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Corrigé 5

1. Voici la représentation de la suite définie par an =
n+ 2

n
, n ∈ N∗.

O
n

an

1

1

a) Soit N(ε) ∈ N∗ tel que n ≥ N(ε) ⇒ |an − 1| < ε .

Déterminer graphiquement N(ε) dans les trois cas suivants :

i) ε = 1
2
, ii) ε = 1

4
, iii) ε = 1

8
.

b) Démontrer à l’aide de la définition de la limite d’une suite que lim
n→∞

an = 1 .

a) Détermination graphique de N en fonction de ε .

Il s’agit de traduire la contrainte ”verticale” donnée, celle qui concerne les an ,
en une contrainte ”horizontale”, celle qui concerne les rangs n .

ε est donné. Il définit un ε−voisinage de a = 1 .

◦ Représenter cet ε−voisinage sur l’axe des an .

◦ Déterminer les termes de la suite (an) qui appartiennent à cet ε−voisinage.

◦ Puis en déduire un seuil N à partir duquel tous les termes an , n ≥ N
sont dans l’ ε−voisinage de a = 1 .

ε = 1
2
:
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O
n

an

1

1

1
2

3
2

5

Si n ≥ 5 alors an ∈ ] 1
2
, 3

2
[ . Donc tout N ≥ 5 convient.

En effet : n ≥ N ≥ 5 ⇒ |an − 1| < 1
2
.

ε = 1
4
:

O
n

an

1

1
3
4

5
4

9

Si n ≥ 9 alors an ∈ ] 3
4
, 5

4
[ . Donc tout N ≥ 9 convient.

En effet : n ≥ N ≥ 9 ⇒ |an − 1| < 1
4
.

ε = 1
8
:
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O
n

an

1

7
8

9
8

17

Si n ≥ 17 alors an ∈ ] 7
8
, 9

8
[ . Donc tout N ≥ 17 convient.

En effet : n ≥ N ≥ 17 ⇒ |an − 1| < 1
8
.

b) Soit ε > 0 donné.

Pour montrer que lim
n→∞

an = 1 , il faut être capable d’exhiber un seuil N ∈ N∗

de sorte que

n ≥ N ⇒ | an − 1 | < ε .

Le point de départ est donc la contrainte définie par ε et le point d’arrivée
doit être une contrainte qui concerne le rang n .

| an − 1 | < ε ⇔
∣∣∣∣n+ 2

n
− 1

∣∣∣∣ < ε ⇔
∣∣∣∣ 2n
∣∣∣∣ < ε ⇔ 2

n
< ε ⇔ n >

2

ε
,

car n > 0 .

Donc tout N >
2

ε
convient, car n ≥ N (avec N > 2

ε
) ⇒ | an − 1 | < ε .

2. On considère la suite (an) définie par son terme général an =
√

1 + 1
n
, n ∈ N∗.

En utilisant la définition de la limite d’une suite, montrer que (an) converge vers
a = 1 .

Soit ε > 0 donné, montrons qu’il existe un N ∈ N∗ qui dépend de ε tel que

n ≥ N ⇒ |an − 1| < ε .

ε est le paramètre du problème et le rang n qui définit le seuil N en est la
variable. On cherche donc à résoudre l’inéquation |an − 1| < ε par rapport à la
variable n en fonction de ε :
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|an − 1| < ε ⇔
∣∣∣∣√1 + 1

n
− 1

∣∣∣∣ < ε

⇔
√

1 + 1
n
− 1 < ε , car

√
1 + 1

n
> 1

⇔
√

1 + 1
n
< 1 + ε

⇔ 1 +
1

n
< (1 + ε)2 , car 1 + ε ≥ 0

⇔ 1

n
< 2 ε+ ε2

⇔ n >
1

2 ε+ ε2
, car les deux membres sont positifs.

Donc tout N >
1

2 ε+ ε2
convient. En effet,

n ≥ N ⇒ n >
1

2 ε+ ε2
⇒ |an − 1| < ε .

3. Soient (an) une suite et l ∈ R. Parmi les affirmations suivantes, déterminer lesquelles
sont équivalentes à

lim
n→+∞

an = l.

Quand ce n’est pas le cas, s’en convaincre en exhibant un contre-exemple.

a) ∀ε > 0, ∃N(ε) ∈ N∗, tel que n ≥ N(ε) ⇒ |an − l| < ε.

b) ∀ε > 0, ∃N(ε) ∈ N∗, tel que n ≥ N(ε) ⇒ |an − l| ≤ ε.

c) ∀ε ≥ 0, ∃N(ε) ∈ N∗, tel que n ≥ N(ε) ⇒ |an − l| < ε.

d) ∃N ∈ N∗, tel que ∀ε > 0, n ≥ N ⇒ |an − l| < ε.

e) ∀N ∈ N∗,∃ε > 0 tel que n ≥ N ⇒ |an − l| < ε.

a) C’est la définition de suite convergente vue en cours.

b) Cette affirmation est équivalente à la précédente. En effet, il est clair l’affirmation
(a) implique la (b).

Si l’affirmation (b) est vraie, on peut pour un ε > 0 donné trouver un nombre
naturel N(ε/2), tel que n ≥ N(ε/2) implique |an − l| ≤ ε/2. Pour de tels n on
aura alors |an−l| < ε, ce qui est l’affirmation (a), c’est-à-dire que limn→+∞ an =
l.

c) Ici on a le droit de choisir ε = 0. Mais alors |an − l| < ε ne peut être vérifié
par aucune suite (aucun nombre positif ne peut être strictement plus petit que
zéro). C’est donc une affirmation absurde.
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d) Cette affirmation nous dit qu’il existe un rang N à partir duquel |an − l| < ε
pour tout ε > 0 choisi. Cela correspond donc à dire qu’à partir de ce rang N
on doit avoir |an− l| = 0. Autrement dit, cette affirmation dit que la suite (an)
est constante et égale à l à partir de N .

On a donc bien que limn→+∞ an = l mais la réciproque n’est pas vraie. Si
limn→+∞ an = l, en général la suite n’est pas constante égale à l à partir d’un
certain rang. En effet, prenons par exemple an = 1

n
, n ∈ N∗. On a bien que

limn→+∞ an = 0, mais an ̸= 0 pour tout n.

e) Le contre-exemple suivant montre que cette affirmation n’exprime pas la con-
vergence de (an) vers l : si an = 1 pour tout n ∈ N∗ et si l = 0, on peut en
effet satisfaire cette affirmation en choisissant ε = 2 > 0. Un tel epsilon existe
donc, mais la limite de (an) n’est sûrement pas 0.

4. Montrer que les suites ci-dessous sont majorées en exhibant un majorant.

a) an = n2

n2+1
, n ∈ N∗.

b) bn = n2+n
n2+1

, n ∈ N∗.

c) cn = n+3
n2+1

+ n+4
n2+1

+ · · ·+ 2n+2
n2+1

, n ∈ N∗.

Indication : combien y a-t-il de termes dans la somme ?

d) dn = n+3
n2+1

+ n+4
n2+2

+ · · ·+ 2n+2
n2+n

, n ∈ N∗.

a) On observe que pour tout n ∈ N∗, on a n2 < n2 + 1. Par conséquent

an =
n2

n2 + 1
< 1.

On peut donc choisir M = 1 comme majorant.

b) On ne peut établir que n2 + n < n2 + 1. Cependant, en ”cassant” la fraction,
on peut écrire que pour tout n ∈ N∗

bn =
n2 + n

n2 + 1
=

n2

n2 + 1︸ ︷︷ ︸
<1

+
n

n2 + 1︸ ︷︷ ︸
<1

< 2.

On peut par conséquent choisir M = 2 comme majorant.

c) On observe que cn est une somme de n termes. Lorsque n devient grand,
chaque terme devient petit, mais le nombre de termes est grand. Que devient
la somme cn ? Chaque terme est plus grand que son précédent, par conséquent
chaque terme est plus petit que 2n+2

n2+1
. La somme cn est donc plus petite que le

nombre de termes multiplié par 2n+2
n2+1

, donc

cn ≤ n
2n+ 2

n2 + 1
≤ 2n2 + 2n

n2 + 1
≤ 2

n2

n2 + 1︸ ︷︷ ︸
<1

+2
n

n2 + 1︸ ︷︷ ︸
<1

< 4.

On peut par conséquent choisir M = 4.
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d) On observe que dn est une somme de n termes. Comment au point précédent,
lorsque n devient grand, chaque terme devient petit, mais le nombre de termes
est grand. Que devient la somme dn ?

Pour majorer la suite (dn) , on peut chercher à majorer chaque terme de dn
par n termes identiques :

dn =
n+ 3

n2 + 1︸ ︷︷ ︸
≤un

+
n+ 4

n2 + 2︸ ︷︷ ︸
≤un

+ · · ·+ 2n+ 2

n2 + n︸ ︷︷ ︸
≤un

≤ n · un .

On peut majorer chaque fraction de cette somme en majorant le numérateur
par le plus grand des numérateurs et en minorant le dénominateur par le plus
petit des dénominateurs :

un =
2n+ 2

n2 + 1
, n ∈ N∗.

dn =
n+ 3

n2 + 1︸ ︷︷ ︸
≤ 2n+2

n2+1

+
n+ 4

n2 + 2︸ ︷︷ ︸
≤ 2n+2

n2+1

+ · · ·+ 2n+ 2

n2 + n︸ ︷︷ ︸
≤ 2n+2

n2+1

≤ n · 2n+ 2

n2 + 1
=

2n2 + 2n

n2 + 1
.

Or on sait par le point précédent que :

2n2 + 2n

n2 + 1
= 2

n2

n2 + 1︸ ︷︷ ︸
<1

+ 2
n

n2 + 1︸ ︷︷ ︸
<1

< 2 + 2 = 4 , ∀n ∈ N∗.

En résumé :

dn ≤ 2n2 + 2n

n2 + 1
< 4 , ∀n ∈ N∗. M = 4 est un majorant de la suite (dn) .

5. a) Soit r ∈ R, r ̸= 1. On considère la suite

1, r, r2, r3, r4, r5, . . .

Soit (An) définie par

An =
n−1∑
k=0

rk,

c’est-à-dire, An est la somme des premiers n termes de la suite ci-dessus.
Montrer par récurrence que

An =
1− rn

1− r
, ∀n ∈ N∗.

b) On considère la suite 1, 3, 5, 7, 9, 11, . . . d’entiers naturels impairs. Soit An la
somme des premiers n termes de cette suite. Montrer par récurrence que

An = n2, ∀n ∈ N∗.
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a) � Vérification pour n = 1:

A1 =
0∑

k=0

rk = r0 = 1 =
1− r1

1− r

La formule est donc valable pour n = 1.

� Démonstration du pas de récurrence:
On part de l’hypothèse An = 1−rn

1−r
pour un n ∈ N∗ donné, et on veut

atteindre la conclusion An+1 =
1−rn+1

1−r
. On a

An+1 =
n∑

k=0

rk

=

(
n−1∑
k=0

rk

)
︸ ︷︷ ︸

An

+rn

=
1− rn

1− r
+ rn (par l’hypothèse)

=
1− rn

1− r
+

rn(1− r)

1− r

=
1− rn + rn − rn+1

1− r

=
1− rn+1

1− r

On a donc montré la conclusion.

� Comme la formule est valable pour n = 1, et on a montré que si elle est
valable pour n ∈ N∗, alors elle est valable pour n + 1, on a donc bien
montré par récurrence qu’elle est valable pour tout n ∈ N∗.

b) Remarquons que la suite d’entiers naturels impairs (an) est définie par an =
2n− 1. Ainsi,

An =
n∑

k=1

ak =
n∑

k=1

(2k − 1).

� Vérification pour n = 1:

A1 =
1∑

k=1

(2k − 1) = 2 · 1− 1 = 1 = 12

La formule est donc valable pour n = 1.

� Démonstration du pas de récurrence:
On part de l’hypothèse An = n2 pour un n ∈ N∗ donné, et on veut atteindre
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la conclusion An+1 = (n+ 1)2. On a

An+1 =
n+1∑
k=1

(2k − 1)

=

(
n∑

k=1

(2k − 1)

)
︸ ︷︷ ︸

An

+2(n+ 1)− 1

= n2 + 2(n+ 1)− 1 (par l’hypothèse)

= n2 + 2n+ 1

= (n+ 1)2

On a donc montré la conclusion.

� Comme la formule est valable pour n = 1, et on a montré que si elle est
valable pour n ∈ N∗, alors elle est valable pour n + 1, on a donc bien
montré par récurrence qu’elle est valable pour tout n ∈ N∗.

6. On considère la suite (an) définie par récurrence de la façon suivante :

an+1 = 3− 2

an
, a1 = 3 , n ∈ N∗ .

Déterminer le terme général de la suite (an) , puis démontrer ce résultat par
récurrence.

Calcul des premiers termes de la suite

a1 = 3 , a2 =
7

3
, a3 =

15

7
, a4 =

31

15
, a5 =

63

31
, · · ·

Conjecture de l’expression du terme général

� Soit bn le numérateur de an . Il semble que an =
bn
bn−1

, n ≥ 2 .

� (bn+1− bn) n’est pas constant, donc l’expression de bn est non linéaire en n .

� (bn+1 − bn) est de croissance forte, donc l’expression de bn n’est pas quadra-
tique en n .

� (bn+1 − bn) est une puissance de 2, donc bn s’écrit à l’aide d’une puissance
de 2 :

bn = 2n+1 − 1 .

� Conjecture : an =
2n+1 − 1

2n − 1
, n ∈ N∗.
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Démonstration par récurrence de la conjecture

an =
2n+1 − 1

2n − 1
, n ∈ N∗.

• Vérification pour n = 1 .

a1 = 3 et
2n+1 − 1

2n − 1

∣∣∣∣
n=1

= 3 .

• Démonstration du pas de récurrence.

– Hypothèse : an =
2n+1 − 1

2n − 1
pour un n ∈ N∗ donné.

– Conclusion : an+1 =
2n+2 − 1

2n+1 − 1
.

– Preuve : an+1 = 3− 2

an
= 3− 2 · 2n − 1

2n+1 − 1
=

3 (2n+1 − 1)− 2 (2n − 1)

2n+1 − 1

=
3 · 2n+1 − 3− 2n+1 + 2

2n+1 − 1
=

2 · 2n+1 − 1

2n+1 − 1
=

2n+2 − 1

2n+1 − 1
.

7. a) Donner un exemple de suites (an) et (bn) telles que la somme (an + bn) est une
suite constante, mais pour lesquelles (an) et (bn) ne sont pas constantes.

b) Montrer que si (an) et (bn) sont bornées, alors la suite (an · bn) est bornée.
c) Donner un exemple de suites (an) et (bn) telles que (an · bn) est bornée, mais

pour lesquelles ni la suite (an) est bornée ni la suite (bn) est bornée.

d) Donner un exemple de suites (an) et (bn) telles que (an) est strictement croissante,(bn)
est strictement décroissante et a1 < b1, mais telles qu’il n’existe aucun n ∈ N∗

tel que bn < an.

a) On peut par exemple prendre les suites données par an = n et bn = −n. On a
bien que an + bn = n− n = 0 pour tout n, mais ni (an) ni (bn) n’est constante.

b) En effet si (an) et (bn) sont bornées, alors il existe Ma,Mb ≥ 0 tels que pour
tout n ∈ N∗

|an| ≤ Ma et |bn| ≤ Mb.

Par conséquent, on a

|an · bn| = |an| · |bn| ≤ Ma ·Mb.

La suite (an · bn) est donc bornée.
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c) On peut par exemple prendre les suites données par :

(an) : 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, ...

(bn) : 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...

Ni (an) ni (bn) n’est bornée (car elles ne sont pas majorées), pourtant la suite
(an · bn) est bornée puisqu’elle est la suite constante zéro.

d) On peut par exemple prendre la suite an = 1− 1
n
= n−1

n
et la suite bn = 1+ 1

n
=

n+1
n
. La suite (an) est donnée par

(an) : 0,
1

2
,
2

3
,
3

4
,
4

5
, ...

et (bn) par

(bn) : 2,
3

2
,
4

3
,
5

4
,
6

5
, ...

(an) est strictement croissante et (bn) est strictement décroissante, pourtant
on a

an < 1 < bn pour tout n ∈ N∗

et donc
an < bn pour tout n ∈ N∗.

8. Exercice facultatif
[Voir l’Exemple 2 du Chapitre 2 sec 1 suites introduction.pdf des slides du
cours sur Moodle pour la définition de fraction continue, ainsi qu’un exemple.]

Déterminer une fraction continue qui décrit
√
5 . Calculer les premiers termes de

la suite associée à cette fraction continue. Puis définir cette suite par récurrence.

x =
√
5 ⇔ x2 = 5 et x > 0 ⇔ x2 − 4 = 1 et x > 0

⇔ (x− 2) (x+ 2) = 1 et x > 0 ⇔ x = 2 +
1

2 + x
et x > 0 .

Et en exprimant x dans la fraction par son expression, on obtient :

x = 2 +
1

2 +

[
2 +

1

2 + x

] = 2 +
1

4 +
1

2 + x

.

Et encore :

x = 2 +
1

4 +
1

2 +

[
2 +

1

2 + x

] = 2 +
1

4 +
1

4 +
1

2 + x

.
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Et ainsi de suite : x = 2 +
1

4 +
1

4 +
1

4 +
1

4 +
1
. . .

.

Les premiers termes de la suite (xn)n∈N∗ définie par cette fraction continue sont :

x1 = 2 , x2 = 2 +
1

4
=

9

4
, x3 = 2 +

1

4 + 1
4

= 2 +
1
17
4

= 2 +
4

17
=

38

17
,

x4 = 2 +
1

4 +
1

4 + 1
4

= 2 +
1

4 +
4

17

= 2 +
17

72
=

161

72
.

On calcule ces premiers termes plus facilement en déduisant le suivant à partir du
précédent :

x1 = 2 , x2 = 2 +
1

2 + 2
= 2 +

1

2 + x1

, x3 = 2 +
1

2 + 2 + 1
2+2

= 2 +
1

2 + x2

,

x4 = 2 +
1

2 + 2 + 1
2+2+ 1

2+2

= 2 +
1

2 + x3

, · · · · · · , xn+1 = 2 +
1

2 + xn

, n ∈ N∗.

Par exemple : x5 = 2 +
1

2 + x4

= 2 +
1

2 +
161

72

= 2 +
72

305
=

682

305
.


