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Exercice 1. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (−x− 6y − 6z, 2y + z, z).

a. Montrer que le plan vectoriel d’équation y + z = 0 est stable par f .

b. Le plan vectoriel d’équation x+ y = 0 est-il stable par f ?

c. Déterminer tous les plans vectoriels de R3 stables par f .

Solution: Notons :

A =

−1 −6 −6
0 2 1

0 0 1


la matrice de f en base canonique.

a. On donne deux méthodes pour résoudre cette question. La première consiste à revenir à la définition. Pour cela, donnons-nous

un élément v du plan vectoriel d’équation y + z = 0 :

v = (x, y, z) = (x, y,−y)︸ ︷︷ ︸
car y+z=0

et montrons que f(v) vérifie encore cette équation. On trouve :

f(v) = f(x, y,−y) = (−x− 6y + 6y, 2y − y,−y) = (−x, y,−y)︸ ︷︷ ︸
vérifie bien y+z=0

.

Dans la deuxième méthode, utilisons la caractérisation des équations de plans stables vue au cours, à savoir : une équation

définit un plan stable par f si et seulement si les coefficients qui la constituent (une fois mis en colonne) forment un vecteur

propre de la matrice tA. Or on peut observer ici que :

tA

0

1

1

 =

−1 0 0

−6 2 0

−6 1 1

0

1

1

 =

0

2

2

 = 2

0

1

1

 .

b. Le plan vectoriel d’équation x+ y = 0 n’est pas stable par f , comme on peut le voir en mettant en défaut la définition. Par

exemple, le triplet (0, 0, 1) appartient à ce plan, mais pas son image par f :

f(0, 0, 1) = (−6, 1, 1)︸ ︷︷ ︸
ne vérifie pas x+y=0

.

Une autre option serait ici de constater que :

tA

1

1

0

 =

−1−4
−5

 n’est pas proportionnel à

1

1

0

 .

.

c. Le polynôme caractéristique de f vaut :

det(A−XI3) =

∣∣∣∣∣∣
−1−X −6 −6

0 2−X 1

0 0 1−X

∣∣∣∣∣∣ = (−1−X)(2−X)(1−X).

La matrice A possède donc trois valeurs propres, à savoir −1, 1 et 2. On sait alors qu’il en est de même de sa transposée :

tA =

−1 0 0

−6 2 0

−6 1 1

 .



Ecrivons ensuite les matrices :

tA+ I3 =

 0 0 0

−6 3 0

−6 1 2

 , tA− I3 =

−2 0 0

−6 1 0

−6 1 0

 , tA− 2I3 =

−3 0 0

−6 0 0

−6 1 −1

 .

On sait par avance que chacune d’elle est de rang 2 si bien qu’à chacune des valeurs propres il va correspondre exactement

un plan stable. On trouve alors :

tA

a

b

c

 = −

a

b

c

 ⇔


0 = 0

− 6a+ 3b = 0

− 6a+ b+ 2c = 0

⇔

{
b = 2a

c = 2a
⇔

a

b

c

 = a

1

2

2

 .

Le plan vectoriel d’équation x+ 2y + 2z = 0 est donc stable par f . De plus :

tA

a

b

c

 =

a

b

c

 ⇔


− 2a = 0

− 6a+ b = 0

− 6a+ b = 0

⇔

{
a = 0

b = 0
⇔

a

b

c

 = c

0

0

1

 .

Le plan vectoriel d’équation z = 0 est donc stable par f . Enfin :

tA

a

b

c

 = 2

a

b

c

 ⇔


− 3a = 0

− 6a = 0

− 6a+ b− c = 0

⇔

{
a = 0

b = c
⇔

a

b

c

 = c

0

1

1

 .

On retrouve ici le plan étudié au a., c’est-à-dire celui d’équation y + z = 0.

Exercice 2. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (−9x+ 5y − 4z,−14x+ 7y − 6z,−2x− z).

a. Calculer f(1, 2, 1). En déduire une valeur propre de f .

b. En utilisant le a., trouver l’équation d’un plan vectoriel de R3 qui est stable par f .

c. Déterminer une base B de R3 pour laquelle la matrice [f ]B, que l’on calculera, est diagonale par blocs.

Solution: Notons :

A =

 −9 5 −4
−14 7 −6
−2 0 −1


la matrice de f en base canonique.

a. Un calcul direct donne :

f(1, 2, 1) = (−9 + 10− 4,−14 + 14− 6,−2− 1) = (−3,−6,−3) = −3(1, 2, 1).

On peut en déduire que −3 est une valeur propre de f .

b. D’après le a. on sait que −3 est valeur propre de la matrice A, et donc aussi de sa transposée :

tA =

−9 −14 −2
5 7 0

−4 −6 −1

 .

Ecrivons la matrice :

tA+ 3I3 =

−6 −14 −2
5 10 0

−4 −6 2

 .

On trouve alors :

tA

a

b

c

 = −3

a

b

c

 ⇔


− 6a− 14b− 2c = 0

5a+ 10b = 0

− 4a− 6b+ 2c = 0

⇔


− 2b− 2c = 0

a = −2b
2b+ 2c = 0

⇔

{
a = −2b
c = −b

⇔

a

b

c

 = −b

 2

−1
1

 .

Le plan vectoriel d’équation 2x− y + z = 0 est donc stable par f .



c. Introduisons la base suivante de R3 :

B = (1, 2, 0), (0, 1, 1)︸ ︷︷ ︸
base de 2x−y+z=0

, (1, 2, 1).

On a alors : 
f(1, 2, 0) = (1, 0,−2) = (1, 2, 0)− 2(0, 1, 1)

f(0, 1, 1) = (1, 1,−1) = (1, 2, 0)− (0, 1, 1)

f(1, 2, 1) = (−3,−6,−3) = −3(1, 2, 1)

si bien que la matrice de f en base B est bien diagonale par blocs :

[f ]B =

 1 1 0

−2 −1 0

0 0 −3

 .

Exercice 3. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (−2y + z, x− 3y,−x+ y − 3z).

a. Calculer sous forme factorisée le polynôme caractéristique de f .

b. L’application f est-elle diagonalisable ? Déterminer tous les vecteurs propres de f .

c. Identifier tous les plans vectoriels de R3 stables par f . L’application f est-elle diagonalisable par blocs ?

Solution: Notons :

A =

 0 −2 1

1 −3 0

−1 1 −3


la matrice de f en base canonique.

a. Le polynôme caractéristique de f vaut :∣∣∣∣∣∣
−X −2 1

1 −3−X 0

−1 1 −3−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−X −2−X 1

1 −2−X 0

−1 0 −3−X

∣∣∣∣∣∣ = −(2 +X)

∣∣∣∣∣∣
−X 1 1

1 1 0

−1 0 −3−X

∣∣∣∣∣∣ = · · ·

· · · = −(2 +X)

∣∣∣∣∣∣
−1−X 0 1

1 1 0

−1 0 −3−X

∣∣∣∣∣∣ = −(2 +X)

∣∣∣∣−1−X 1

−1 −3−X

∣∣∣∣ = −(2 +X)(X2 + 4X + 4) = −(2 +X)3.

Dans cette série d’égalités, la première est obtenue via l’opération C2 ← C2+C1, la seconde par extraction du facteur −2−X,

la troisième via l’opération L1 ← L1 − L2 et la quatrième en développant par rapport à la deuxième colonne.

b. D’après a., on sait que l’application f possède une seule valeur propre, à savoir −2. Comme f n’est pas l’application −2 idR3

on peut donc conclure qu’elle n’est pas diagonalisable. Calculons alors la matrice :

A+ 2I3 =

 2 −2 1

1 −1 0

−1 1 −1

 .

On sait par avance qu’elle est de rang 2. Le sous-espace Ker(f + 2 idR3) est l’ensemble des solutions du système :
2x− 2y + z = 0

x− y = 0

− x+ y − z = 0

⇔

{
x = y

z = 0
⇔ (x, y, z) = y(1, 1, 0).

Il s’agit donc de la droite vectorielle engendrée par (1, 1, 0).

c. On a vu au a. que la matrice A possède −2 pour unique valeur propre. On sait qu’il en est de même de sa transposée :

tA =

 0 1 −1
−2 −3 1

1 0 −3

 .



Ecrivons alors la matrice :

tA+ 2I3 =

 2 1 −1
−2 −1 1

1 0 −1

 .

On sait par avance qu’elle est de rang 2 si bien que f possède un unique plan stable. On trouve alors :

tA

a

b

c

 = −2

a

b

c

 ⇔


2a+ b− c = 0

− 2a− b+ c = 0

a− c = 0

⇔

{
b = −a
c = a

⇔

a

b

c

 = a

 1

−1
1

 .

Le plan vectoriel d’équation x− y+ z = 0 est donc stable par f , et c’est le seul. Observons alors que tous les vecteurs propres

de f appartiennent à ce plan, puisqu’ils sont proportionnels à (1, 1, 0) et que :

1− 1 + 0 = 0.

Par conséquent, il est impossible de trouver un plan vectoriel de R3 stable par f et un vecteur propre de f n’appartenant pas

à ce plan : l’application linéaire f n’est pas diagonalisable par blocs.

Exercice 4. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (3x− 4y − 4z, 3x− 5y − 8z,−2x+ 4y + 7z).

a. Calculer le polynôme caractéristique de f et le factoriser. L’application f est-elle diagonalisable ?

b. Identifier tous les plans vectoriels de R3 stables par f .

c. Déterminer une base B de R3 telle que la matrice [f ]B est diagonale par blocs.

Solution: Notons :

A =

 3 −4 −4
3 −5 −8
−2 4 7


la matrice de f en base canonique.

a. Le polynôme caractéristique de f vaut :∣∣∣∣∣∣
3−X −4 −4

3 −5−X −8
−2 4 7−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
3−X −4 0

3 −5−X X − 3

−2 4 3−X

∣∣∣∣∣∣ = (3−X)

∣∣∣∣∣∣
3−X −4 0

3 −5−X −1
−2 4 1

∣∣∣∣∣∣ = · · ·

· · · = (3−X)

∣∣∣∣∣∣
3−X −4 0

1 −1−X 0

−2 4 1

∣∣∣∣∣∣ = (3−X)

∣∣∣∣3−X −4
1 −1−X

∣∣∣∣ = (3−X)(X2 − 2X + 1) = (3−X)(X − 1)2.

Dans cette série d’égalités, la première est obtenue via l’opération C3 ← C3−C2, la seconde par extraction du facteur 3−X,

la troisième via L2 ← L2 +L3 et la quatrième par développement par rapport à la troisième colonne. L’application f possède

donc deux valeurs propres : 3, de multiplicité algébrique (et donc aussi géométrique) égale à 1 et 1, de multiplicité algébrique

2. Pour décider si elle est diagonalisable, calculons la matrice :

A− I3 =

 2 −4 −4
3 −6 −8
−2 4 6

 .

Cette matrice est de déterminant nul (car 1 est valeur propre de A) et elle n’est visiblement pas de rang inférieur ou égal à 1.

Par conséquent, elle est de rang 2. On peut donc conclure que la valeur propre 1 est de multiplicité géométrique 1 : f n’est

pas diagonalisable.

b. On a vu au a. que la matrice A possède deux valeurs propres, à savoir 1 et 3. On sait qu’il en est de même de sa transposée :

tA =

 3 3 −2
−4 −5 4

−4 −8 7

 .



Ecrivons alors les matrices :

tA− I3 =

 2 3 −2
−4 −6 4

−4 −8 6

 , tA− 3I3 =

 0 3 −2
−4 −8 4

−4 −8 4

 .

On sait par avance que chacune d’elle est de rang 2 si bien qu’à chacune des valeurs propres il va correspondre exactement

un plan stable. On trouve alors :

tA

a

b

c

 =

a

b

c

 ⇔


2a+ 3b− 2c = 0

− 4a− 6b+ 4c = 0

− 4a− 8b+ 6c = 0

⇔

{
2a+ 3b− 2c = 0

− 2b+ 2c = 0
⇔

{
c = −2a
b = c

⇔

a

b

c

 = a

 1

−2
−2

 .

Le plan vectoriel d’équation x− 2y − 2z = 0 est donc stable par f . De plus :

tA

a

b

c

 = 3

a

b

c

 ⇔


3b− 2c = 0

− 4a− 8b+ 4c = 0

− 4a− 8b+ 4c = 0

⇔

{
c = 3

2b

a = − 1
2b

⇔

a

b

c

 = 1
2b

−12
3

 .

Le plan vectoriel d’équation −x+ 2y + 3z = 0 est donc stable par f .

c. Commençons par identifier les vecteurs propres de f . Pour cela, écrivons les matrices :

A− I3 =

 2 −4 −4
3 −6 −8
−2 4 6

 , et A− 3I3 =

 0 −4 −4
3 −8 −8
−2 4 4

 .

On sait par avance que chacune d’elle est de rang 2. Le sous-espace Ker(f − idR3) est l’ensemble des solutions du système :
2x− 4y − 4z = 0

3x− 6y − 8z = 0

− 2x+ 4y + 6z = 0

⇔


x = 2y + 2z

− 2z = 0

2z = 0

⇔

{
x = 2y

z = 0
⇔ (x, y, z) = y(2, 1, 0).

Il s’agit donc de la droite vectorielle engendrée par (2, 1, 0). Le sous-espace Ker(f − 3 idR3) est l’ensemble des solutions du

système : 
− 4y − 4z = 0

3x− 8y − 8z = 0

− 2x+ 4y + 4z = 0

⇔


y = −z
x = 0

− 2x = 0

⇔

{
x = 0

y = −z
⇔ (x, y, z) = z(0,−1, 1).

Il s’agit donc de la droite vectorielle engendrée par (0,−1, 1). Introduisons alors la base suivante de R3 :

B = (2, 1, 0), (3, 0, 1)︸ ︷︷ ︸
base de −x+2y+3z=0

, (0,−1, 1).

On a alors : 
f(2, 1, 0) = (2, 1, 0)

f(3, 0, 1) = (5, 1, 1) = (2, 1, 0) + (3, 0, 1)

f(0,−1, 1) = (0,−3, 3) = 3(0,−1, 1)
si bien que la matrice de f en base B est bien diagonale par blocs :

[f ]B =

1 1 0

0 1 0

0 0 3

 .

Observons pour terminer que pour le choix de base que l’on a fait, cette matrice est aussi triangulaire supérieure.

Exercice 5. On donne, en fonction des réels α, β et γ, l’application linéaire :

f : R3 → R3, (x, y, z)→ (−αy − βz, αx− γz, βx+ γy).

a. Calculer sous forme factorisée le polynôme caractéristique de f .

b. A quelle condition sur α, β et γ l’application linéaire f est-elle diagonalisable ?

c. Montrer que f est diagonalisable par blocs.



Solution: Notons :

A =

0 −α −β
α 0 −γ
β γ 0


la matrice de f dans la base canonique.

a. On sait que le polynôme caractéristique de f est donné par la formule suivante :

χf (X) = −X3 + (0 + 0 + 0)︸ ︷︷ ︸
trA

X2 − (

∣∣∣∣0 −α
α 0

∣∣∣∣+ ∣∣∣∣0 −β
β 0

∣∣∣∣+ ∣∣∣∣0 −γ
γ 0

∣∣∣∣)X +

∣∣∣∣∣∣
0 −α −β
α 0 −γ
β γ 0

∣∣∣∣∣∣︸ ︷︷ ︸
detA

.

Or, on a, d’une part : ∣∣∣∣0 −α
α 0

∣∣∣∣ = α2,

∣∣∣∣0 −β
β 0

∣∣∣∣ = β2,

∣∣∣∣0 −γ
γ 0

∣∣∣∣ = γ2

et, d’autre part : ∣∣∣∣∣∣
0 −α −β
α 0 −γ
β γ 0

∣∣∣∣∣∣ = −α
∣∣∣∣−α −β
γ 0

∣∣∣∣+ β

∣∣∣∣−α −β
0 −γ

∣∣∣∣ = −αβγ + αβγ = 0.

Par conséquent,

χf (X) = −X3 − (α2 + β2 + γ2)X = −X(X2 + α2 + β2 + γ2).

b. Dans le cas où :

α = β = γ = 0

on voit que f est l’application nulle, si bien qu’elle est diagonalisable. Dans le cas où (au moins) l’un des réels α, β, γ est

non nul, on voit d’après le calcul fait au a. que f ne possède qu’une seule valeur propre, à savoir 0, et que celle-ci est de

multiplicité algébrique (et donc aussi géométrique) égale à 1 :

χf (X) = −X(X2 + α2 + β2 + γ2︸ ︷︷ ︸
>0

).

Par conséquent, f n’est pas diagonalisable dans ce cas.

c. Il suffit d’établir que f est diagonalisable par blocs dans le cas où (au moins) l’un des réels α, β, γ est non nul. D’après b.,

f possède alors une seule valeur propre, à savoir 0, de multiplicité géométrique 1. Le sous-espace propre correspondant, qui

n’est autre que Ker f , formé des solutions du système linéaire :
− αy − βz = 0

αx− γz = 0

βx+ γy = 0

est donc une droite vectorielle. Observons alors que (γ,−β, α) est une solution non nulle de ce système. On en déduit :

Ker f = Vect((γ,−β, α)).

Passons à la recherche d’un plan vectoriel de R3 stable par f . Pour cela, observons que :

tA =

 0 α β

−α 0 γ

−β −γ 0

 = −A

(la matrice A est antisymétrique). On voit alors que :

tA

 γ

−β
α

 = −A

 γ

−β
α

 =

0

0

0

 ,

si bien que le plan vectoriel d’équation γx − βy + αz = 0 est stable par f . En résumé, on a trouvé un plan vectoriel stable

par f ainsi qu’un vecteur propre de f qui se trouve en dehors de ce plan stable, car :

γ · γ − β · (−β) + α · α = α2 + β2 + γ2 ̸= 0.

Ceci suffit à prouver que f est diagonalisable par blocs.



Exercice 6. On donne une application linéaire f : R3 → R3 et un plan vectoriel V de R3. Montrer que :

V stable par f ⇔ ∃ω ∈ R, Im(f − ω idR3) ⊂ V.

Solution: On raisonne par double implication. Pour montrer ”⇒”, fixons-nous une équation décrivant le plan vectoriel V :

V : ax+ by + cz = 0.

On note aussi A la matrice de f en base canonique. Par hypothèse, le plan vectoriel V est stable par f . On sait donc qu’il existe

une valeur propre ω de f telle que :

tA

a

b

c

 = ω

a

b

c

 ⇔
(
a b c

)
A = ω

(
a b c

)
.

Donnons-nous alors v = (x, y, z) ∈ R3 et posons f(x, y, z) = (X,Y, Z). On obtient :

aX + bY + cZ =
(
a b c

)X

Y

Z

 =
(
a b c

)
A

x

y

z

 = ω
(
a b c

)x

y

z

 = ω(ax+ by + cz),

ce qui permet d’établir que :

f(v)− ωv︸ ︷︷ ︸
(f−ω idR3 )(v)

= (X − ωx, Y − ωy, Z − ωz)

appartient à V , puisque :

a(X − ωx) + b(Y − ωy) + c(Z − ωz) = (aX + bY + cZ)− ω(ax+ by + cz) = 0.

Comme ceci a lieu pour tout v ∈ R3, on a bien montré que :

Im(f − ω idR3) = {f(v)− ωv | v ∈ R3} ⊂ V.

Passons à la preuve de ”⇐”, c’est-à-dire que l’on suppose maintenant que :

Im(f − ω idR3) ⊂ V

pour un certain réel ω. Etant donné un élément v de V , on voit alors que :

f(v) = f(v)− ωv︸ ︷︷ ︸
∈V

+ ωv︸︷︷︸
∈V

.

Par conséquent, f(v) appartient à V , comme somme de deux éléments de V . On a bien montré que V est stable par f .


