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Exercice 1. Dans l’espace vectoriel M2(R) des matrices 2× 2 à coefficients réels, on donne le sous-ensemble :

W = {A ∈ M2(R) |A matrice diagonale}.

a. Donner quelques éléments de W et aussi quelques exemples de matrices 2× 2 n’appartenant pas à W .

b. Montrer que W est stable par multiplication scalaire.

c. Est-il stable par addition ? Est-ce que W est un sous-espace vectoriel de M2(R) ?

Solution:

a. Par définition, une matrice 2× 2 est diagonale si ses coefficients hors diagonaux sont nuls. Voici quelques exemples :(
0 0

0 0

)
,

(
1 0

0 1

)
,

(
−3 0

0 4
5

)
,

(√
2 0

0 π

)
. . .

Une matrice 2× 2 n’est pas diagonale si (au moins) l’un de ses coefficients hors diagonaux est non nul. Par exemple :(
0 1

0 0

)
,

(
1 0

−3 1

)
,

(
−3 1

2

7 4
5

)
,

( √
2 e

1
cos(1) π

)
. . .

b. Pour vérifier que W est stable par mutliplication scalaire, donnons-nous une matrice A de taille 2× 2, un réel λ et posons :

B = λA.

Supposons alors que A appartient à W , c’est-à-dire que A est une matrice diagonale :

A =

(
α 0

0 β

)
.

On obtient alors, par définition de la multiplication scalaire sur les matrices :

B = λA = λ

(
α 0

0 β

)
=

(
λα 0

0 λβ

)
.

La matrice B est donc diagonale. Autrement dit, elle appartient à W .

c. Le sous-ensemble W est bien stable par addition. Pour le montrer, donnons-nous deux matrices A et B de taille 2 × 2 et

posons :

C = A+B.

Supposons alors que A et B appartiennent à W , c’est-à-dire que A et B sont des matrices diagonales :

A =

(
α 0

0 β

)
et B =

(
γ 0

0 δ

)
.

On obtient alors, par définition de l’addition sur les matrices :

C = A+B =

(
α 0

0 β

)
+

(
γ 0

0 δ

)
=

(
α+ γ 0

0 β + δ

)
.

La matrice C est donc diagonale. Autrement dit, elle appartient à W . On peut donc finalement conclure que W est un

sous-espace vectoriel de M2(R) : il contient la matrice nulle (d’après a.), est stable par multiplication scalaire (d’après b.) et

aussi par addition (d’après c.).



Exercice 2. Dans l’espace vectoriel F(R,R) des fonctions numériques définies sur R, on donne le sous-ensemble :

W = {f ∈ F(R,R) | f est 2π-périodique}.

Montrer que W est un sous-espace vectoriel de F(R,R).

Solution: Rappelons pour commencer qu’une fonction f : R → R est dite 2π-périodique si et seulement si :

∀x ∈ R, f(x+ 2π) = f(x).

La fonction nulle appartient donc bien à W : elle vaut zéro partout, et a donc la même valeur en x et en x + 2π (de même que

toute fonction constante). Donnons-nous ensuite deux fonctions numériques f et g définies sur R, un réel λ et posons :

h = λf + g.

Supposons alors que f et g appartiennent à W , c’est-à-dire que :

∀x ∈ R, f(x+ 2π) = f(x) et g(x+ 2π) = g(x).

Par définition de la multiplication scalaire et de l’addition sur les fonctions, on a alors :

∀x ∈ R, h(x+ 2π) = (λf + g)(x+ 2π) = λf(x+ 2π) + g(x+ 2π) = λf(x) + g(x) = h(x),

ce qui montre que h appartient aussi à W .

Remarque : on pourrait bien sûr établir indépendamment la stabilité de W par multiplication scalaire et par addition.

Exercice 3. Dans l’espace vectoriel R3[X] des polynômes à coefficients réels de degré inférieur ou égal à 3 on donne :

W = {P (X) ∈ R3[X] |P (−1) = 0 et P (2) = 0}.

a. Donner des exemples d’éléments de R3[X] appartenant à W et d’autres n’appartenant pas à W .

b. W est-il stable par multiplication scalaire ? par addition ?

c. En conclusion, dire si W est un sous-espace vectoriel de R3[X] ou non.

Solution:

a. On sait qu’un polynôme s’annule en −1 et 2 si et seulement si il est divisible par le polynôme :

(X + 1)(X − 2) = X2 −X − 2.

Voici donc quelques exemples d’éléments de W :

0R3[X], X
2 −X − 2, 3X2 − 3X − 6, X(X2 −X − 2)︸ ︷︷ ︸

X3−X2−2X

, (2X − 1)(X2 −X − 2)︸ ︷︷ ︸
2X3−3X2−3X+2

. . .

Voici également quelques exemples de polynômes de degré inférieur ou égal à 3 n’appartenant pas à W :

1, X, X2 −X, X +X3︸ ︷︷ ︸
ne s’annulent ni en −1 ni en 2

, X + 1, X2 − 1, X3 −X2 − 2︸ ︷︷ ︸
s’annulent en −1 mais pas en 2

, X − 2, X2 − 4, X3 − 2X2︸ ︷︷ ︸
s’annulent en 2 mais pas en −1

. . .

b. Le sous-ensemble W est bien stable par multiplication scalaire. Pour le montrer, donnons-nous un polynôme P de degré

inférieur ou égal à 3, un réel λ et posons :

Q = λP.

Supposons alors que P appartient à W , c’est-à-dire que :

P (−1) = 0 et P (2) = 0.

Par définition de la multiplication scalaire sur les polynômes, on a alors :

Q(−1) = λP (−1) = 0 et Q(2) = λP (2) = 0.



Le polynôme Q s’annule en −1 et en 2 : il appartient donc à W . Montrons à présent que W est aussi stable par addition.

Pour cela, donnons-nous deux polynômes P et Q de degré inférieur ou égal à 3 et posons :

R = P +Q.

Supposons alors que P et Q appartiennent à W , c’est-à-dire que :

P (−1) = Q(−1) = 0 et P (2) = Q(2) = 0.

Par définition de l’addition sur les polynômes, on a alors :

R(−1) = P (−1) +Q(−1) = 0 et R(2) = P (2) +Q(2) = 0.

Le polynôme R s’annule en −1 et en 2 : il appartient donc à W .

c. En résumé, on a donc vu que W contient le polynôme nul (d’après a.), est stable par multiplication scalaire et aussi par

addition (d’après b.). C’est donc un sous-espace vectoriel de R3[X].

Exercice 4. Mêmes questions a., b. et c. qu’à l’exercice précédent mais avec le sous-ensemble suivant de R3[X] :

W = {P (X) ∈ R3[X] |P (−1) = 0 ou P (2) = 0}.

Solution:

a. Le sous-ensemble W étudié ici contient celui de l’exercice précédent, mais il ne lui est pas égal. Voici quelques exemples

d’éléments de W :

0R3[X], X
2 −X − 2, X3 −X2 − 2X︸ ︷︷ ︸
s’annulent en −1 et 2

, X + 1, X2 − 1, X3 −X2 − 2︸ ︷︷ ︸
s’annulent en −1 mais pas en 2

, X − 2, X2 − 4, X3 − 2X2︸ ︷︷ ︸
s’annulent en 2 mais pas en −1

. . .

Voici également quelques exemples de polynômes de degré inférieur ou égal à 3 n’appartenant pas à W , c’est-à-dire qui ne

s’annulent ni en −1 ni en 2 :

1, X, X2 −X, X +X3 . . .

b. Le sous-ensemble W est bien stable par multiplication scalaire. Pour le montrer, donnons-nous un polynôme P de degré

inférieur ou égal à 3, un réel λ et posons :

Q = λP.

Supposons alors que P appartient à W , c’est-à-dire que :

P (−1) = 0 ou P (2) = 0.

Par définition de la multiplication scalaire sur les polynômes, on a alors :

Q(−1) = λP (−1) = 0 ou Q(2) = λP (2) = 0.

Le polynôme Q s’annule en −1 ou en 2 : il appartient donc à W . Par contre, le sous-ensemble considéré ici n’est pas stable

par addition. Pour voir cela, considérons par exemple les deux polynômes suivants :

P (X) = X + 1 et Q(X) = X + 2.

Le premier s’annule en −1 : il appartient donc à W . Le deuxième s’annule en 2 : il appartient donc à W . Cependant, leur

somme :

(P +Q)(X) = P (X) +Q(X) = (X − 1) + (X + 2) = 2X + 1

ne s’annule ni en 1 ni en −2, si bien qu’elle n’appartient pas à W . En additionnant deux éléments de W on est donc ”sortis”

de W : ce sous-ensemble n’est pas stable par addition.

Exercice 5. Montrer que le sous-ensemble de Rn formé des n-uplets solutions du système linéaire (à coefficients réels) suivant :
α1,1x1+ · · ·+ α1,nxn = 0

· · ·
αp,1x1+ · · ·+ αp,nxn = 0

est un sous-espace vectoriel de Rn. Qu’en est-il si le second membre n’est pas nul ?



Solution: Appelons S l’ensemble des solutions de ce système. Observons tout d’abord que l’élément nul de Rn, c’est-à-dire :

0Rn = (0, . . . , 0)

appartient à S. Il est en effet solution du système, du fait que le second membre est nul. Cela permet d’ailleurs de répondre à la

deuxième question posée dans l’exercice : si le second membre du système n’est pas nul, alors S n’est pas un sous-espace vectoriel

de Rn (puisqu’il n’en contient pas l’élément nul) Donnons-nous maintenant deux solutions (x1, . . . , xn) et (y1, . . . , yn) du système,

c’est-à-dire deux éléments de S : 
α1,1x1+ · · ·+ α1,nxn = 0

· · ·
αp,1x1+ · · ·+ αp,nxn = 0

et


α1,1y1+ · · ·+ α1,nyn = 0

· · ·
αp,1y1+ · · ·+ αp,nyn = 0.

Pour tout réel λ, on observe alors que :

λ(x1, . . . , xn) + (y1, . . . , yn) = (λx1 + y1, . . . , λxn + yn)

est aussi solution, car :
α1,1(λx1 + y1)+ · · ·+ α1,n(λxn + yn) = λ(α1,1x1+ · · ·+ α1,nxn) + (α1,1y1+ · · ·+ α1,nyn) = 0

· · ·
αp,1(λx1 + y1)+ · · ·+ αp,n(λxn + yn) = λ(αp,1x1+ · · ·+ αp,nxn) + (αp,1y1+ · · ·+ αp,nyn) = 0.

On peut donc maintenant affirmer que S est bien un sous-espace vectoriel de Rn.

Remarque : les sous-ensembles S étudiés ici généralisent les droites vectorielles de R2 (cas d’une équation à deux variables), les

droites vectorielles de R3 (cas de deux équations à trois variables) et les plans vectoriels de R3 (cas d’une équation à trois variables).

Exercice 6. Dans l’espace vectoriel F(R,R) des fonctions numériques définies sur R, on donne le sous-ensemble :

W = {f ∈ F(R,R) | sin ◦f = 0}.

a. Donner quelques exemples de fonctions f : R → R appartenant à W .

b. Montrer que W est stable par addition.

c. Est-il stable par multiplication scalaire ? Est-ce que W est un sous-espace vectoriel de F(R,R) ?

Solution:

a. Une fonction numérique f définie sur R appartient àW si et seulement si la composée sin ◦f est l’application nulle, c’est-à-dire :

∀x ∈ R, (sin ◦f)(x) = sin(f(x)) = 0.

Autrement dit, si et seulement si la fonction f est à valeur dans l’ensemble πZ des multiples entiers de π :

∀x ∈ R, ∃kx ∈ Z, f(x) = kxπ

(attention : l’entier kx peut dépendre de la valeur de x). Par exemple, la fonction constante nulle appartient à W , tout comme,

plus généralement, la fonction constante :

R → R, x → kπ

pour tout choix d’entier k. Comme il n’y a ici aucune exigence de continuité, on peut imaginer de nombreux autres exemples

de telles fonctions, comme :

f : R → R, x →

{
π si x < 0

− 5π si x ⩾ 0

Tout ce qui compte, c’est qu’à chaque fois qu’on évalue f on tombe sur un multiple entier de π.

b. Donnons-nous deux fonctions numériques f et g définies sur R et posons :

h = f + g.



Supposons alors que f et g appartiennent à W . Soit aussi x ∈ R. D’après ce qu’on a compris au a., il existe deux entiers

relatifs k et l tels que :

f(x) = kπ et g(x) = lπ.

Par définition de l’addition sur les fonctions numériques on obtient alors :

h(x) = (f + g)(x) = f(x) + g(x) = kπ + lπ = (k + l)π.

Autrement dit, h est à valeur dans πZ, ce qui nous permet de conclure que h appartient également à W .

Remarque : on pourrait aussi utiliser la formule d’addition pour le sinus, vue au cours de trigonométrie. En effet :

∀x ∈ R, sin(h(x)) = sin(f(x) + g(x)) = sin(f(x))︸ ︷︷ ︸
=0

cos(g(x)) + cos(f(x)) sin(g(x))︸ ︷︷ ︸
=0

= 0.

c. Le sous-ensemble W n’est pas stable par multiplication scalaire. Pour voir cela, considérons par exemple la fonction constante

égale à π définie sur R :

f : R → R, x → π.

Comme on a vu au a. cette fonction appartient à W . Par contre, la fonction :

1
πf : R → R, x → 1,

c’est-à-dire la fonction constante égale à 1, n’appartient pas à W puisqu’elle n’est pas à valeur dans πZ. En multipliant

l’élément f de W par le scalaire λ = 1
π on est donc ”sortis” de W : W n’est pas stable par multiplication scalaire (et n’est

donc pas un sous-espace vectoriel de F(R,R)).

Exercice 7. Même questions a., b. et c. qu’à l’exercice 1 mais avec le sous-ensemble :

W = {A ∈ M2(R) |A matrice diagonalisable}.

Solution:

a. Toute matrice diagonale est a fortiori diagonalisable. Mais l’ensemble W considéré ici est ”plus gros” que l’ensemble considéré

à l’exercice 1. Par exemple, les matrices suivantes sont diagonalisables mais non diagonales :(
3 6

−1 −2

)
,

(
2 −6
1
3 −1

)
︸ ︷︷ ︸

matrices de projection

,

(
0 1

1 0

) (
2 1

−3 −2

)
︸ ︷︷ ︸

matrices de symétrie

,

(
1 5

0 7

)
,

(
e 0√
3 π

)
︸ ︷︷ ︸

triangulaires avec 2 valeurs propres distinctes

. . .

Voici aussi quelques exemples de matrices 2× 2 non diagonalisables :(
0 −1

1 0

)
, 1√

2

(
1 1

−1 1

)
︸ ︷︷ ︸

matrices de rotation

,

(
0 1

0 0

)
,

(
4 2

−8 −4

)
︸ ︷︷ ︸

matrices non nulle dont la seule valeur propre est 0

. . .

b. Pour vérifier que W est stable par mutliplication scalaire, donnons-nous une matrice A de taille 2× 2, un réel λ et posons :

B = λA.

Supposons alors que A appartient à W , c’est-à-dire que A est une matrice diagonalisable. On peut donc écrire :

P−1AP =

(
α 0

0 β

)
pour une certaine matrice inversible P de taille 2× 2. On en déduit alors :

P−1BP = P−1(λA)P = λP−1AP = λ

(
α 0

0 β

)
=

(
λα 0

0 λβ

)
.

La matrice B est donc diagonalisable. Autrement dit, elle appartient à W .



c. L’ensemble W n’est pas stable par addition (et n’est donc pas un sous-espace vectoriel de V ). Pour voir cela, considérons par

exemple les deux matrices suivantes :

A =

(
1 1

0 −1

)
et B =

(
−1 0

0 1

)
.

La matrice A a deux valeurs propres distinctes, à savoir 1 et −1. On sait donc qu’elle est diagonalisable. La matrice B est

quant à elle diagonale (et donc diagonalisable). On voit donc que A et B sont éléments de W . Or en les additionnant on

obtient la matrice :

A+B =

(
1 1

0 −1

)
+

(
−1 0

0 1

)
=

(
0 1

0 0

)
qui n’est pas diagonalisable (elle possède pour unique valeur propre 0 et est différente de la matrice nulle). En additionnant

deux éléments de W on est donc ”sortis” de W : ce sous-ensemble n’est pas stable par addition.


