 , il faut étudier le signe de la fonction
dérivée dans un voisinage à droite de x0 = −2 .

x > −2
n = 4

}
⇒ f ′(x) =

x+ 2√
x2 + 4x+ 8

> 0 .

Donc pour n = 4 , il y a aussi un extremum en x0 = −2 .

En résumé : n ∈ N∗ et n < 4 ⇔ n ∈ {1 , 2 , 3} .

– Deuxième méthode : étude du signe de la fonction dérivée dans un voisi-
nage à droite de x0 = −2 .

x > −2 , f ′(x) =
2x+ n

2
√
x2 + nx+ 2n

, sgn [f ′(x)] = sgn(2x+ n) .

On distingue deux cas, selon que −n
2
est plus grand ou plus petit que −2 .

◦ Si −n
2
≤ −2 , alors on a :

x −n/2 −2

2x+n
2
√
x2+nx+2n

− 0 + +

Dans un voisinage à droite de x0 = −2 , la fonction dérivée f ′(x) est
positive, le graphe de f admet donc un extremum en x0 = −2 .

◦ Si −n
2
> −2 , alors on a :

x −2 −n/2

2x+n
2
√
x2+nx+2n

− − 0 +

Dans un voisinage à droite de x0 = −2 , la fonction dérivée f ′(x) est
négative, le graphe de f n’admet donc pas d’extremum en x0 = −2 .

En résumé : n ∈ N∗ et −n
2
> −2 ⇔ n ∈ {1 , 2 , 3} .
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4. On considère la fonction f définie par

f(x) = ax2 + 6x− 3 arctan(2x) , a ∈ R .

Déterminer le paramètre réel a de sorte que le graphe de f admette un point
à tangente horizontale qui ne soit pas un extremum.

Le graphe de f admet en x0 un point à tangente horizontal qui n’est pas un
extremum si et seulement si f ′(x0) = 0 et f ′(x) ne change pas de signe en x0 .

Calcul de f ′(x) .

f ′(x) = 2ax+ 6− 3
2

4x2 + 1
=

8ax3 + 24x2 + 2ax

4x2 + 1
=

2x (4ax2 + 12x+ a)

4x2 + 1
.

f ′(x0) = 0 et f ′(x) ne change pas de signe en x0 si et seulement si x0 est une
racine double de f ′(x) .

x

f ′(x)

x0

ou
x

f ′(x)
x0

En d’autres termes, si et seulement si f ′(x) =
λ (x− x0)

2(x− x1)

4x2 + 1
, x0 ̸= x1 .

Or ∀ a ∈ R , x = 0 est une racine de f ′(x) .

On a donc l’alternative suivante :

� Soit x0 = 0 est une racine double de f ′(x) .

C’est le cas si et seulement si x0 = 0 est racine simple de 4ax2 + 12x+ a .

4ax2 + 12x+ a
∣∣∣
x=0

= 0 ⇔ a = 0 ⇔ f ′(x) =
24x2

4x2 + 1
.

� Soit x0 ̸= 0 est une racine double de f ′(x) .

C’est le cas si et seulement si 4ax2 + 12x + a admet une racine double non
nulle.

∆′ = 0 ⇔ 62 − 4a2 = 0 ⇔ a = −3 ou a = 3 .

a = −3 ⇔ f ′(x) = −6x (2x− 1)2

4x2 + 1
, a = 3 ⇔ f ′(x) =

6x (2x+ 1)2

4x2 + 1
.

En résumé, le graphe de f admet un point à tangente horizontal qui n’est pas un
extremum si et seulement si a ∈ {−3 , 0 , 3} .
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5. Pour quelle(s) valeur(s) de k , k ∈ N∗ , la fonction suivante admet-elle un point
de rebroussement en x = 0 ?

f(x) = 3
√

xk (x− 1)2 .

Le graphe de f admet un point de rebroussement en x0 ∈ Df si et seulement si

� f est continue en x0 ,

� lim
x→x0

f ′(x) = ±∞ ,

� f ′ change de signe en x0 .

f(x) = 3
√

xk (x− 1)2 , Df = R car k ∈ N∗ , f est continue sur R .

Calcul de la dérivée de f .

f ′(x) =
1

3

[
xk (x− 1)2

]−2/3 ·
[
k xk−1 (x− 1)2 + 2xk (x− 1)

]
,

f ′(x) =
xk−1 (x− 1) [ k (x− 1) + 2x ]

3 3
√

(xk (x− 1)2)2
=

xk−1 [ (2 + k)x− k ]

3 3
√

x2k (x− 1)
,

f ′(x) =
3

√
x3k−3

x2k
· (2 + k)x− k

3 3
√
x− 1

=
3
√
xk−3 · (2 + k)x− k

3 3
√
x− 1

.

Or lim
x→0

(2 + k)x− k

3 3
√
x− 1

=
k

3
̸= 0 , donc lim

x→0
f ′(x) = ±∞ ssi lim

x→0

3
√
xk−3 = ±∞ .

lim
x→0

3
√
xk−3 = ±∞ ⇔ k − 3 < 0 ⇔ k < 3 ⇔ k = 1 ou k = 2 .

◦ k = 1 : f ′(x) =
3x− 1

3 3
√

x2 (x− 1)
, f ′ ne change pas de signe en x = 0 .

Le graphe de f admet en x = 0 une tangente verticale, mais pas de point
de rebroussement.

◦ k = 2 : f ′(x) =
4x− 2

3 3
√

x (x− 1)
, f ′ change de signe en x = 0 .

Le graphe de f admet en x = 0 un point de rebroussement.

Le graphe de f admet en x = 0 un point de rebroussement ssi k = 2 .
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6. Etudier les branches infinie du graphe de f défini par f(x) =
√
x2 + x− 2x .

On détermine la limite de f aux ”points frontières” de son domaine de définition :

Df = ]−∞ , −1 ] ∪ [ 0 , +∞[ .

Or lim
x→−1−

f(x) = f(−1) = 2 et lim
x→0+

f(x) = f(0) = 0 .

Il faut donc encore étudier lim
x→−∞

f(x) et lim
x→+∞

f(x) .

� Lorsque x → −∞ :

lim
x→−∞

f(x) = lim
x→−∞

[
|x|

√
1 + 1

x
− 2x

]
= lim

x→−∞

[
−x

√
1 + 1

x
− 2x

]
= lim

x→−∞
−x

[√
1 + 1

x
+ 2

]
= +∞

On cherche une éventuelle asymptote oblique d’équation y = mx+ h :

◦ m = lim
x→−∞

f(x)

x
= lim

x→−∞
−
[√

1 + 1
x
+ 2

]
= −3

◦ h = lim
x→−∞

[ f(x)−mx ] = lim
x→−∞

[√
x2 + x+ x

]
= lim

x→−∞

(x2 + x)− x2

√
x2 + x− x

= lim
x→−∞

x

−x
[√

1 + 1
x
+ 1

] = −1

2
.

Le graphe de f admet donc une asymptote oblique d’équation y = −3x− 1
2

lorsque x → −∞ .

� Lorsque x → +∞ :

lim
x→+∞

f(x) = lim
x→+∞

[
|x|

√
1 + 1

x
− 2x

]
= lim

x→+∞

[
x
√

1 + 1
x
− 2x

]
= lim

x→+∞
x
[√

1 + 1
x
− 2

]
= −∞ .

On cherche une éventuelle asymptote oblique d’équation y = mx+ h :

◦ m = lim
x→+∞

f(x)

x
= lim

x→+∞

[√
1 + 1

x
− 2

]
= −1

◦ h = lim
x→+∞

[ f(x)−mx ] = lim
x→+∞

[√
x2 + x− x

]
= lim

x→+∞

(x2 + x)− x2

√
x2 + x+ x

= lim
x→+∞

x

x
[√

1 + 1
x
+ 1

] =
1

2
.

Le graphe de f admet donc une asymptote oblique d’équation y = −x + 1
2

lorsque x → +∞ .
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7. Les deux énoncés ci-dessous sont faux. Le but est de le démontrer en présentant un
contre-exemple, c’est-à-dire un exemple ne vérifiant pas l’affirmation énoncée.

a) Soit f : Df → R et x0 ∈ Df .

On suppose qu’il existe δ > 0 tel que ]x0− δ, x0+ δ[⊂ Df et f est dérivable sur
]x0 − δ, x0 + δ[. Alors lim

x→x0

f ′(x) = f ′(x0).

b) Soit f : Df → R et x0 ∈ Df .

On suppose qu’il existe δ > 0 tel que ]x0− δ, x0+ δ[⊂ Df et f est dérivable sur
]x0 − δ, x0[∪]x0, x0 + δ[. Si lim

x→x0

f ′(x) existe, alors f est dérivable en x0.

On rappelle le théorème vu au cours : Soit f une fonction continue en x0 et dérivable
sur un voisinage épointé de x0. Si lim

x→x0

f ′(x) existe, alors f est dérivable en x0 et

f ′(x0) = lim
x→x0

f ′(x). Le but de l’exercice est de comprendre que la réciproque n’est

pas forcément vraie ( a) ) et que le théorème est faux si la fonction n’est pas continue
en x0 ( b) ).

a) On considère la fonction f : R → R donnée par

f(x) =

 x2 sin
(
1
x

)
, x ̸= 0,

0, x = 0.

On a f ′(x) = 2x sin
(
1
x

)
− cos

(
1
x

)
pour tout x ̸= 0 et lim

x→0
f ′(x) n’existe pas.

Pourtant f est dérivable en x = 0 puisque f ′(0) = 0 (en calculant le rapport
de Newton).

b) On considère la fonction f : R → R donnée par

f(x) =


x, x ̸= 0,

1, x = 0.

On a que f ′(x) = 1 pour tout x ̸= 0 et donc lim
x→0

f ′(x) = 1, mais f n’est

dérivable en 0 car pas même continue.

Cet exercice nous permet de conclure le résultat suivant : si lim
x→x0

f ′(x) existe alors

soit f est dérivable en x0, soit f est discontinue en x0.


