Exemples de révision

Exemple 1 (Limite de fonction & linfini - définition)

Montrer a I'aide de la définition que
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Exemple 2 (Limite de fonction & Uinfini - calcul)

Calculer
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Exemple 3 (Limite de fonction en xg - définition)

Montrer a l'aide de la définition que

oz 44
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Soit € > 0. On doit montrer qu’il existe § > 0 tel que
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Puisque <& <= |r—2| < V€, on peut donc prendre § = min{1, v/c}.
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En effet, pour un tel §, z €]1, 3], et
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par le raisonnement ci-dessus.

Exemple 4 (Limite de fonction en zg - calcul)

1. Calculer la limite

lim tan(z) —Ssln(x)
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2. Calculer la limite

f£1_>ml(1 —z)tan (%x) .

1. On a, en utilisant des IPE en 0,
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2. On a, en posant le changement de variable y = 1 — z et en utilisant des IPE
en 0,
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Exemple 5 (Calcul du nombre dérivé - rapport de Newton)

Calculer le nombre dérivé f'(z) de la fonction

F(a) = sin®(?)

pour un zg quelconque, en utilisant la limite du rapport de Newton.

On a
F(w0) = Tim sin®(22) — sin®(x2)
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= 2x0 - cos(x?) - 3sin®(x7).

Exemple 6 (Application géométrique de la dérivée)

Déterminer I’équation de la normale commune aux graphes de

fl@)=(z-2)*+3

et g(x) = (x+2)*-3.

Soit y = mx + ¢ la normale commune, passant par (1, f(x1)) et (z2, g(x2)). On

a donc
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« y = max + c passe par (z1, f(z1)):
flx1) =mzxy +c.

« y = mx + c passe par (2, g(x2)):

g(x2) = may +c.

g'(x2) - 2xo + 4

+ En soustrayant, on obtient f(z1) — g(z2) = m(z1 — x2), et donc
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On a donc la normale commune y = 3% + ITh

On remarque que d’apres notre résolution ci-dessus, il n’y a qu’une seule

normale commune a ces deux courbes.

Exemple 7 (Fonction contintiment derivable)

Déterminer si la fonction

est continiment dérivable en z = 0.

f est dérivable pour = # 0 par les regles de calcul, et
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En 0, en utilisant la définition en termes du rapport de Newton, on a
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1 est continue en 0 si lim f'(x) = £(0). En effet,
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ou, en utilisant un IPE dans le premier terme, et en simplifiant le deuxieme, on
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obtient
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En utilisant I’expression conjuguée, on a
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f est donc dérivable en 0, avec f' continue en 0, ce qui montre que f est

continment dérivable en 0.



