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Corrigé 6

1. Calculer, si elle existe, la limite des suites définies par les termes généraux suivants :

a) an =

√
n2 + 1 + n

n+ 3
,

c) cn =
1 + 2 + · · ·+ n

n2 + n+ 1
,

e) en = (−1)n sin(nπ
2
) ,

g) gn =
n√

n4 + 1− (n2 + 1)
.

b) bn =
√
n2 + 1−

√
n2 + a n , a ∈ R ,

d) dn =
3 (n+ 2)! + 2 (n+ 1)!

(n+ 3)!
,

f) fn =
√
2n−

√
n+ 1 ,

Remarque : la fonction racine carrée est une fonction ”gentille”. En d’autres termes,
si (un) est une suite convergente de termes positifs, on a

lim
n→∞

√
un =

√
lim
n→∞

un .

On dira, par la suite, que la fonction racine carrée est continue sur R+ .

a) On lève l’indétermination de type ”∞
∞” , en mettant en évidence les termes

de plus haut degré au numérateur et au dénominateur :

lim
n→∞

an = lim
n→∞

√
n2 + 1 + n

n+ 3
= lim

n→∞

|n|
√

1 + 1
n2 + n

n+ 3
= lim

n→∞

n
√

1 + 1
n2 + n

n+ 3

= lim
n→∞

n
[√

1 + 1
n2 + 1

]
n
(
1 + 3

n

) = lim
n→∞

√
1 + 1

n2 + 1

1 + 3
n

= 2 ,

car lim
n→∞

√
1 + 1

n2 =

√
lim
n→∞

(
1 +

[
1
n

]2)
= 1 et lim

n→∞

3

n
= 3 · lim

n→∞

1

n
= 0 .
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b) On lève cette indétermination en amplifiant bn par son conjugué :

lim
n→∞

bn = lim
n→∞

[√
n2 + 1−

√
n2 + a n

]
= lim

n→∞

[√
n2 + 1−

√
n2 + a n

]
·
√
n2 + 1 +

√
n2 + a n√

n2 + 1 +
√
n2 + a n

= lim
n→∞

(n2 + 1)− (n2 + a n)√
n2 + 1 +

√
n2 + a n

= lim
n→∞

1− a n

|n|
√
1 + 1

n2 + |n|
√
1 + a

n

= lim
n→∞

n
(
1
n
− a

)
n
[√

1 + 1
n2 +

√
1 + a

n

]
= lim

n→∞

1
n
− a√

1 + 1
n2 +

√
1 + a

n

= −a

2
,

car lim
n→∞

√
1 + 1

n2 =

√
lim
n→∞

(
1 +

[
1
n

]2)
= 1 et lim

n→∞

√
1 + a

n
= 1 , ∀a ∈ R .

c) Voici une première approche qui n’aboutit pas.

cn =
1 + 2 + · · ·+ n

n2 + n+ 1
=

1

n2 + n+ 1
+

2

n2 + n+ 1
+ · · ·+ n

n2 + n+ 1
.

Chaque terme converge vers 0 :

lim
n→∞

1

n2 + n+ 1
= 0 , lim

n→∞

2

n2 + n+ 1
= 0 , lim

n→∞

n

n2 + n+ 1
= 0 .

Mais lorsque n → ∞ , le nombre de termes de la somme tend vers l’infini.

On ne peut donc rien conclure quant à la convergence de la suite (cn) ni de
son éventuelle limite.

C’est l’expression du terme général cn qui pose problème. Essayons de réécrire
son numérateur de façon plus concise :

1 + 2 + · · ·+ n =
n (n+ 1)

2
,

cn =
1 + 2 + · · ·+ n

n2 + n+ 1
=

n (n+1)
2

n2 + n+ 1
=

n (n+ 1)

2 (n2 + n+ 1)
.

Puis on met en évidence, au numérateur et au dénominateur, la plus haute
puissance de n :

cn =
n2

(
1 + 1

n

)
2n2

(
1 + 1

n
+ 1

n2

) =
1 + 1

n

2
(
1 + 1

n
+ 1

n2

) , lim
n→∞

cn =
1

2
.
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d) On simplifie l’expression du terme général dn , en remarquant que

(n+ 2)! = (n+ 2) (n+ 1)! et (n+ 3)! = (n+ 3) (n+ 2) (n+ 1)!

dn =
3 (n+ 2)! + 2 (n+ 1)!

(n+ 3)!
=

3 (n+ 2) (n+ 1)! + 2 (n+ 1)!

(n+ 3) (n+ 2) (n+ 1)!

dn =
3 (n+ 2) + 2

(n+ 3) (n+ 2)
=

3n+ 8

n2 + 5n+ 6
=

1

n
·

3 + 8
n

1 + 5
n
+ 6

n2

.

D’où lim
n→∞

dn = lim
n→∞

1

n
·

3 + 8
n

1 + 5
n
+ 6

n2

= lim
n→∞

1

n
· lim
n→∞

3 + 8
n

1 + 5
n
+ 6

n2

= 0 .

e) Calcul des premiers termes de la suite :

e1 = −1 , e2 = 0 , e3 = +1 , e4 = 0 , e5 = −1 , e6 = 0 ,

e7 = +1 , e8 = 0 , e9 = −1 , e10 = 0 , e11 = +1 , · · ·

en = (−1)n sin(nπ
2
) =


−1 si n = 4k + 1
0 si n = 2k + 2

+1 si n = 4k + 3
k ∈ N .

Cette suite diverge.

En effet supposons que la suite (en) converge vers une limite e ∈ R . Alors
pour un ε donné, par exemple ε = 1

4
, tous les termes de la suite, à partir d’un

certain rang, doivent être dans l’intervalle ] e − ε ; e + ε [ . Or cet intervalle
(quel que soit e ) est de longueur 1

2
, il ne peut pas contenir simultanément

les valeurs −1 , 0 et +1 .

f) Les coefficients de n étant différents, on lève cette indétermination en mettant√
n en évidence.

lim
n→∞

fn = lim
n→∞

[√
2n−

√
n+ 1

]
= lim

n→∞

√
n

[√
2−

√
1 + 1

n

]
= +∞ .

car lim
n→∞

√
n = +∞ et lim

n→∞

[√
2−

√
1 + 1

n

]
=

√
2− 1 > 0 .

g) On lève cette indétermination en amplifiant gn par le conjugué de son dénominateur.
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lim
n→∞

gn = lim
n→∞

n√
n4 + 1− (n2 + 1)

= lim
n→∞

n√
n4 + 1− (n2 + 1)

·
√
n4 + 1 + (n2 + 1)√
n4 + 1 + (n2 + 1)

= lim
n→∞

n
[√

n4 + 1 + (n2 + 1)
]

(n4 + 1)− (n2 + 1)2

= lim
n→∞

n
[√

n4 + 1 + (n2 + 1)
]

−2n2

= lim
n→∞

√
n4 + 1 + (n2 + 1)

−2n

= lim
n→∞

n2
[√

1 + 1
n4 + (1 + 1

n2 )
]

−2n

= lim
n→∞

−n

2
·
[√

1 + 1
n4 + (1 + 1

n2 )
]

= −∞ ,

car lim
n→∞

−n

2
= −∞ et lim

n→∞

[√
1 + 1

n4 + (1 + 1
n2 )

]
= 2 > 0 .

2. A l’aide du théorème des deux gendarmes, étudier la convergence des suites suiv-
antes.

a) an =

√
n2 + 1

n
, n ∈ N∗ ,

b) bn =
sin(nπ

2
)

(n+ 1)2
, n ∈ N∗ ,

c) cn =
n2

n3 + 3n+ 1
+

n2 + 1

n3 + 3n+ 2
+

n2 + 2

n3 + 3n+ 3
+ · · ·+ n2 + 2n− 1

n3 + 5n
, n ∈ N∗.

a) On cherche à encadrer la suite (an) par deux ”suites-gendarmes” qui conver-
gent vers la même limite.

On utilise la croissance de la fonction
√
x pour encadrer

√
n2 + 1 :

√
n2

n
≤

√
n2 + 1

n
≤

√
n2 + 2n+ 1

n
⇔ 1 ≤

√
n2 + 1

n
≤ n+ 1

n

1 ≤
√
n2 + 1

n
≤ 1+

1

n
or lim

n→∞

(
1 +

1

n

)
= 1 donc lim

n→∞

√
n2 + 1

n
= 1 .
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b) On se sert de l’encadrement du sinus pour minorer et majorer bn :

−1 ≤ sin(nπ
2
) ≤ +1 ⇔ − 1

(n+ 1)2
≤

sin(nπ
2
)

(n+ 1)2
≤ +

1

(n+ 1)2

⇒ −
(
1

n

)2

≤
sin(nπ

2
)

(n+ 1)2
≤ +

(
1

n

)2

.

Or lim
n→∞

(
1

n

)2

= 0 , donc lim
n→∞

sin(nπ
2
)

(n+ 1)2
= 0 .

c) On va majorer cn en majorant chaque terme de la somme par des termes
identiques. On pourra minorer cn de façon analogue.

On constate que cn est une somme de 2n termes.

� Majoration de cn

On majore chaque terme de la somme en majorant le numérateur et en
minorant le dénominateur :

cn =
n2

n3 + 3n+ 1︸ ︷︷ ︸
≤n2+2n−1

n3+3n+1

+
n2 + 1

n3 + 3n+ 2︸ ︷︷ ︸
≤n2+2n−1

n3+3n+1

+ · · ·+ n2 + 2n− 1

n3 + 5n︸ ︷︷ ︸
≤n2+2n−1

n3+3n+1

≤ 2n · n
2 + 2n− 1

n3 + 3n+ 1
.

� Minoration de cn

On minore chaque terme de la somme en minorant le numérateur et en
majorant le dénominateur :

cn =
n2

n3 + 3n+ 1︸ ︷︷ ︸
≥ n2

n3+5n

+
n2 + 1

n3 + 3n+ 2︸ ︷︷ ︸
≥ n2

n3+5n

+ · · ·+ n2 + 2n− 1

n3 + 5n︸ ︷︷ ︸
≥ n2

n3+5n

≥ 2n · n2

n3 + 5n
.

On obtient deux suites qui encadrent (cn) , vérifions qu’elles convergent vers
la même valeur :

� lim
n→∞

2n · n
2 + 2n− 1

n3 + 3n+ 1
= lim

n→∞

2n3

n3
·
1 + 2

n
− 1

n2

1 + 3
n
+ 1

n2

= 2 lim
n→∞

1 + 2
n
− 1

n2

1 + 3
n
+ 1

n2

= 2 ,

� lim
n→∞

2n · n2

n3 + 5n
= lim

n→∞

2n3

n3
· 1

1 + 5
n

= 2 lim
n→∞

1

1 + 5
n

= 2 .

On en déduit donc que (cn) converge et que lim
n→∞

cn = 2 .

3. Etudier la convergence de la suite (an) définie par son terme général an =
n!

2n
.

On détermine les premiers termes de cette suite et on observe si elle semble converger
ou diverger.
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a1 =
1!

21
=

1

2

a2 =
2!

22
=

1 · 2
2 · 2

=
1

2
· 2
2

= a1 ·
2

2

a3 =
3!

23
=

1 · 2 · 3
2 · 2 · 2

=
1

2
· 2
2
· 3
2

= a2 ·
3

2

a4 =
4!

24
=

1 · 2 · 3 · 4
2 · 2 · 2 · 2

=
1

2
· 2
2
· 3
2
· 4
2

= a3 ·
4

2
. . .

an =
n!

2n
=

1

2
· 2
2
· 3
2
· . . . · n− 1

2
· n
2

= an−1 ·
n

2

Cette suite semble diverger car lim
n→∞

an
an−1

= lim
n→∞

n

2
= +∞ .

On le démontre en utilisant le ”théorème du gendarme”.

On montre que la suite (an) tend vers +∞ en la minorant par une suite qui
diverge vers +∞ .

an =
n!

2n
=

1

2
·
(
2

2
· 3
2
· · · n− 1

2

)
· n
2

≥ n

4
, car

2

2
· 3
2
· · · n− 1

2
≥ 1 (n ≥ 3) .

Or lim
n→∞

n

4
= +∞ , donc, d’après le ”théorème du gendarme”, lim

n→∞
an = +∞ .

4. Montrer à l’aide de la définition de la limite infinie que lim
n→∞

[
n2 − 10n

]
= +∞ .

Pour montrer que la suite (n2 − 10n ) diverge vers +∞ lorsque n tend vers ∞ ,
il faut être capable, pour un A > 0 donné, d’exhiber un seuil N ∈ N∗ qui dépend
de A tel que

n ≥ N ⇒ n2 − 10n > A

Le point de départ est donc la contrainte définie par A , à savoir : n2 − 10n > A :

n2 − 10n− A > 0 ⇔ n ∈
]
−∞ , 5−

√
25 + A

[
∪

]
5 +

√
25 + A , +∞

[
.

On choisit le seuil N de sorte que si n ≥ N , on ait

n ∈
]
−∞ , 5−

√
25 + A

[
∪

]
5 +

√
25 + A , +∞

[
.

n

N

5−
√
25 + A 5 +

√
25 + A
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Il suffit de choisir N > 5 +
√
25 + A . En effet

n ≥ N ( avec N > 5 +
√
25 + A ) ⇒ n2 − 10n > A .

5. Soit (an) une suite. Pour chaque proposition, dire si elle est vraie ou fausse. Si elle
est vraie, justifier. Si elle est fausse, donner un contre-exemple.

a) Si (an) n’est pas bornée, alors lim
n→+∞

|an| = +∞.

b) Soit (bn) une suite telle que bn ̸= 0 pour tout n ∈ N∗. Si lim
n→+∞

an = lim
n→+∞

bn = l

pour l ∈ R, alors lim
n→+∞

an
bn

= 1.

c) Soit a ∈ R. Si an > 0 pour tout n ∈ N∗ et lim
n→+∞

an = a, alors a > 0.

d) Soit a ∈ R. Si (an) ne converge pas vers a, alors il existe ϵ > 0 et une infinité
d’entiers n ∈ N∗ tels que an /∈]a− ε, a+ ε[.

a) Faux. Considérer par exemple la suite (an) donnée par :

(an) : 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...

La suite est non bornée, cependant la suite ne diverge pas à l’infini. En effet,
soit A > 0. Si (an) diverge à l’infini, seul au plus un nombre fini de an est tel
que an ≤ A. Or on a a2k = 0 < A pour tout k ∈ N∗.

b) Faux. Considérer par exemple les suites an = 1
n
et bn = 2

n
. On a bien lim

n→+∞
an =

lim
n→+∞

bn = 0, mais

lim
n→+∞

an
bn

= lim
n→+∞

1

n

n

2
=

1

2
.

c) Faux. Considérer par exemple la suite (an) donnée par an = 1
n
. On a bien

an > 0 pour tout n, mais lim
n→+∞

an = 0.

d) Vrai. En effet on a l’équivalence

lim
n→+∞

an ̸= a ⇔ ∃ε > 0 tel que ∀N ∈ N∗ il existe n ≥ N tel que |an − a| > ε.

Autrement dit il existe un ε > 0 tel que pour tout rang N , il existe n ≥ N
avec an /∈]a− ε, a+ ε[. Soit donc N un rang quelconque, il existe alors n1 ≥ N
tel que an1 /∈]a− ε, a+ ε[. En réitérant le processus avec N = n1+1, on trouve
n2 ≥ n1+1 > n1 tel que an2 /∈]a−ε, a+ε[. Finalement, on peut donc construire
une suite d’entiers n1, n2, n3, ... tous différents tels que ank

/∈]a− ε, a+ ε[ pour
tout k ∈ N∗.
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6. Exercice facultatif

Soient (an) et (bn) deux suites convergentes. Démontrer l’implication suivante :

lim
n→∞

an = a et lim
n→∞

bn = b ⇒ lim
n→∞

(an + bn) = a+ b .

Pour montrer que lim
n→∞

(an + bn) = a+ b , il faut montrer que pour tout ε > 0 , on

est capable d’exhiber un seuil N qui dépend de ε tel que

n ≥ N ⇒ | (an + bn)− (a+ b) | < ε .

Soit ε > 0 donné, on cherche donc à déterminer N sachant que

� lim
n→∞

an = a , c’est à dire que

∀ δ1 > 0 , ∃Na ∈ N∗, (Na = Na (δ1) ) tel que n ≥ Na ⇒ | an − a | < δ1 ,

� lim
n→∞

bn = b , c’est à dire que

∀ δ2 > 0 , ∃Nb ∈ N∗, (Nb = Nb (δ2) ) tel que n ≥ Nb ⇒ | bn − b | < δ2 .

Or | (an + bn)− (a+ b) | = | (an − a) + (bn − b) | ≤ | an − a |+ | bn − b | .

Donc pour majorer | (an + bn)− (a+ b) | par ε , il suffit, par exemple, de majorer

| an − a | et | bn − b | par ε
2
.

Ceci est possible si n est assez grand, en effet :

� n ≥ Na (
ε
2
) ⇒ | an − a | < ε

2
,

� n ≥ Nb (
ε
2
) ⇒ | bn − b | < ε

2
.

Donc tout N ∈ N∗ tel que N ≥ max
(
Na (

ε
2
) , Nb (

ε
2
)
)

convient, car

n ≥ N ⇒ | (an + bn)− (a+ b) | ≤ | an − a |︸ ︷︷ ︸
< ε

2

+ | bn − b |︸ ︷︷ ︸
< ε

2

< ε .


