
Exemples de révision

Exemple 1 (Limite de fonction à l’infini - définition)

Montrer à l’aide de la définition que

lim
x→−∞

x · sin
(

1

x2

)
= 0.

Soit ε > 0. Il faut trouver M tel que

x < M =⇒ |x · sin
(

1

x2

)
− 0| < ε.

On a

|x · sin
(

1

x2

)
− 0| < ε

⇐⇒ |x · sin
(

1

x2

)
| < ε

⇐⇒ |x| ·
∣∣∣∣sin( 1

x2

)∣∣∣∣ < ε

Comme |x| ·
∣∣∣∣sin( 1

x2

)∣∣∣∣ ≤ |x| ·
∣∣∣∣ 1x2

∣∣∣∣ = 1

|x|
, on a

1

|x|
< ε =⇒ |x| ·

∣∣∣∣sin( 1

x2

)∣∣∣∣ < ε.

Puisque
1

|x|
< ε ⇐⇒ x ∈]−∞,−1/ε[∪]1/ε,+∞[, on peut choisir M =

−1

ε
.

En effet, pour M =
−1

ε
, on a

x < M =⇒ 1

|x|
< ε =⇒ |x| ·

∣∣∣∣sin( 1

x2

)∣∣∣∣ < ε =⇒ |x · sin
(

1

x2

)
− 0| < ε.

Exemple 2 (Limite de fonction à l’infini - calcul)

Calculer

lim
x→−∞

√
2x2 − 1 + x

x
· (x2 − 1)(2− sin(x)).
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On a

lim
x→−∞

√
2x2 − 1 + x

x
· (x2 − 1)(2− sin(x))

= lim
x→−∞

|x|
√
2− 1

x2 + x

x
· (x2 − 1)(2− sin(x))

= lim
x→−∞

−x
√
2− 1

x2 + x

x
· (x2 − 1)(2− sin(x))

= lim
x→−∞

(
−
√

2− 1

x2
+ 1

)
︸ ︷︷ ︸

→−
√
2+1

· (x2 − 1)︸ ︷︷ ︸
→+∞

(2− sin(x))︸ ︷︷ ︸
≥1

=−∞.

Exemple 3 (Limite de fonction en x0 - définition)

Montrer à l’aide de la définition que

lim
x→2

x2 + 4

x
= 4.

Soit ε > 0. On doit montrer qu’il existe δ > 0 tel que

0 < |x− 2| < δ =⇒
∣∣∣∣x2 + 4

x
− 4

∣∣∣∣ < ε.

On a, pour x ∈]1, 3[,

∣∣∣∣x2 + 4

x
− 4

∣∣∣∣ < ε ⇐⇒
∣∣∣∣x2 + 4− 4x

x

∣∣∣∣ < ε

⇐⇒
∣∣∣∣ (x− 2)2

x

∣∣∣∣ < ε

⇐⇒ (x− 2)2

x
< ε

Pour x ∈]1, 3[, on a
(x− 2)2

x
<

(x− 2)2

1
, et donc

(x− 2)2

1
< ε =⇒ (x− 2)2

x
< ε.
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Puisque
(x− 2)2

1
< ε ⇐⇒ |x−2| <

√
ε, on peut donc prendre δ = min{1,

√
ε}.

En effet, pour un tel δ, x ∈]1, 3[, et

|x− 2| < ε =⇒
∣∣∣∣x2 + 4

x
− 4

∣∣∣∣ < ε,

par le raisonnement ci-dessus.

Exemple 4 (Limite de fonction en x0 - calcul)

1. Calculer la limite

lim
x→0

tan(x)− sin(x)

x3
.

2. Calculer la limite

lim
x→1

(1− x) tan
(πx

2

)
.

1. On a, en utilisant des IPE en 0,

lim
x→0

tan(x)− sin(x)

x3
= lim

x→0

tan(x)(1− cos(x))

x3

= lim
x→0

x(x2/2)

x3

=
1

2
.

2. On a, en posant le changement de variable y = 1− x et en utilisant des IPE

en 0,

lim
x→1

(1− x) tan
(πx

2

)
= lim

y→0
y tan

(π
2
(1− y)

)
= lim

y→0
y tan

(π
2
− π

2
y
)

= lim
y→0

y

tan
(
π
2 y
)

= lim
y→0

y
π
2 y

=
2

π
.
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Exemple 5 (Calcul du nombre dérivé - rapport de Newton)

Calculer le nombre dérivé f ′(x0) de la fonction

f(x) = sin3(x2)

pour un x0 quelconque, en utilisant la limite du rapport de Newton.

On a

f ′(x0) = lim
x→x0

sin3(x2)− sin3(x2
0)

x− x0

= lim
x→x0

(sin(x2)− sin(x2
0))(sin

2(x2) + sin(x2) sin(x2
0) + sin2(x0))

x− x0

= lim
x→x0

(sin(x2)− sin(x2
0))(sin

2(x2) + sin(x2) sin(x2
0) + sin2(x0))

x− x0

= lim
x→x0

(x+ x0)
(sin(x2)− sin(x2

0))

x2 − x2
0

· lim
x→x0

(sin2(x2) + sin(x2) sin(x2
0) + sin2(x0))

= 2x0 · cos(x2
0) · 3 sin2(x2

0).

Exemple 6 (Application géométrique de la dérivée)

Déterminer l’équation de la normale commune aux graphes de

f(x) = (x− 2)2 + 3 et g(x) = (x+ 2)2 − 3.

Soit y = mx+c la normale commune, passant par (x1, f(x1)) et (x2, g(x2)). On

a donc

• m =
−1

f ′(x1)
=

−1

2x1 − 4
=

−1

g′(x2)
=

−1

2x2 + 4

d’où x1 = x2 + 4.

• y = mx+ c passe par (x1, f(x1)):

f(x1) = mx1 + c.

• y = mx+ c passe par (x2, g(x2)):

g(x2) = mx2 + c.

• En soustrayant, on obtient f(x1)− g(x2) = m(x1 − x2), et donc
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f(x1)− g(x2) = m(x1 − x2)

⇐⇒ f(x2 + 4)− g(x2) = m(x2 + 4− x2)

⇐⇒ (x2 + 4− 2)2 + 3− ((x2 + 2)2 − 3) =
−1

2x2 + 4
· 4

⇐⇒ (x2 + 4− 2)2 + 3− ((x2 + 2)2 − 3) =
−1

2x2 + 4
· 4

⇐⇒ x2 =
−7

3
.

• La valeur de x2 nous permet de déterminer m et c:

m =
−1

2x2 + 4
=

−1

2
(−7

3

)
+ 4

=
3

2
,

c = g(x2)−mx2 = (x2 + 2)2 − 3− 3

2
x2 =

(
−7

3
+ 2

)2

− 3− 3

2
· −7

3
=

11

18
.

On a donc la normale commune y =
3

2
x+

11

18
.

On remarque que d’après notre résolution ci-dessus, il n’y a qu’une seule

normale commune à ces deux courbes.

Exemple 7 (Fonction continûment derivable)

Déterminer si la fonction

f(x) =


√
sin2(x) + 1− x− 1

x
si x ̸= 0

−1 si x = 0

est continûment dérivable en x = 0.

f est dérivable pour x ̸= 0 par les règles de calcul, et

f ′(x) =

(
sin(x) cos(x)√

sin2(x)+1
− 1

)
x−

(√
sin2(x) + 1− x− 1

)
x2

.
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En 0, en utilisant la définition en termes du rapport de Newton, on a

f ′(0) = lim
h→0

√
sin2(h)+1−h−1

h − (−1)

h

= lim
h→0

√
sin2(h) + 1− h− 1 + h

h2

= lim
h→0

√
sin2(h) + 1− 1

h2

= lim
h→0

√
sin2(h) + 1− 1

h2

= lim
h→0

sin2(h) + 1− 1

h2(
√
sin2(h) + 1 + 1)

= lim
h→0

sin2(h)

h2(
√
sin2(h) + 1 + 1)

=
1

2
.

f ′ est continue en 0 si lim
x→0

f ′(x) = f ′(0). En effet,

lim
x→0

f ′(x) = lim
x→0

(
sin(x) cos(x)√

sin2(x)+1
− 1

)
x−

(√
sin2(x) + 1− x− 1

)
x2

= lim
x→0

x sin(x) cos(x)− x
√
sin2(x) + 1− (sin2(x) + 1) + (x+ 1)

√
sin2(x) + 1

x2

√
sin2(x) + 1

= lim
x→0

x sin(x) cos(x)− (sin2(x) + 1) +
√
sin2(x) + 1

x2

√
sin2(x) + 1

= lim
x→0

 x sin(x) cos(x)

x2

√
sin2(x) + 1

+
−(sin2(x) + 1) +

√
sin2(x) + 1

x2

√
sin2(x) + 1


où, en utilisant un IPE dans le premier terme, et en simplifiant le deuxième, on
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obtient

= lim
x→0

 x2 cos(x)

x2

√
sin2(x) + 1

+
−
√

sin2(x) + 1 + 1

x2


= 1 + lim

x→0

−
√
sin2(x) + 1 + 1

x2

En utilisant l’expression conjuguée, on a

= 1 + lim
x→0

1− (sin2(x) + 1)

x2(1 +
√

sin2(x) + 1)

= 1 + lim
x→0

− sin2(x)

x2(1 +
√

sin2(x) + 1)

= 1− 1

2

=
1

2

= f ′(0).

f est donc dérivable en 0, avec f ′ continue en 0, ce qui montre que f est

continûment dérivable en 0.
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