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Montrons que sin(x) ~ x au voisinage de x = 0.
Ces deux fonctions sont infiniments petites au voisinage de x =0 :

lim sin(x) = lim x=0.
x—0 x—0

L . sin(x
Montrons encore qu'elles sont équivalentes : lim (x) =1.
x—0 X
. sin(x L . - . sin(x
La fonction (x) est paire, il suffit donc de vérifier que lim (x) =1.
X x—0t X
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[llustration de cette limite :

y .
y=1—— fm sin(x) _q
x—0 X
 — P —

On remarque ici I'importance de la notion de voisinage épointé :

la fonction w n'est pas définie en x = 0, mais sa limite existe.
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En conclusion :

sin(x) et x sont des infiniment petits équivalents au voisinage de x =0.

y
y = sin(x)

X

sin(x) ~ x, (x = 0)
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Nous verrons tout a I'heure comment calculer cette limite.
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Voici deux autres couples d'IPE au voisinage de x =0

_ _ y=%
oXI|Ln[1 cos(x)] =0 et

1 — cos(x) = 2 sin (%) (g) .

Donc 1 — cos(x) ~ XE (x —0).
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im tan(x) — lim sin(x) 1
x=0 X x=0  x  cos(x)
— tim 50Dy —1

Donc tan(x) ~x, (x—0).
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y
e lim tan(x) =0 et

x—0

im tan(x) — lim sin(x) 1

x=0 X x=0  x  cos(x)

0]
1
— tim 50Dy —1
x—0 X x—0 COS X)
Donc tan(x) ~x, (x—0).

y = tan(x)
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Nous avons donc mis en évidence trois couples d'IPE :

e sin(x) ~ x, au voisinage de x =0,
e 1— cos(x) ~ %2 , au voisinage de x =0,
e tan(x) ~ x, au voisinage de x =0,

qui nous rendrons service dans les calculs de limite, a condition de respecter la

regle d'utilisation des IPE.
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Cette notion de fonctions infiniment petites équivalentes en xy est un cas
particulier d'un concept plus général appelé Développement Limité (DL)

qui permet, sous certaines conditions, d'approximer une fonction donnée par une
fonction polynomiale.

Cette approximation est locale et sa précision varie avec le degré du polynéme.

Nous étudierons cette notion durant le semestre de printemps.

Voici l'illustration du développement limité de la fonction sinusen x =0 :
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