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Corrigé 9

1. Soit f(x) = a x+ b , où a et b sont deux nombres réels quelconques.

Montrer à l’aide de la définition que lim
x→x0

f(x) = a x0 + b .

Soit ε > 0 donné. Montrons qu’il existe δ > 0 tel que

0 < |x− x0 | < δ ⇒ | f(x)− (a x0 + b) | < ε .

On exploite la ”contrainte verticale” définie par ε , [ f(x) appartient à l’ ε−voisinage
de (a x0 + b) ] , pour en déduire une ”contrainte horizontale” : x appartient à un
δ−voisinage épointé de x0 :

| a x+ b− (a x0 + b) | < ε ⇔ | a x− a x0 | < ε ⇔ | a | · | x− x0 | < ε .

Deux cas se présentent selon que a est nul ou non nul :

� si a ̸= 0 , | f(x)− (a x0 + b) | < ε ⇔ |x− x0 | < ε
| a | ,

donc tout δ vérifiant 0 < δ ≤ ε
| a | est solution, en effet :

0 < |x− x0 | < δ ≤ ε

| a |
⇒ | f(x)− (a x0 + b) | < ε

� et si a = 0 , alors f(x) = b et tout δ > 0 convient, en effet | f(x)−b | = 0 < ε

sans aucune contrainte sur x .

Nous venons de montrer que lim
x→x0

f(x) = f(x0) , ∀x0 ∈ R . De telles fonctions

sont dites continues sur R .

2. En utilisant la définition de la limite d’une fonction, montrer que

lim
x→0

x2 − 1

x2 + 1
= −1 .

Pour vérifier que lim
x→0

x2 − 1

x2 + 1
= −1 , il faut montrer que pour tout ε > 0 ,

il existe δ > 0 tel que

0 < |x− 0| < δ ⇒
∣∣∣∣x2 − 1

x2 + 1
− (−1)

∣∣∣∣ < ε .
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Soit donc ε > 0 donné.∣∣∣∣x2 − 1

x2 + 1
− (−1)

∣∣∣∣ < ε ⇔
∣∣∣∣ 2x2

x2 + 1

∣∣∣∣ < ε

⇔ 2x2

x2 + 1
< ε

⇔ 2x2 < ε
(
x2 + 1

)
⇔ (2− ε)x2 < ε

⇔ x2 <
ε

2− ε
, (ε < 2)

⇔ |x| <
√

ε

2− ε

⇔ |x− 0| <
√

ε

2− ε
.

Donc tout 0 < δ ≤
√

ε
2−ε

convient, car

0 < |x− 0| < δ
(
avec 0 < δ ≤

√
ε

2−ε

)
⇒

∣∣∣∣x2 − 1

x2 + 1
− (−1)

∣∣∣∣ < ε .

Remarque : si ε ≥ 2 l’inégalité (2− ε)x2 < ε est trivialement vérifiée pour tout
x ∈ R , (la contrainte définie par ε est réellement contraignante si ε est petit).

3. On considère la fonction f définie par f(x) = 2x+ (x− 3
2
) · sgn (1− x) .

a) Faire la représentation graphique de la fonction f (unité = 6 carrés).

b) Pour ε = ε1 = 1 , déterminer graphiquement δ = δ1 vérifiant la relation
suivante :

0 < |x− 1 | < δ ⇒ | f(x)− 2 | < ε .

c) Qu’en est-il pour ε = ε2 =
1
3
?

Il s’agit d’illustrer la définition de la limite en x0 sur un contre-exemple.

a) f(x) = 2x+ (x− 3
2
) · sgn (1− x) , Df = R \ {1} .

• Si x < 1 , sgn(1− x) = +1 et f(x) = 2x+ (x− 3
2
) = 3x− 3

2
.

• Si x > 1 , sgn(1− x) = −1 et f(x) = 2x− (x− 3
2
) = x+ 3

2
.

f(x) =

 3x− 3
2

si x < 1

x+ 3
2

si x > 1
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Voici la représentation graphique de f(x) :

x

y

O 1

1

3
2

5
2

x

y

O 1

2

3
2

5
2

2− ε1

2 + ε1

5
6

3
2

b) On détermine graphiquement les abscisses x dont l’image par f est dans
l’ ε1−voisinage de 2 :

| f(x)− 2 | < ε1 ⇔ f(x) ∈ ] 2− ε1 , 2 + ε1 [ ⇔ f(x) ∈ ] 1 , 3 [ .

f(x) ∈ ] 1 , 3 [ ⇔ x ∈ ] 5
6
, 3

2
[ .

On en déduit δ1 en imposant que l’intervalle ] 1 − δ1 , 1 + δ1 [ , centré en
x0 = 1 , soit inclus dans l’intervalle ] 5

6
, 3

2
[ .

Tout 0 < δ1 ≤ 1
6

convient, en effet :

0 < |x− 1 | < δ1 ≤
1

6
⇒ | f(x)− 2 | < ε1 .

c) Pour ε2 =
1
3
, l’antécédent par f de l’intervalle ] 2−ε2 , 2+ε2 [ est l’ensemble

vide.

Donc δ2 n’existe pas. On en déduit que lim
x→1

f(x) ̸= 2 .

Plus généralement, quelque soit l’ordonnée a ∈ R , l’ ε2−voisinage de a

J = ] a− ε2 , a+ ε2 [ ne peut pas contenir l’image par f d’un intervalle

I = ] 1− δ , 1 + δ [ , δ > 0 , car J est de longueur ℓ = 2 ε2 =
2
3
< 1 .

Donc lim
x→1

f(x) n’existe pas.
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x

y

O 1

2

3
2

5
2

2− ε2

2 + ε2

4. Calculer la limite des fonctions suivantes en x0 .

a) a(x) =
2x2 + x− 3

x2 + 2x− 3
, x0 = 1 ,

b) b(x) =

√
x2 + 1 + x− 1

x
, x0 = 0 ,

c) c(x) =
3
√
2x5 + x3

x2 + 3x
, x0 = 0 .

a) lim
x→1

a(x) est une forme indéterminée de type ”0
0
” .

Si le numérateur et le dénominateur de a(x) sont nuls en x0 = 1 , on peut
simplifier cette fraction rationnelle par (x− 1) .

Sur un voisinage pointé de x0 = 1 , (x ̸= 1) , on a

a(x) =
2x2 + x− 3

x2 + 2x− 3
=

(x− 1) (2x+ 3)

(x− 1) (x+ 3)
=

2x+ 3

x+ 3
. D’où lim

x→1
a(x) =

5

4
.

b) lim
x→0

b(x) est une forme indéterminée de type ”0
0
” .

On cherche à débusquer le facteur x qui se cache dans l’expression du
numérateur.

Pour faire apparâıtre ce facteur x , on amplifie le numérateur par son expression
conjuguée.
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Sur un voisinage pointé de x0 = 0 , (x ̸= 0) , on a

b(x) =

√
x2 + 1 + x− 1

x
=

(x2 + 1)− (x− 1)2

x
[√

x2 + 1− (x− 1)
] =

2x

x
[√

x2 + 1− (x− 1)
] ,

b(x) =
2√

x2 + 1− (x− 1)
. D’où lim

x→0
b(x) = 1 .

c) On met en évidence, au numérateur et au dénominateur, les plus basses puis-
sances de x , pour éviter d’avoir des termes qui divergent vers l’infini :

c(x) =
3
√
2x5 + x3

x2 + 3x
=

3
√

x3 · (2x2 + 1)

x · (x+ 3)
=

x · 3
√
2x2 + 1

x · (x+ 3)
=

3
√
2x2 + 1

x+ 3
, x ̸= 0 .

lim
x→0

c(x) = lim
x→0

3
√
2x2 + 1

x+ 3
=

1

3
.

5. Pour quelle valeur du paramètre réel a , la limite suivante existe-t-elle ?

lim
x→−2

3x2 + ax+ a+ 3

x2 + x− 2

Donner alors la valeur de cette limite.

Le dénominateur est nul en x = −2 .

Si le numérateur est non nul en x = −2 , alors on a :

lim
x→−2

3x2 + ax+ a+ 3

x2 + x− 2
= ∞ .

Il est donc nécessaire que x = −2 soit aussi un zéro du numérateur :

3x2 + ax+ a+ 3
∣∣∣
x=−2

= 0 ⇔ 12− 2a+ a+ 3 = 0 ⇔ a = 15 .

Si a = 15 , le numérateur et le dénominateur sont nuls en x = −2 , on peut donc
les factoriser tous les deux par (x+ 2) .

lim
x→−2

3x2 + 15x+ 18

x2 + x− 2
= lim

x→−2

3 (x+ 2) (x+ 3)

(x+ 2) (x− 1)
= lim

x→−2

3 (x+ 3)

x− 1
= −1 .

6. On considère la fonction rationnelle f définie par f(x) =
x · (x− b)2

(x+ 1) (x− a)
,

où a et b sont des paramètres réels.
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a) Déterminer les conditions sur les paramètres a et b pour que lim
x→a

f(x)

existe.
Donner alors la valeur de cette limite.

b) Déterminer les conditions sur les paramètres a et b pour que f(x) diverge
vers l’infini lorsque x → a+ et x → a−.

Préciser alors si cette limite est égale à +∞ ou −∞ .

a) x = a est un pôle de f . Comment le faire disparâıtre ?

Il faut simplifier la fraction rationnelle par x − a . Cela est possible si et
seulement si

� a = 0 . Dans ce cas, on a lim
x→a

f(x) = lim
x→0

x · (x− b)2

x · (x+ 1)
= lim

x→0

(x− b)2

x+ 1
= b2 .

� Ou a = b . Dans ce cas, on a lim
x→a

f(x) = lim
x→b

x · (x− b)2

(x+ 1) (x− b)
= lim

x→b

x · (x− b)

x+ 1
.

Il faut encore distinguer deux cas selon que b = −1 ou non :

◦ si a = b = −1 , alors lim
x→a

f(x) = lim
x→−1

x · (x+ 1)

x+ 1
= lim

x→−1
x = −1 ,

◦ si a = b ̸= −1 , alors lim
x→a

f(x) = lim
x→b

x · (x− b)

x+ 1
= 0 .

b) x = a est un pôle de f . Comment faire en sorte qu’il ne disparaisse pas ?

Pour éviter que l’on puisse simplifier la fraction rationnelle par x− a , il faut
éviter que ce facteur n’apparaisse au numérateur. C’est le cas si et seulement
si

a ̸= 0 et a ̸= b .

Dans ce cas, on a lim
x→a

f(x) = lim
x→a

x · (x− b)2

(x+ 1) (x− a)
= ±∞ .

Pour être plus précis, il faut connâıtre le signe de f(x) au voisinage de a .

Pour cela, on étudie le signe de Q(x) =
x

(x+ 1) (x− a)
au voisinage de x = a .

Il faut distinguer quatre cas selon la position de a par rapport à −1 et 0 .

� Que se passe-t-il si a < −1 ?

Signe de f(x) au voisinage de x = a dans le cas a < −1 :



EPF - Lausanne COURS DE MATHEMATIQUES SPECIALES Analyse I Corrigé 9

x a −1 0

x − − − 0 +

(x+ 1)(x− a) + 0 − 0 + +

Q(x) − + − 0 +

f(x) est donc négatif sur un voisinage à gauche de a et positif sur un
voisinage à droite de a :

lim
x→a−

f(x) = −∞ et lim
x→a+

f(x) = +∞

� Que se passe-t-il si a = −1 ?

Si a = −1 , f(x) =
x · (x− b)2

(x+ 1)2
et sgn [f(x)] = sgn(x) ,

lim
x→a

f(x) = lim
x→−1

x · (x− b)2

(x+ 1)2
= −∞ .

� Que se passe-t-il si −1 < a < 0 ?

Signe de f(x) au voisinage de x = a dans le cas −1 < a < 0 :

x −1 a 0

x − − − 0 +

(x+ 1)(x− a) + 0 − 0 + +

Q(x) − + − 0 +

f(x) est donc positif sur un voisinage à gauche de a et négatif sur un
voisinage à droite de a :

lim
x→a−

f(x) = +∞ et lim
x→a+

f(x) = −∞

� Que se passe-t-il si 0 < a ?

Signe de f(x) au voisinage de x = a dans le cas 0 < a :

x −1 0 a

x − − 0 + +

(x+ 1)(x− a) + 0 − − 0 +

Q(x) − + 0 − +

f(x) est donc négatif sur un voisinage à gauche de a et positif sur un
voisinage à droite de a :

lim
x→a−

f(x) = −∞ et lim
x→a+

f(x) = +∞
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7. Calculer la limite des fonctions suivantes en x0 .

a) a(x) =

(
−1√
(x+2)2

+ cos π
x+2

)
(−2 + sin π

x+2
) , x0 = −2 .

b) b(x) =
1

2x− 6 +
√
x2 + x− 2

, x0 = 2 .

a) On étudie séparément le comportement de

[
−1√
(x+2)2

+ cos( π
x+2

)

]
et de

[
−2 + sin( π

x+2
)
]

sur un voisinage pointé de x0 = −2 .

� cos( π
x+2

) n’admet pas de limite lorsque x tend vers −2 , mais est borné

et lim
x→−2

−1√
(x+ 2)2

= −∞ , donc lim
x→−2

[
−1√

(x+ 2)2
+ cos

(
π

x+2

)]
= −∞ .

� D’autre part lim
x→−2

[−2 + sin
(

π
x+2

)
] n’existe pas, mais −2 + sin

(
π

x+2

)
est de signe constant :

−2 + sin
(

π
x+2

)
≤ −1 < 0 , ∀x ̸= −2 .

Donc lim
x→−2

[
−1√
(x+2)2

+ cos( π
x+2

)

]
︸ ︷︷ ︸

→−∞

·
[
−2 + sin( π

x+2
)
]︸ ︷︷ ︸

≤−1< 0

= +∞ .

b) La fonction b(x) diverge vers l’infini lorsque x → 2 .

On cherche à être plus précis en déterminant le signe de b(x) selon que x est
dans un voisinage à gauche ou à droite de x0 = 2 .

Soit D(x) = 2x− 6 +
√
x2 + x− 2 , le dénominateur de b(x) .

• Dans un voisinage à gauche de x0 = 2 , x peut s’écrire x = 2− ε avec
ε > 0 .

D(x) = D(2− ε) = 2 (2− ε)− 6 +
√
(2− ε)2 + (2− ε)− 2

D(x) = −2− 2 ε+
√

(2− ε)2 − ε︸ ︷︷ ︸
< 2−ε

< −2− 2 ε+ (2− ε) = −3 ε < 0 .

Donc lim
x→2−

b(x) = −∞ .

• Dans un voisinage à droite de x0 = 2 , x peut s’écrire x = 2 + ε avec
ε > 0 .

D(x) = D(2 + ε) = 2 (2 + ε)− 6 +
√

(2 + ε)2 + (2 + ε)− 2

D(x) = −2 + 2 ε+
√

(2 + ε)2 + ε︸ ︷︷ ︸
> 2+ε

> −2 + 2 ε+ (2 + ε) = 3 ε > 0 .

Donc lim
x→2+

b(x) = +∞ .
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Autre méthode

Le dénominateur est nul en x0 = 2 . On fait apparâıtre le facteur (x− 2) en
amplifiant le dénominateur par son expression conjuguée.

b(x) =
1

2x− 6 +
√
x2 + x− 2

=
2x− 6−

√
x2 + x− 2

(2x− 6)2 − (x2 + x− 2)
=

2x− 6−
√
x2 + x− 2

3x2 − 25x+ 38
,

b(x) =
2x− 6−

√
x2 + x− 2

(x− 2) (3x− 19)
=

1

x− 2
· 2x− 6−

√
x2 + x− 2

3x− 19
.

Or lim
x→2

2x− 6−
√
x2 + x− 2

3x− 19
=

4

13
> 0 .

On en déduit qu’au voisinage de x0 = 2 , b(x) est du signe de x− 2 :

lim
x→2−

b(x) = −∞ et lim
x→2+

b(x) = +∞ .

8. Calculer les limites suivantes :

a) a = lim
x→0

1− cos3 x

x sinx

b) b = lim
x→0

sin(x6)

(1− cos 3x)3

c) c = lim
x→π

2

√
1 + 2 cosx− 1

x− π
2

d) d = lim
x→0

1 + 2 cosx− 3 cos2 x

sin(x2
√
4− x)

e) e = lim
x→1

1− x2

sin(πx)

f) f = lim
x→0

[2 sinx− sin(2x)]2

x6
sin( 1

x6 ) .

a) On factorise le numérateur pour pouvoir utiliser les IPE au voisinage de x0 = 0 .

1− cos3 x

x sinx
=

(1− cosx) (1 + cosx+ cos2 x)

x sinx
.

a = lim
x→0

(1− cosx) (1 + cosx+ cos2 x)

x sinx

= lim
x→0

x2

2
(1 + cos x+ cos2 x)

x2

= lim
x→0

1 + cos x+ cos2 x

2

=
3

2
.
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b) Lorsque x tend vers 0 , x6 et 3x tendent vers 0 . Donc

sin
(
x6
)
∼ x6 et 1− cos(3x) ∼ (3x)2

2
, au voisinage de 0 .

b = lim
x→0

sin (x6)

[1− cos(3x)]3
= lim

x→0

x6(
(3x)2

2

)3 =
8

729
.

c) A l’aide d’un changement de variable, on se ramène dans un voisinage de 0 .

En posant y = x− π
2
, on a x = y + π

2
. Et si x → π

2
, alors y → 0 .

c = lim
x→π

2

√
1 + 2 cosx− 1

x− π
2

= lim
y→0

√
1 + 2 cos(y + π

2
)− 1

y
= lim

y→0

√
1− 2 sin(y)− 1

y

lim
y→0

√
1− 2 sin(y)− 1

y
est une forme indéterminée de type ”0

0
” .

On lève cette indétermination en amplifiant le numérateur par son expression
conjuguée, puis en utilisant les IPE au voisinage de 0 .

√
1− 2 sin(y)− 1

y
=

[ 1− 2 sin(y) ]− 1

y [
√

1− 2 sin(y) + 1 ]
=

−2 sin(y)

y [
√

1− 2 sin(y) + 1 ]
.

Et au voisinage de 0 , sin y et y sont des infiniment petits équivalents :

c = lim
y→0

−2 sin(y)

y [
√

1− 2 sin(y) + 1 ]
= lim

y→0

−2√
1− 2 sin(y) + 1

= −1 .

d) On factorise le numérateur pour pouvoir utiliser les IPE au voisinage de x0 = 0 :

1 + 2 cosx− 3 cos2 x

sin(x2
√
4− x)

=
(1− cosx) (1 + 3 cosx)

sin(x2
√
4− x)

.

Lorsque x tend vers 0 , x2
√
4− x tend aussi vers 0 . Donc

sin(x2
√
4− x ) ∼ x2

√
4− x au voisinage de 0 .

d = lim
x→0

(1− cosx) (1 + 3 cosx)

sin(x2
√
4− x)

= lim
x→0

x2

2
(1 + 3 cosx)

x2
√
4− x

= lim
x→0

1 + 3 cosx

2
√
4− x

= 1 .
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e) Là aussi, on se ramène dans un voisinage de 0 à l’aide d’un changement de
variable, en posant y = 1− x :

y = 1− x ⇔ x = 1− y , on a alors x → 1 ⇔ y → 0 .

e = lim
x→1

1− x2

sin(πx)
= lim

x→1

(1− x) (1 + x)

sin(πx)
= lim

y→0

y (2− y)

sin(π − πy)
= lim

y→0

y (2− y)

sin(πy)
.

Au voisinage de y = 0 , sin(πy) et πy sont des infiniment petits équivalents :

e = lim
y→0

y (2− y)

sin(πy)
= lim

y→0

y (2− y)

πy
= lim

y→0

2− y

π
=

2

π
.

f) La fonction sin
(

1
x6

)
n’admet pas de limite lorsque x → 0 , mais est bornée.

lim
x→0

[2 sinx− sin(2x)]2

x6
sin

(
1
x6

)
existe et vaut 0 si et seulement si

lim
x→0

[2 sinx− sin(2x)]2

x6
= 0 . Calculons cette limite.

[ 2 sinx− sin(2x) ]2

x6
=

[ 2 sinx− 2 sinx cosx ]2

x6
=

[ 2 sin x (1− cosx) ]2

x6
.

lim
x→0

[ 2 sin x− sin(2x) ]2

x6
= lim

x→0

[ 2x (x
2

2
) ]2

x6
= 1 ̸= 0 .

Donc lim
x→0

[2 sinx− sin(2x)]2

x6
sin

(
1
x6

)
n’existe pas.

9. Exercice facultatif.

Soient f, g : R → R deux fonctions définies sur un voisinage épointé de x0 .

Démontrer l’implication suivante :

lim
x→x0

f(x) = a et lim
x→x0

g(x) = b ⇒ lim
x→x0

[ f(x) · g(x) ] = a · b .

Soit ε > 0 donné, on cherche à déterminer δ > 0 vérifiant

0 < |x− x0| < δ ⇒
∣∣∣ [ f(x) · g(x) ]− (a · b)

∣∣∣ < ε ,

sachant que

� lim
x→x0

f(x) = a , c’est à dire que

∀ ε1 > 0 , ∃ δ1 > 0, (δ1 = δ1 (ε1) ) tel que 0 < |x−x0| < δ1 ⇒ | f(x)− a | < ε1 ,

� lim
x→x0

g(x) = b , c’est à dire que

∀ ε2 > 0 , ∃ δ2 > 0, (δ2 = δ2 (ε2) ) tel que 0 < |x−x0| < δ2 ⇒ | g(x)− b | < ε2 .
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On cherche donc à exprimer
∣∣∣ [ f(x) · g(x) ]− (a · b)

∣∣∣ en fonction de | f(x)− a | et

de | g(x)− b | :∣∣∣ [ f(x) · g(x) ]− (a · b)
∣∣∣ =

∣∣∣ [ f(x)− a ] · g(x) + [ g(x)− b ] · a
∣∣∣

≤
∣∣∣ [ f(x)− a ] · g(x)

∣∣∣+ ∣∣∣ [ g(x)− b ] · a
∣∣∣

=
∣∣f(x)− a

∣∣ · | g(x) |+ ∣∣g(x)− b
∣∣ · | a |

Donc pour majorer
∣∣∣ [ f(x) · g(x) ]− (a · b)

∣∣∣ par ε , il suffit, par exemple, de

majorer
∣∣f(x)− a

∣∣ · | g(x) | et
∣∣g(x)− b

∣∣ · | a | par ε
2
.

� Majoration de
∣∣f(x)− a

∣∣ · | g(x) | par ε
2
:

◦ lim
x→x0

g(x) = b donc ∃ ξ > 0 tel que 0 < |x− x0| < ξ ⇒ | g(x) | < |b|+1

◦
∣∣f(x)− a

∣∣ est aussi petit qu’on veut si x est suffisamment proche de x0 :

∃ δ1 > 0 tel que 0 < |x− x0| < δ1 ⇒ | f(x)− a | < ε

2 (|b|+ 1)
.

� Majoration de
∣∣g(x)− b

∣∣ · | a | par ε
2
:

◦ si a = 0 ,
∣∣g(x)− b

∣∣ · | a | = 0 < ε
2
,

◦ si a ̸= 0 , ∃ δ2 > 0 tel que 0 < |x− x0| < δ2 ⇒ | g(x)− b | < ε

2 |a|
.

� Conclusion :

◦ si a = 0 , pour tout δ ≤ min{ξ , δ1} , on a

0 < |x− x0| < δ

⇒
∣∣∣ [ f(x) · g(x) ]− (a · b)

∣∣∣ ≤ ∣∣f(x)− a
∣∣︸ ︷︷ ︸

< ε
2 (|b|+1)

· | g(x) |︸ ︷︷ ︸
<|b|+1

+
∣∣g(x)− b

∣∣ · | a |︸ ︷︷ ︸
=0

< ε .

◦ si a ̸= 0 , pour tout δ ≤ min{ξ , δ1 , δ2} , on a

0 < |x− x0| < δ

⇒
∣∣∣ [ f(x) · g(x) ]− (a · b)

∣∣∣ ≤ ∣∣f(x)− a
∣∣︸ ︷︷ ︸

< ε
2 (|b|+1)

· | g(x) |︸ ︷︷ ︸
<|b|+1

+
∣∣g(x)− b

∣∣︸ ︷︷ ︸
< ε

2 |a|

· | a | < ε .


