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Corrigé 5
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1. Voici la représentation de la suite définie par a, = , neN.
n
Qn
+
T+
) R I I I I I I N T T S e
O Ty

a) Soit N(e) e N* telque n>N() = Ja,—1|<e.
Déterminer graphiquement N(e) dans les trois cas suivants :

: i) e =1.

FT.

: ii) e =

D=

i) e =

b) Démontrer a I’aide de la définition de la limite d’une suite que lim a, =1.
n—oo

a) Détermination graphique de N en fonction de .

Il s’agit de traduire la contrainte ”verticale” donnée, celle qui concerne les a,, ,
en une contrainte "horizontale”, celle qui concerne les rangs n.

¢ est donné. Il définit un e—voisinage de a =1.

o Représenter cet e—voisinage sur l'axe des a,, .
o Déterminer les termes de la suite (a,) qui appartiennent & cet e—voisinage.
o Puis en déduire un seuil N a partir duquel tous les termes a,, n > N

sont dans 1’ e—voisinage de a =1.

_ 1.
E=3:
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Si n>5 alors a, €] %7 % . Donc tout N > 5 convient.

Eneffet: n>N>5 = |a,—1]<3.

_ 1.
5—1.
n
+
5 T+
4:1
31_
4
0 t A
Si n>9 alors ane]%,g. Donc tout N > 9 convient.
Eneffet: n>N>9 = |an—1\<;i.
_ 1.
6—5.
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Si n>17 alors ane]g, %[. Donc tout N > 17 convient.

Eneffet : n>N>17 = |a,—1] <g3.

b) Soit & >0 donné.

Pour montrer que lim a, = 1, il faut étre capable d’exhiber un seuil N € N*
n—oo

de sorte que
n>N = J|a,—1|<e.

Le point de départ est donc la contrainte définie par e et le point d’arrivée
doit étre une contrainte qui concerne le rang n.

n—+2 2 2
la, —1]<e & |——1 <g & —<eg & n>-—,
n n g

<e &

n

car n>0.

2
Donc tout N > = convient, car n> N (avec N >2) = |a,—1|<e.
£

2. On considere la suite (a,) définie par son terme général a, = /1 + % , ne&N-

En utilisant la définition de la limite d’une suite, montrer que (a,) converge vers
a=1.

Soit € > 0 donné, montrons qu’il existe un N € N* qui dépend de ¢ tel que
n>N = Ja,—1|<ce.

¢ est le parametre du probleme et le rang n qui définit le seuil N en est la
variable. On cherche donc a résoudre I'inéquation |a, — 1| < & par rapport a la
variable n en fonction de ¢ :
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Donc tout N >

la, — 1| < e @>’M1+%—1‘<8
& 1+%—1<5, car \/1+%>1

& (Jl+i<l+e

1
& 1+ =< (1+¢)?, car 14e>0
n
1 2
& —<2e+c¢
n
1 .
& n>—s, car les deux membres sont positifs.
2e 4 ¢

P convient. En effet,
e+te

1

n>N = n>-—
- 2e + g2

la, — 1| <e.

3. Soient (a,) une suite et [ € R. Parmi les affirmations suivantes, déterminer lesquelles
sont équivalentes a

lim a, = (.
n—-+0o0o

Quand ce n’est pas le cas, s’en convaincre en exhibant un contre-exemple.

a

Q. o o

)
)
)
)
)

e

Ve >0,3N(e) e N* telque n> N(e) = J|a,—I|<e.
Ve >0,3N(e) e N* telque n> N(e) = |a,—1] <e.
Ve >0,3N(e) e N* telquen > N(g) = Ja,—I|<e.
AN e N* telque Ve >0, n >N = |a,—1I|<e.
VNeN Je>0telque n>N = Ja,—I|<e.

C’est la définition de suite convergente vue en cours.

Cette affirmation est équivalente a la précédente. En effet, il est clair I’affirmation
(a) implique la (b).

Si Paffirmation (b) est vraie, on peut pour un € > 0 donné trouver un nombre
naturel N(g/2), tel que n > N(e/2) implique |a,, — | < ¢/2. Pour de tels n on
aura alors |a, —[| < €, ce qui est 'affirmation (a), ¢’est-a-dire que lim,,_, ;oo a,, =
l.

Ici on a le droit de choisir ¢ = 0. Mais alors |a,, — [| < £ ne peut étre vérifié
par aucune suite (aucun nombre positif ne peut étre strictement plus petit que
zéro). C’est donc une affirmation absurde.
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d) Cette affirmation nous dit qu’il existe un rang N a partir duquel |a, — [| < &

pour tout € > 0 choisi. Cela correspond donc a dire qu’a partir de ce rang N
on doit avoir |a, —{| = 0. Autrement dit, cette affirmation dit que la suite (a,,)
est constante et égale a [ a partir de N.
On a donc bien que lim,,, . a, = [ mais la réciproque n’est pas vraie. Si
lim,, , 1 a, = [, en général la suite n’est pas constante égale a [ a partir d'un
certain rang. En effet, prenons par exemple a,, = %,n € N*. On a bien que
lim,, 1 a, = 0, mais a,, # 0 pour tout n.

e) Le contre-exemple suivant montre que cette affirmation n’exprime pas la con-
vergence de (a,) vers [ : si a, = 1 pour tout n € N* et si [ = 0, on peut en
effet satisfaire cette affirmation en choisissant € = 2 > 0. Un tel epsilon existe
donc, mais la limite de (a,) n’est sirement pas 0.

4. Montrer que les suites ci-dessous sont majorées en exhibant un majorant.

2

_ n *
a) Ap = il n € N*.
_ n’4n *
_ n+3 n+4 L. 2n+2 *
c) Cn =g T o t n € N*.
Indication : combien y a-t-il de termes dans la somme ¢
_ n+3 n+4 L 2n+2 *
d) dy = 3525 + g5+t m n € N*.

a) On observe que pour tout n € N*, on a n? < n? + 1. Par conséquent
2
n
a, = ——<1
"on24i
On peut donc choisir M = 1 comme majorant.

b) On ne peut établir que n? +n < n? + 1. Cependant, en ”cassant” la fraction,
on peut écrire que pour tout n € N*

_n2+n_ n2 i n <9
" 241 n241 n2+1 '
1 1
< <

On peut par conséquent choisir M = 2 comme majorant.

¢) On observe que ¢, est une somme de n termes. Lorsque n devient grand,
chaque terme devient petit, mais le nombre de termes est grand. Que devient
la somme ¢, 7 Chaque terme est plus grand que son précédent, par conséquent

chaque terme est plus petit que fgﬁ La somme ¢,, est donc plus petite que le
nombre de termes multiplié par igﬁ, donc
2n+2  2n2+2n n? n
e, <n < <2 2 <4
~ n24+1- n24+1 — 7”L2—|—1jL n?+1
— =
< <

On peut par conséquent choisir M = 4.
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d) On observe que d,, est une somme de n termes. Comment au point précédent,
lorsque n devient grand, chaque terme devient petit, mais le nombre de termes
est grand. Que devient la somme d,, 7

Pour majorer la suite (d,), on peut chercher a majorer chaque terme de d,
par n termes identiques :

n-+3 n+4 2n + 2
n?+1 n24+2 n?+n

| R Ny — ——
<Unpn Sun Su’n

On peut majorer chaque fraction de cette somme en majorant le numérateur
par le plus grand des numérateurs et en minorant le dénominateur par le plus
petit des dénominateurs :

2n + 2
Uy = ———— n € N*.
n?+1
n+3 n+4 2n + 2 m+2 22+ 2n
= + R <n- = )
n2+1 n?24+2 nz+n n?+1 n?4+1
——  N—— ——
< 2n+2 < 2n+2 < 2n+2
7n2+1 7'n2+1 *n2+1
Or on sait par le point précédent que :
2n? + 2n n? n
il M 2 <2+2=4, VneN-.
n? 41 nQ+1jL n?+1 + "
—— ——
<1 <1
En résumé :
o2n? + 2n

<4, VneN. M=4 estun majorant de la suite (d,).

n =

n?+1

5. a) Soit r € R, r # 1. On considere la suite

2 3 4 .5
1,r,rere v e, ...

Soit (A,) définie par
n—1
=S
k=0
c’est-a-dire, A,, est la somme des premiers n termes de la suite ci-dessus.

Montrer par récurrence que

_1—7“”

A, = , Vn € N*.
1—r

b) On considere la suite 1,3,5,7,9,11,... d’entiers naturels impairs. Soit A, la
somme des premiers n termes de cette suite. Montrer par récurrence que

A, =n?, Vn € N*.
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a) e Vérification pour n = 1:

1—r

- k_ 0 1
k=0

La formule est donc valable pour n = 1.

e Démonstration du pas de récurrence:

On part de 'hypothese A, = % pour un n € N* donné, et on veut
atteindre la conclusion A, = 1_17"_71:1. On a

n
2 k
An+1 - T
k=0

n—1
= (Z rk) +r"
k=0

Ap
1= .
=7 + 7" (par 'hypothese)
-

L—r" r(1—r)
_|_

1—r 1—r
1 — ™ 4y — prtl
1—r

1_rn+1

1—1r

On a donc montré la conclusion.

e Comme la formule est valable pour n = 1, et on a montré que si elle est
valable pour n € N*, alors elle est valable pour n + 1, on a donc bien
montré par récurrence qu’elle est valable pour tout n € N*.

b) Remarquons que la suite d’entiers naturels impairs (a,) est définie par a, =

2n — 1. Ainsi,
A, = Zak = Z(% —1).
k=1 k=1

e Vérification pour n = 1:
1
A= (2k-1)=2-1-1=1=1
k=1
La formule est donc valable pour n = 1.

e Démonstration du pas de récurrence:
On part de ’hypothese A,, = n? pour un n € N* donné, et on veut atteindre
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la conclusion A, 11 = (n+1)% On a

n+1

Apir =) (2k—1)

k=1

= (Zn:(zk - 1)) +2n+1)—1

N k=1

-~

Ap
=n?+2(n+1)—1 (par 'hypothese)
=n?+2n+1
= (n+1)°

On a donc montré la conclusion.

Corrigé 5

e Comme la formule est valable pour n = 1, et on a montré que si elle est
valable pour n € N*, alors elle est valable pour n + 1, on a donc bien

montré par récurrence qu’elle est valable pour tout n € N*,

6. On considere la suite (a,) définie par récurrence de la fagon suivante :

2
an+1:3—a—, CL1:3, nEN*.
n

Déterminer le terme général de la suite (a,), puis démontrer ce résultat par
récurrence.

Calcul des premiers termes de la suite

5 7 15 31 63
a; = 3, ay = —, a3 = —, ay = —, as = —,
' 2703 ST T ° T 31
Conjecture de ’expression du terme général
b
e Soit b, le numérateur de a,. Il semble que a, = —, n > 2.
n—1
e (b,+1—0b,) n'est pas constant, donc 'expression de b, est non linéaire en n.
e (b,11—by,) est de croissance forte, donc I'expression de b, n’est pas quadra-
tique en n.
e (by+1 — by) est une puissance de 2, donc b, s’écrit a I'aide d’une puissance
de 2 :
b, =2 — 1.
2n+1 -1
e Conjecture : a,=——-—, né€eN"

2n —1
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Démonstration par récurrence de la conjecture

2n+1 -1
= —_— e N*.
a T n
e Vérification pour n=1.
2n+1 -1
=3 t —_— =3.
aq [§] on — 1 .
e Démonstration du pas de récurrence.
2n+1 -1
— Hypothese :  a, = o1 pour un n € N* donné.
. 2n+2 -1
— Conclusion :  a,41 = ol 1
2 2" —1 32t —1)—2(2" —1)
— Preuve : an+1:3—a:3—2-2n+1_1: ST

_3.2n+1_3_2n+1+2_2_2n+1_1_2n+2_1
- on+1 _ 1 Toon+l 1 ontl _1°

7. a) Donner un exemple de suites (a,) et (b,) telles que la somme (a,, + b,,) est une
suite constante, mais pour lesquelles (a,,) et (b,) ne sont pas constantes.

b) Montrer que si (a,) et (b,) sont bornées, alors la suite (a, - b,) est bornée.

¢) Donner un exemple de suites (a,) et (b,) telles que (a, - b,) est bornée, mais
pour lesquelles ni la suite (a,) est bornée ni la suite (b,) est bornée.

d) Donner un exemple de suites (a,,) et (b,,) telles que (a,) est strictement croissante,(b,,)
est strictement décroissante et a; < by, mais telles qu’il n’existe aucun n € N*
tel que b, < a,.

a) On peut par exemple prendre les suites données par a,, = n et b, = —n. On a
bien que a,, + b, = n —n = 0 pour tout n, mais ni (a,) ni (b,) n’est constante.

b) En effet si (a,) et (b,) sont bornées, alors il existe M,, M}, > 0 tels que pour
tout n € N*
lan| < M, et |b,| < M,.

Par conséquent, on a
@y - bn| = |an| - |bn] < M, - My,

La suite (ay, - b,) est donc bornée.
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¢) On peut par exemple prendre les suites données par :

(a,): 1,0,3,0,5,0,7,0,9,0, 11, ...
(b,):0,2,0,4,0,6,0,8,0,10,0, ...
Ni (a,) ni (b,) n’est bornée (car elles ne sont pas majorées), pourtant la suite
(ay, - by) est bornée puisqu’elle est la suite constante zéro.

d) On peut par exemple prendre la suite a,, = 1 — % = ”T_l et la suite b, = 1 —i—% =
2+l La suite (a,) est donnée par

12314
(an) . 07 57 ga 1757'“

et (by,) par

(ay) est strictement croissante et (b,) est strictement décroissante, pourtant
on a
a, <1 < b, pour tout n € N*

et donc
a, < b, pour tout n € N*,

8. Exercice facultatif
[Voir 'Exemple 2 du Chapitre 2 sec_1 suites_introduction.pdf des slides du
cours sur Moodle pour la définition de fraction continue, ainsi qu'un exemple.]

Déterminer une fraction continue qui décrit /5. Calculer les premiers termes de
la suite associée a cette fraction continue. Puis définir cette suite par récurrence.

r=+v56 & 22=5 et x>0 < 22—4=1 et x>0

& (r-2)(x+2)=1 et >0 & z=2+ et =>0.

2+4+x

Et en exprimant = dans la fraction par son expression, on obtient :

1 1
=2+ 1 =2+ 1
4+
2+[2+2+x] 2+x
Et encore :
1 1
=2+ 1 =2+ 1
4+
2+[2+2 x} 24+ x
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1
Et ainsi de suite : =2+ 1

4+

1

4+ ——
1
4+ —

Les premiers termes de la suite (z,),en+ définie par cette fraction continue sont :

19 1 1 4 38
S L R T S 717
1 1 17 161
445 17
On calcule ces premiers termes plus facilement en déduisant le suivant a partir du
précédent :
1 1 1 1
T =2, To=2+ ——=2+ , T3 =2+ —— =2+ ,
! 2 242 2+ 3 2+2+ 51 2+ 7,
2+ ! 2+ ! 2+ e N*
x4: —_— y Tttt 7"En+1: s n .
2424 1 2 2 n
+ +2+2+ﬁ + 23 x
1 1 72 682
Parexemple. $5:2+2+I4:2+2—1§_ ﬁ:%




