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Limites in�nies en x0

Définitions :

Soient x0 ∈ R et f une fonction définie sur un voisinage épointé de x0 .

• f diverge vers +∞ lorsque x → x0 , on écrit alors lim
x→x0

f (x) = +∞ , si

∀A > 0 , ∃ δ > 0 tel que 0 < | x − x0 | < δ ⇒ f (x) > A .

• f diverge vers −∞ lorsque x → x0 et on écrit lim
x→x0

f (x) = −∞ si ,

∀B < 0 , ∃ δ > 0 tel que 0 < | x − x0 | < δ ⇒ f (x) < B .
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x→x0

f (x) = +∞ , si

∀A > 0 , ∃ δ > 0 tel que 0 < | x − x0 | < δ ⇒ f (x) > A .

• f diverge vers −∞ lorsque x → x0 et on écrit lim
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x→x0

f (x) = −∞ si ,

∀B < 0 , ∃ δ > 0 tel que 0 < | x − x0 | < δ ⇒ f (x) < B .

my header

o



Limites in�nies en x0
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Définitions :

Soient x0 ∈ R et f une fonction définie sur un voisinage épointé de x0 .
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x→x0

f (x) = −∞

si ,

∀B < 0 , ∃ δ > 0 tel que 0 < | x − x0 | < δ ⇒ f (x) < B .

my header

o



Limites in�nies en x0
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Exemple

Exemple :

Montrons que lim
x→0

1

x2
= +∞ .

Soit A > 0 donné.

Montrons que ∃ δ > 0 tel que

0 < | x − 0 | < δ ⇒ 1

x2
> A .

Or
1

x2
> A ⇔ |x | < 1√

A
,

donc tout 0 < δ ≤ 1√
A
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épointé de x0

− 1√
A

1√
A

x

y

O

y =
1
x2

my header

o



Exemple

Exemple :

Montrons que lim
x→0

1

x2
= +∞ .

Soit A > 0 donné.
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Limites in�nies à gauche ou à droite de x0

Définitions :

• Soient x0 ∈ R et f une fonction définie sur un voisinage à gauche de x0 .

∗ lim
x→x−0

f (x) = +∞

∗ lim
x→x−0

f (x) = −∞

• Soient x0 ∈ R et f une fonction définie sur un voisinage à droite de x0 .

∗ lim
x→x+

0

f (x) = +∞

∗ lim
x→x+

0

f (x) = −∞
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∗ lim
x→x+

0

f (x) = +∞

∗ lim
x→x+

0

f (x) = −∞

my header

o



Limites in�nies à gauche ou à droite de x0
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Définitions :
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Exemple :
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x→0−

1

x
= −∞ .

Soit B < 0 donné.

Montrons que ∃ δ > 0 tel que

−δ < x < 0 ⇒ 1

x
< B .

Or
1

x
< B ⇔ x >

1

B
,

car x < 0 et B < 0 .
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B
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g
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e
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δ-voisinage
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B
x
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O
y = 1
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à gauche de x01

B
x

y

O
y = 1

x

my header

o



Exemple

Exemple :
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Exemple

Pour que l’intervalle ] − δ , 0 [ soit

contenu dans l’intervalle ] 1
B
, 0 [ ,

1
B 0−δ

x

il faut et il suffit que 0 > −δ ≥ 1
B

,

c’est-à-dire que 0 < δ ≤ − 1
B

.

On montre de façon analogue que

lim
x→0+

1

x
= +∞ .

x

y

O

y = 1
x
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Règles de calcul

Remarque :

Tous les cas d’indéterminations et tous les théorèmes énoncés sur

les limites à l’infini restent valables pour les limites en x0 .

Exemple :

Déterminer, si elle existe, la limite suivante : lim
x→1

x −
√

2− x
3
√
x2 − 1

· cos
�

1
1−x

�
.

La fonction cos
�

1
1−x

�
n’admet pas de limite lorsque x → 1 , mais est bornée.

On s’intéresse donc à lim
x→1

x −
√

2− x
3
√
x2 − 1

qui est une forme indéterminée : ” 0
0
”.

my header

o



Règles de calcul
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0
”.

my header

o



Règles de calcul

Remarque : Tous les cas d’indéterminations et tous les théorèmes énoncés sur
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x→1

x −
√

2− x
3
√
x2 − 1

qui est une forme indéterminée : ” 0
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les limites à l’infini restent valables pour les limites en x0 .

Exemple :
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On s’intéresse donc à lim
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Exemple

On lève cette indétermination

en faisant apparâıtre le facteur (x − 1) qui se

cache au numérateur et au dénominateur de cette expression :

x −
√

2− x
3
√
x2 − 1

=
x2 − (2− x)

3
√
x2 − 1

[
x +
√

2− x
] =

(x − 1) (x + 2)
3
√
x − 1 3

√
x + 1

[
x +
√

2− x
]

=
3
√

(x − 1)2 (x + 2)
3
√
x + 1

[
x +
√

2− x
] −→

x→1
0 .

On en déduit donc que lim
x→1

x −
√

2− x
3
√
x2 − 1

· cos
�

1
1−x

�
= 0 . ( ”0 × borné” )
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cache au numérateur et au dénominateur de cette expression :

x −
√

2− x
3
√
x2 − 1

=
x2 − (2− x)

3
√
x2 − 1

[
x +
√

2− x
] =

(x − 1) (x + 2)
3
√
x − 1 3

√
x + 1

[
x +
√

2− x
]

=
3
√

(x − 1)2 (x + 2)
3
√
x + 1

[
x +
√

2− x
] −→

x→1
0 .
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my header

o



4. In�niment Petits Equivalents (IPE)



Introduction

lim
x→0

cos(x)− 1

x2
est une forme indéterminée de type ” 0

0
”.

Il est difficile de lever cette indétermination car les fonctions trigonométriques et

polynomiales sont, pour le moment, difficilement comparables.

Pour surmonter cette difficulté, nous allons introduire la notion de fonctions

infiniment petites équivalentes (IPE).
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car les fonctions trigonométriques et

polynomiales sont, pour le moment, difficilement comparables.
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In�niment Petits Equivalents (IPE)

Définition :

Soient f et g deux fonctions définies sur un voisinage épointé de x0 ∈ R .

f et g sont des infiniments petits équivalents (IPE) au voisinage de x0 si

∗ lim
x→x0

f (x) = lim
x→x0

g(x) = 0 ( elles sont infiniment petites (IP) )

∗ et lim
x→x0

f (x)

g(x)
= 1 ( de façon équivalentes (E) ).

On écrit alors f ∼ g au voisinage de x0 .
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f et g sont des infiniments petits équivalents (IPE) au voisinage de x0 si

∗ lim
x→x0

f (x) = lim
x→x0

g(x) = 0 ( elles sont infiniment petites (IP) )

∗ et lim
x→x0

f (x)

g(x)
= 1 ( de façon équivalentes (E) ).
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On écrit alors f ∼ g au voisinage de x0 .

my header

o



In�niment Petits Equivalents (IPE)
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Exemple

Exemple :

Montrons que sin(x) ∼ x au voisinage de x = 0 .

Ces deux fonctions sont infiniments petites au voisinage de x = 0 :

lim
x→0

sin(x) = lim
x→0

x = 0 .

Montrons encore qu’elles sont équivalentes : lim
x→0

sin(x)

x
= 1 .

La fonction
sin(x)

x
est paire, il suffit donc de vérifier que lim

x→0+

sin(x)

x
= 1 .
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x→0

sin(x)

x
= 1 .

La fonction
sin(x)

x
est paire, il suffit donc de vérifier que lim

x→0+

sin(x)

x
= 1 .

my header

o



Exemple

Exemple : Montrons que sin(x) ∼ x au voisinage de x = 0 .

Ces deux fonctions sont infiniments petites au voisinage de x = 0 :

lim
x→0

sin(x) = lim
x→0

x = 0 .

Montrons encore qu’elles sont équivalentes : lim
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Exemple

Soit 0 < x < π
2

.

x

y

1O
A

C
B

x

tan(x)
sin(x)

aire (4OAB) ≤ aire (øOAB) ≤ aire (4OAC )

.
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aire (4OAB) ≤ aire (øOAB) ≤ aire (4OAC )

⇔ 1

2
[ 1 · sin(x) ] ≤ 1

2
[ x · 12 ] ≤ 1

2
[ 1 · tan(x) ]

⇔ sin(x) ≤ x ≤ tan(x) ⇔ 1 ≤ x

sin(x)
≤ 1

cos(x)

⇔ cos(x) ≤ sin(x)

x
≤ 1 , car x , sin(x) , cos(x) > 0 .

Or lim
x→0+

cos(x) = 1 , donc lim
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x
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Exemple

Illustration de cette limite :

O
x

y

lim
x→0

sin(x)

x
= 1y = 1

On remarque ici l’importance de la notion de voisinage épointé :

la fonction sin(x)
x

n’est pas définie en x = 0 , mais sa limite existe.
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Exemple

En conclusion :

sin(x) et x sont des infiniment petits équivalents au voisinage de x = 0 .

O
x

y

y = x

y = sin(x)

sin(x) ∼ x , (x → 0)
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au voisinage de x = 0 .

O
x

y

y = x

y = sin(x)

sin(x) ∼ x , (x → 0)

my header

o



Exemple

En conclusion :

sin(x) et x sont des infiniment petits équivalents au voisinage de x = 0 .
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IPE - produit

Théorème :

Soient f1 , f2 , g1 , g2 quatre fonctions définies sur un voisinage épointé de x0 .

Si f1 ∼ g1 et f2 ∼ g2 au voisinage de x0 , alors f1 · f2 ∼ g1 · g2 au voisinage

de x0 .

Démonstration : lim
x→x0

f1(x) = lim
x→x0

f2(x) = lim
x→x0

g1(x) = lim
x→x0

g1(x) = 0

⇒ lim
x→x0

f1(x) · f2(x) = 0 et lim
x→x0

g1(x) · g2(x) = 0 .

De plus lim
x→x0

f1(x)

g1(x)
= 1 = lim

x→x0

f2(x)

g2(x)
⇒ lim

x→x0

f1(x) · f2(x)

g1(x) · g2(x)
= 1 .
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Si f1 ∼ g1 et f2 ∼ g2 au voisinage de x0 , alors f1 · f2 ∼ g1 · g2 au voisinage

de x0 .

Démonstration : lim
x→x0

f1(x)

= lim
x→x0

f2(x) = lim
x→x0

g1(x) = lim
x→x0

g1(x) = 0

⇒ lim
x→x0

f1(x) · f2(x) = 0 et lim
x→x0

g1(x) · g2(x) = 0 .

De plus lim
x→x0

f1(x)

g1(x)
= 1 = lim

x→x0

f2(x)

g2(x)
⇒ lim

x→x0

f1(x) · f2(x)

g1(x) · g2(x)
= 1 .

my header

o



IPE - produit
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IPE - somme

Attention !

En général, si f1 ∼ g1 et f2 ∼ g2 au voisinage de x0 ,

on a pas f1 + f2 ∼ g1 + g2 au voisinage de x0 .

Contre-exemple :

au voisinage de x = 0 , on a x ∼ (x + x2) et (−x) ∼ (−x + x2) , car

∗ lim
x→0

x = lim
x→0

(x + x2) = 0 et lim
x→0

x

x + x2
= lim

x→0

1

1 + x
= 1

∗ et lim
x→0

(−x) = lim
x→0

(−x + x2) = 0 et lim
x→0

−x
−x + x2

= lim
x→0

1

1− x
= 1 .

∗ Mais lim
x→0

x + (−x)

(x + x2) + (−x + x2)
= lim

x→0

0

2x2
= 0 6= 1 .
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Attention ! En général, si f1 ∼ g1 et f2 ∼ g2 au voisinage de x0 ,

on a pas f1 + f2 ∼ g1 + g2 au voisinage de x0 .

Contre-exemple :

au voisinage de x = 0 , on a x ∼ (x + x2) et (−x) ∼ (−x + x2) , car

∗ lim
x→0

x = lim
x→0

(x + x2) = 0 et lim
x→0

x

x + x2
= lim

x→0

1

1 + x
= 1

∗ et lim
x→0

(−x) = lim
x→0

(−x + x2) = 0 et lim
x→0

−x
−x + x2

= lim
x→0

1

1− x
= 1 .

∗ Mais lim
x→0

x + (−x)

(x + x2) + (−x + x2)
= lim

x→0

0

2x2
= 0 6= 1 .

my header

o



IPE - somme
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Règle d'utiliation des IPE

Du comportement des IPE dans un produit et dans une somme, on déduit

La règle d’utilisation des IPE :

Dans un calcul de limite, on peut remplacer une fonction par son IPE,

uniquement dans une expression factorisée et jamais dans une somme.

Par exemple : lim
x→0

sin(2x)− 2 sin(x)

x3
6= lim

x→0

2x − 2x

x3
= lim

x→0

0

x3
= 0 .

Nous verrons tout à l’heure comment calculer cette limite.
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Exemples

Voici deux autres couples d’IPE au voisinage de x = 0 :

• lim
x→0

[ 1− cos(x) ] = 0 et

1− cos(x) = 2 sin2
(
x
2

)
∼ 2

(
x
2

)2
.

Donc 1− cos(x) ∼ x2

2
, (x → 0) .

O
x

y
y = x2

2

y = 1− cos(x)
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Exemples

Nous avons donc mis en évidence trois couples d’IPE :

• sin(x) ∼ x , au voisinage de x = 0 ,

• 1− cos(x) ∼ x2

2
, au voisinage de x = 0 ,

• tan(x) ∼ x , au voisinage de x = 0 ,

qui nous rendrons service dans les calculs de limite, à condition de respecter la

règle d’utilisation des IPE.

my header

o



Exemples

Nous avons donc mis en évidence trois couples d’IPE :

• sin(x) ∼ x , au voisinage de x = 0 ,

• 1− cos(x) ∼ x2

2
, au voisinage de x = 0 ,

• tan(x) ∼ x , au voisinage de x = 0 ,

qui nous rendrons service dans les calculs de limite, à condition de respecter la
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Exemple servant d'avertissement

Exemple :

Comment calculer lim
x→0

sin(2x)− 2 sin(x)

x3
?

sin(2x) ∼ 2x et 2 sin(x) ∼ 2x , lorsque x → 0 , mais on a vu qu’on ne peut

pas remplacer les deux sinus par leur IPE dans ce numérateur non factorisé.

lim
x→0

sin(2x)− 2 sin(x)

x3
= lim

x→0

2 sin(x) cos(x)− 2 sin(x)

x3

= lim
x→0

−2 sin(x) [ 1− cos(x) ]

x3
= lim

x→0

−2 x
�

x2

2

�
x3

= −1 .
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lim
x→0

sin(2x)− 2 sin(x)

x3
= lim

x→0

2 sin(x) cos(x)− 2 sin(x)

x3

= lim
x→0

−2 sin(x) [ 1− cos(x) ]

x3
= lim

x→0

−2 x
�

x2

2

�
x3

= −1 .

my header

o



Exemple servant d'avertissement

Exemple : Comment calculer lim
x→0

sin(2x)− 2 sin(x)

x3
?

sin(2x) ∼ 2x et 2 sin(x) ∼ 2x , lorsque x → 0 ,

mais on a vu qu’on ne peut

pas remplacer les deux sinus par leur IPE dans ce numérateur non factorisé.
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Remarque

Remarque :

Cette notion de fonctions infiniment petites équivalentes en x0 est un cas

particulier d’un concept plus général appelé Développement Limité (DL)

qui permet, sous certaines conditions, d’approximer une fonction donnée par une

fonction polynomiale.

Cette approximation est locale et sa précision varie avec le degré du polynôme.

Nous étudierons cette notion durant le semestre de printemps.

Voici l’illustration du développement limité de la fonction sinus en x = 0 :
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est un cas

particulier d’un concept plus général appelé Développement Limité (DL)
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my header

o



Exemple

O
x

y

y = sin x
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y = sin x y = x− x3

3!
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