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Corrigé 12

1. Estimer, à l’aide de l’approximation linéaire, la quantité 4
√

16, 032 .

Soient f(x) = 4
√
x , x0 = 16 et ∆x = 0, 032 .

L’approximation linéaire de f(x0 +∆x) en x0 s’écrit A = f(x0) + ∆x · f ′(x0) .

f ′(x) = 1
4
x−3/4 =

1

4
4
√
x3

, f ′(x0) =
1

32
. A = 4

√
16 + 0, 032 · 1

32
= 2, 001 .

2. Soient g(x) la fonction définie par

g(x) =
1 +

√
16 + x2

1−
√
25− x2

et f(x) une fonction définie dans un voisinage de x0 telle que f(x0) = 3 .

Soient A l’approximation linéaire de f(x0 +∆x) en x0 et B l’approximation
linéaire de (g ◦ f)(x0 +∆x) en x0 pour un ∆x donné.

Sachant que A =
22

7
, en déduire la valeur de B .

L’approximation linéaire B de (g ◦ f)(x0 +∆x) en x0 s’écrit

B = (g ◦ f)(x0) + (g ◦ f)′(x0) ·∆x = g [f(x0) ] + g′ [f(x0) ] · f ′(x0) ·∆x .

� Calcul de g [f(x0) ]

g [f(x0) ] = g(3) =
1 +

√
16 + x2

1−
√
25− x2

∣∣∣∣∣
x=3

=
1 + 5

1− 4
= −2

� Calcul de g′ [f(x0) ]

◦ Fonction dérivée g′(x)

g′(x) =

2x
2
√
16+x2 · (1−

√
25− x2 )− (1 +

√
16 + x2 ) · −2x

−2
√
25−x2

(1−
√
25− x2 )2

.

◦ Evaluation

g′ [f(x0) ] = g′(3) =
3
5
· (1− 4)− (1 + 5) · 3

4

(1− 4)2
= −1

5
− 2

4
= − 7

10
.
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� Calcul de f ′(x0) ·∆x

L’approximation linéaire A de f(x0 +∆x) en x0 s’écrit

A = f(x0) + f ′(x0) ·∆x .

Connaissant A = 22
7

et f(x0) = 3 , on en déduit la valeur de f ′(x0) ·∆x :

A = f(x0) + f ′(x0) ·∆x ⇔ f ′(x0) ·∆x = A− f(x0)

⇔ f ′(x0) ·∆x =
22

7
− 3 =

1

7
.

� Conclusion

B = (g ◦ f)(x0) + (g ◦ f)′(x0) ·∆x = g [f(x0) ] + g′ [f(x0) ] · f ′(x0) ·∆x ,

B = (−2) +

(
− 7

10

)
· 1
7

= −2, 1 .

3. Soit f(x) = x2 · (2− x2) .

Montrer qu’il existe au moins un point d’abscisse x ∈ ] 0 , 1 [ tel que la droite
tangente au graphe de f en ce point soit parallèle à la droite d d’équation
x− y = 4 .

La pente de la droite d vaut m = 1 . La pente de la tangente au graphe de f
en x est égale à m si et seulement si f ′(x) = 1 :

f ′(x) = 2x (2− x2) + x2 (−2x) = 2x (2− 2x2) = 4x (1− x2) .

f ′(x) = 1 ⇔ 4x (1− x2) = 1 .

Comment montrer que cette équation admet au moins une solution sur l’intervalle
] 0 , 1 [ ?

� En utilisant le théorème de la valeur intermédiaire

La fonction f ′ , restreinte à l’intervalle [ 0 , 1 ] , est
une fonction polynomiale, elle est donc continue.

Mais y = 1 appartient-il à son ensemble image ?

f ′(0) = f ′(1) = 0 et f ′(1
2
) = 3

2
,

donc [ 0 , 3
2
] ⊂ Im f ′ et y = 1 ∈ Im f ′ .

Par le théorème de la valeur intermédiaire, on en
conclut que l’équation f ′(x) = 1 admet au moins
une solution sur l’intervalle ] 0 , 1 [ .

O
x

y

1

1

3
2

1
2

y = f ′(x)



EPF - Lausanne COURS DE MATHEMATIQUES SPECIALES Analyse I Corrigé 12

La deuxième méthode, qui utilise le théorème des accroissements finis, est dans
ce cas là beaucoup plus simple !

� Deuxième méthode

f(0) = 0 et f(1) = 1 , donc la sécante passant par (0, f(0)) et (1, f(1)) a

pour pente
f(1)− f(0)

1− 0
= 1 .

Or f est continue sur [ 0 , 1 ] et dérivable sur ] 0 , 1 [ , on peut donc lui
appliquer le théorème des accroissements finis :

∃x ∈ ] 0 , 1 [ tel que f ′(x) =
f(1)− f(0)

1− 0
⇔ f ′(x) = 1 .

O
x

y

1

1

y = f(x)

4. On considère la fonction f : R → R définie par

f(x) =


3− x2

2
si x ≤ 1

1

x
si x > 1

a) Montrer que f vérifie les hypothèses du théorème des accroissements finis sur
[ 0 , 2 ] , et en déduire qu’il existe c ∈ ] 0 , 2 [ tel que f(2)−f(0) = (2−0) f ′(c) .

b) Déterminer toutes les valeurs de c .

a) Montrons que f vérifie les hypothèses du théorème des accroissements finis
sur l’intervalle [ 0 , 2 ] .

Il faut donc vérifier que f est continue sur [ 0 , 2 ] et dérivable sur ] 0 , 2 [ .
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� La fonction f est continue sur R \ {1} , car y =
3− x2

2
est continue

sur R et y =
1

x
est continue sur ] 1 , +∞ [ .

Que se passe-t-il en x0 = 1 ?

lim
x→1−

f(x) = lim
x→1−

3− x2

2
= 1 et lim

x→1+
f(x) = lim

x→1+

1

x
= 1 .

On en déduit que lim
x→1

f(x) = 1 . Or f(1) =
3− x2

2

∣∣∣∣
x=1

= 1 ,

donc f est continue en x = 1 .

f est continue sur R , en particulier f est continue sur [ 0 , 2 ] .

� La fonction f est dérivable sur R \ {1} , car y =
3− x2

2
est dérivable

sur R et y =
1

x
est dérivable sur ] 1 , +∞ [ .

Que se passe-t-il en x0 = 1 ?

◦ lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

3−(1+h)2

2
− 1

h
= lim

h→0−

−2h− h2

2h
= −1 .

◦ lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

1
1+h

− 1

h
= lim

h→0+

−h

h (1 + h)
= −1 .

Les nombres dérivés f ′(1−) et f ′(1+) cöıncident, donc f est dérivable
en x = 1 .

f est dérivable sur R , en particulier f est dérivable sur ] 0 , 2 [ .

� Conclusion :

f est continue sur [ 0 , 2 ] et dérivable sur ] 0 , 2 [ , on peut donc appliquer
le théorème des accroissements finis :

∃ c ∈ ] 0 , 2 [ tel que
f(2)− f(0)

2− 0
= f ′(c) , f(2)− f(0) = (2− 0) f ′(c) .

b) On cherche à résoudre sur l’intervalle ] 0 , 2 [ , l’équation suivante :

f(2)− f(0) = (2− 0) f ′(c) ⇔ 1

2
− 3

2
= 2 f ′(c) ⇔ f ′(c) = −1

2
.

Mais l’expression de f étant différente à gauche et à droite de x = 1 , on
distingue les deux cas suivants :

� si c ∈ ] 0 , 1 [ , f ′(c) = −1

2
⇔ −c = −1

2
⇔ c =

1

2
,

� si c ∈ ] 1 , 2 [ , f ′(c) = −1

2
⇔ − 1

c2
= −1

2
⇔ c = ±

√
2 ⇔ c = +

√
2 .
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Illustration :

x

y

1

1 s

1
2

21
2

√
2

5. Dériver sur R∗ les deux fonctions suivantes :

a) 3
√
x =

{
x

1
3 si x ≥ 0

−(−x)
1
3 si x < 0

b)
5
√
x2 =

{
x

2
5 si x ≥ 0

(−x)
2
5 si x < 0

a) Rappel : l’expression xq , q ∈ Q \ Z n’est définie que sur les x positifs.

On peut donc dériver 3
√
x sur les x positifs en dérivant la fonction x

1
3 .

Puis on montrera que le résultat obtenu est aussi valable sur les x négatifs.

� Dérivée de f(x) sur les x positifs :

f ′(x) =
[

3
√
x
]′

=
[
x

1
3

]′
=

1

3
· x

1
3
−1 =

1

3
· x− 2

3 =
1

3
3
√
x2

, ∀x > 0 .

� Dérivée de f(x) sur les x négatifs :

f ′(x) =
[

3
√
x
]′

=
[
−(−x)

1
3

]′
= −1

3
·(−x)

1
3
−1·(−x)′ = −1

3
·(−x)−

2
3 ·(−1) ,

f ′(x) =
1

3
· (−x)−

2
3 =

1

3 3
√

(−x)2
=

1

3
3
√
x2

, ∀x < 0 .

On en déduit que l’expression obtenue en dérivant 3
√
x sur les x positifs,

reste valable pour les x négatifs :

( 3
√
x )′ =

1

3
3
√
x2

, ∀x ∈ R∗.

Remarque : la dérivée d’une fonction impaire est paire, donc sachant que
f(x) est impaire, on pouvait directement conclure :

f ′(x) =
1

3
3
√
x2

, ∀x > 0 ⇒ f ′(x) =
1

3
3
√
x2

, ∀x ∈ R∗.
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b) On dérive la fonction
5
√
x2 sur les x positifs en dérivant la fonction x

2
5 ,

puis on vérifie que le résultat obtenu est aussi valable sur les x négatifs.

� Dérivée de g(x) sur les x positifs :

g′(x) =
[

5
√
x2

]′
=

[
x

2
5

]′
=

2

5
· x

2
5
−1 =

2

5
· x− 3

5 =
2

5
5
√
x3

, ∀x > 0 .

� Dérivée de g(x) sur les x négatifs :

g′(x) =
[

5
√
x2

]′
=

[
(−x)

2
5

]′
=

2

5
· (−x)

2
5
−1 · (−x)′ =

2

5
· (−x)−

3
5 · (−1) ,

g′(x) = −2

5
· (−x)−

3
5 = − 2

5 5
√

(−x)3
= − 2

5 5
√
−x3

=
2

5
5
√
x3

, ∀x < 0 .

On en déduit que l’expression obtenue en dérivant
5
√
x2 sur les x positifs,

reste valable pour les x négatifs :

(
5
√
x2 )′ =

2

5
5
√
x3

, ∀x ∈ R∗.

Remarque : la dérivée d’une fonction paire est impaire, donc sachant que
g(x) est paire, on pouvait directement conclure

g′(x) =
2

5
5
√
x3

, ∀x > 0 ⇒ g′(x) =
2

5
5
√
x3

, ∀x ∈ R∗.

6. Parmi les énoncés suivants, déterminer s’ils sont vrais ou faux. S’ils sont vrais,
justifier. S’ils sont faux, donner un contre-exemple.

a) Soit f : [a, b] → R continue sur [a, b] et dérivable sur ]a, b[. On suppose que
f ′ :]a, b[→ R est bornée. Alors il existe M ≥ 0 tel que pour tout x, y ∈ [a, b]
avec x ̸= y on a ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ M.

b) Soit f : R → R dérivable sur R telle que sa fonction dérivée f ′ est continue sur
R. On suppose de plus que f(0) = 0. Alors

max
x∈[0,1]

|f(x)| ≤ max
x∈[0,1]

|f ′(x)|.

c) Soit f : R → R et soient a ̸= b tels que f(a) < 0 et f(b) > 0. Alors soit f est
continue sur [a, b], soit f ne s’annule jamais sur [a, b].

d) Soit f une fonction continue sur R telle que

� f est dérivable sur R∗
+ et f dérivable à droite de x = 0,

� f est dérivable sur R∗
− et f dérivable à gauche de x = 0.

Alors f est dérivable sur R.
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a) Vrai. Puisque f ′ est borné, il existe M ≥ 0 tel que pour tout x ∈]a, b[, |f ′(x)| ≤
M . Par le théorème des accroissements finis, pour tout x, y ∈ [a, b], il existe
c ∈]x, y[ tel que

f(x)− f(y) = f ′(c)(x− y).

Par conséquent,
|f(x)− (y)| = |f ′(c)||x− y|

ce qui implique
|f(x)− (y)| ≤ M |x− y|.

D’où le résultat.

b) Vrai. Soit x ∈]0, 1]. Par le théorème des accroissements finis, on a qu’il existe
c ∈]0, x[ tel que

f(x)− f(0) = f ′(c)(x− 0) ⇔ f(x) = f ′(c) · x.

Par conséquent,

|f(x)| = |f ′(c)| · |x|︸︷︷︸
≤1

≤ |f ′(c)| ≤ max
x∈[0,1]

|f ′(x)|.

On a donc

|f(x)| ≤ max
x∈[0,1]

|f ′(x)|pour tout x ∈]0, 1], et f(0) = 0 ≤ max
x∈[0,1]

|f ′(x)|.

Par conséquent on a bien

max
x∈[0,1]

|f(x)| ≤ max
x∈[0,1]

|f ′(x)|.

Remarque : on a pu prendre le maximum de f et f ′ car chacune est continue
sur l’intervalle fermé et borné [0, 1].

c) Faux. En effet la fonction f définie par

f(x) =


−1, x < 0,
0, x = 0,
1, x > 0,

s’annule en x = 0 mais n’est pas continue.

d) Faux. Prendre par exemple f(x) = |x|.


