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Série 21

Exercice 1. On donne I'application linéaire :
f:R3 S R3 (z,y,2) = 2z —4y,z —3y+2z,—c+y+2).

a. Calculer le polynome caractéristique de f et le factoriser.
b. f est-elle diagonalisable ? Si oui, déterminer une base propre pour f.

c. Représenter sur un croquis les sous-espaces propres de f ainsi qu'un point (z,y, z) et son image f(z,y, z) par f.

Solution: Notons :

2 -4 0
A=|1 -3 1
-1 1
la matrice de f dans la base canonique.
a. Calculons le polynéme caractéristique de f :
2—-X —4 0 2-X -2-X 0 1-X 0 -1

1 -3-X 1 = 1 -2-X 1 = 1 -2-X 1 =

-1 1 1-X -1 0 1-X -1 0 1-X

o= —(X 4 2) 4 1-x|7T —(X4+2)(1-X)*"-1)=—-(X+2)X(X —-2).

Dans cette série d’égalités, la premiere est obtenue via 'opération Cy <— Cs + C, la seconde via Ly < L1 — Lo et la troisieme
par développement par rapport a la deuxiéme colonne.

b. L’application linéaire f possede trois valeurs propres distinctes : elle est donc diagonalisable. Par ailleurs on sait que pour
produire une base propre pour f il suffit de sélectionner un vecteur propre (non nul) dans chaque sous-espace propre et de les
"mettre ensemble” : la famille obtenue est automatiquement une base de R3, et elle est formée de vecteurs propres. Ecrivons
alors les trois matrices :

4 -4 0 2 —4 0 0 -4
A+2L;=|1 -1 1|, A=|1 -3 1|, A-2L,=(1 -5 1
-1 1 3 -1 1 1 -1 1 -1

On sait par avance que chacune d’elle est de rang 2. Le sous-espace Ker(f + 2idgs) est I’ensemble des solutions du systéme :

dr —4y =0
==z

r—y+z=0 & {y 0 < (z,y,2) =x(1,1,0).
Zz =

—z+y+3z2=0

11 s’agit donc de la droite vectorielle engendrée par (1,1, 0). Le sous-espace Ker f est 'ensemble des solutions du systeme :

2 —4y =0
T =2y
x—3y+z2=0 & & (x,y,2)=y(2,1,1).
z =
—z+y+2=0 Y
Il s’agit donc de la droite vectorielle engendrée par (2,1,1). Le sous-espace Ker(f — 2idgs) est 'ensemble des solutions du
systeme :
—4y=0
y=20
x—5y+z2=0 & { & (z,y,2) =2(1,0,-1).
z=-—x
—z4+y—2=0

Il ’agit donc de la droite vectorielle engendrée par (1,0, —1). Posons alors :
B=(1,1,0), (2,1,1), (1,0,—1).

La famille B est une base propre pour f. On a :

|
N
o oo
N o o



c. La figure suivante représente les trois sous-espaces propres de f ainsi qu’un point (z,y, z) et son image f(z,y,z) par f :

Ker f: 3=V

Une fois (z,y,2z) décomposé selon les trois axes, on "passe” & f(x,y,2) de la fagon suivante : la ”coordonnée orange” est
multipliée par —2, la ”coordonnée bleue” est mise a zéro et la ”coordonnée verte” est quant a elle multipliée par 2.

Exercice 2. On donne I'application linéaire :
f:R® 5 R3 (z,y,2) = (4 — 5z, -2z + y + 42,3z + 2y — 22).

a. Calculer f(1,—1,1). En déduire une valeur propre de f.

b. L’application linéaire f est-elle diagonalisable ? Justifier votre réponse.

Solution:

a. Un calcul direct donne :
f(1,-1,1)=4-5,-2—-1+4+4,3—-2-2)=(-1,1,-1) = —(1,-1,1).

On en déduit que (1,—1,1) est un vecteur propre pour f, associé a la valeur propre —1.

b. Calculons le polynéme caractéristique de f. On trouve :

4-X 0 -5 4-X 0 -5 4-X 0 -5
-2 1-X 4 |=2-X 1-X -1 |=|-1-X -1-X 1+X|=--
3 2 —2-X 3 2 —2-X 3 2 —2-X

= _10_X _05 1;5X =—(1+X) =X = —(1+X)(X? —4X +5)
- - 1-X —X| '

1-X -X -2-X
Dans cette série d’égalités, la premiere est obtenue via I'opération Lo < Lo+ L1, la seconde via Lo < Lo — L3, la troisieme via
les opérations Cy < C7 + C5 et Cy < C5 + C5 et la quatrieme en développant par rapport a la deuxiéme ligne. Remarquons
a présent que le trindme qui est apparu dans la factorisation a pour discriminant —4 < 0 et n’a donc pas de racine. La valeur
propre —1 de f trouvée au a. est donc la seule. Comme f n’est pas 'application —idgs on peut conclure qu’elle n’est pas
diagonalisable.

Remarque : le fait que —1 soit de multiplicité algébrique 1 entraine qu’elle est aussi de multiplicité géométrique 1. Le
sous-espace vectoriel Ker(f + idgs) est donc une droite vectorielle. D’apres a., c’est donc la droite vectorielle engendrée par
(1,-1,1).

Exercice 3. On donne I'application linéaire :
f:R3 =R (2,9,2) = %(41’—2y —Tz,—x+ 3y — Tz,—x — 2y — 22).

a. Calculer le polynome caractéristique de f. Donner les valeurs propres de f et leurs multiplicités algébriques.




b. f est-elle diagonalisable ? Si oui, déterminer une base propre pour f.

c. Faire apparaitre sur un croquis un point (z,y, z) et son image f(z,y, z) par f. Quelle est la nature géométrique de f?

Solution: Notons :

4 -2 -7
A=1-1 3 -7

-1 -2 -2

la matrice de f dans la base canonique.
a. Calculons le polynéme caractéristique de f. On trouve :
4—-5X -2 -7 5—-5X 5X -5 0 5—-5X 0 0
1 1 1
| 1 3—-5X -7 =1 —1 3-5X -7 =1 —1 2—-5X -7 =
-1 -2 —2—-5X -1 -2 —2-5X -1 -3 —2-5X
2—-5X -7
o= (1-X) O =(1—X)(25X% —25) = —(X +1)(X — 1)

Dans cette série d’égalités, la premiere est obtenue via 'opération L < L1 — Lo, la seconde via Cs < Cy + C] et la troisieme
en développant par rapport a la premiére ligne. L’application linéaire f possede donc deux valeurs propres, a savoir : —1, de
multiplicité algébrique 1 et 1, de multiplicité algébrique 2.

. Ecrivons les deux matrices :

9 -2 -7 -1 -2 -7 1
A+L=1-1 8 -7|, A-L=1[-1 -2 —-7|==-%(1])(1 2 7).
-1 -2 3 -1 -2 -7 1

Celle de droite est de rang 1, et la décomposition écrite montre que le sous-espace propre associé est le plan vectoriel :
Ker(f —idgs) : x4+ 2y + 72 = 0.

A ce stade on peut d’ores et déja affirmer que f est diagonalisable. Pour trouver une base propre de f il suffit alors de ”mettre
ensemble” une base du plan vectoriel que l'on vient d’identifier et un vecteur propre (non nul) pour la valeur propre —1. Le
sous-espace Ker(f + idgs) est Pensemble des solutions du systeme :

9z — 2y — 72 =0 9z — 2y — 72 =0
=z

—x48—-T72=0 < —x48y—-T72=0 < { & (z,y,2) =2(1,1,1).
=z

—r—2y+32=0 — 10y + 102 =0 Y

Il s’agit donc de la droite vectorielle engendrée par (1,1, 1). Posons alors :
B=(2,-1,0), (7,0,—-1), (1,1,1).
La famille B est une base propre pour f. On a :

10 0
fls=10 1 0
00 -1

c. La figure suivante représente les deux sous-espaces propres de f ainsi qu’un point (z,y, z) et son image f(z,y,z) par f :



Ker(f —idgs) :2 4+ 294+ 7z=10

Une fois (z,y, z) décomposé selon les trois axes, on "passe” a f(x,y,z) de la facon suivante : la ”coordonnée orange” et la
”coordonnée bleue” sont préservées, tandis que ”coordonnée verte” est multipliée par —1. L’application linéaire f se visualise
donc comme la symétrie par rapport au plan vectoriel d’équation = + 2y + 3z = 0, parallelement a la droite vectorielle
d’équations x =y = z.

Exercice 4. Etant donnés «, 3,7 € R?, on consideére 1’application linéaire :

iR 5 R3 (x,y,2) = (az, By, ).

a. Si ay < 0 montrer que f n’est pas diagonalisable.
b. Si ay > 0 montrer que f est diagonalisable.

c. On suppose que ay = 0. f est-elle diagonalisable 7

Solution: La matrice de f en base canonique est :

0 0 «
A=10 g 0
v 0 0
et son polyndme caractéristique vaut :
-X 0 «
0 B-X 0 |=0B-X)(X*-ay).
0% 0 -X

a. Supposons que oy < 0. Dans ce cas, la seule valeur propre de f est 8. Sa multiplicité algébrique est 1, et donc sa multiplicité
géométrique également. Par conséquent, f n’est pas diagonalisable.

. Supposons a présent que oy > 0. Dans ce cas, le polyndéme caractéristique de f se factorise sous la forme suivante :

-X 0 «
0 B-X 0 |=(-X)X- @)X+ Jam).
ol 0 -X

Dans cette factorisation on voit apparaitre trois racines, mais il faut prendre garde au fait qu’elles ne sont pas forcément
distinctes. Du fait que ay > 0, on est en tout cas stur que les deux derniéres racines écrites sont différentes :

VA # .
Si B est distinct de ces deux racines, alors f possede trois valeurs propres distinctes et on sait dans ce cas qu’elle est
diagonalisable. Supposons a présent que :

B € {~v/am, /am}.



Les racines du polynome caractéristique de f sont donc 3, de multiplicité algébrique 2, et —3 de multiplicité algébrique 1.
On sait dans ce cas que f est diagonalisable si et seulement si la multiplicité géométrique de [ est aussi égale a 2, autrement
dit, si 'on arrive a produire deux vecteurs propres non proportionnels pour la valeur propre 8. Or une recherche de vecteurs
propres montre par exemple que (0,1,0) et («, 0, 3) (qui est bien non nul, puis que ey > 0) fonctionnent :

£(0,1,0) = (0,5,0) = 5(0,1,0) et  f(a,0,8) = (aB,0,a7y) = (B,0,5%) = B(«, 0, B).
Comme ils ne sont pas proportionnels on peut conclure que f est bien diagonalisable dans ce cas aussi.

c. Supposons que oy = 0. Dans ce cas, le polyndme caractéristique de f se factorise sous la forme suivante :

-X 0 «
0 B-X 0 |=(p-X)X%
¥ 0 -X

Si 8 = 0 alors 0 est la seule valeur propre de f, si bien que f est diagonalisable si et seulement si c’est I’application nulle,
autrement dit si et seulement si :
a=v5=0.

Supposons a présent que J est non nul. Dans ce cas, f est diagonalisable si et seulement si la valeur propre 0 a pour multiplicité
géométrique 2, ou autrement dit si et seulement si la matrice :

0
A=10
Y

o ™ O
o O R

est de rang 1. Comme 3 est non nul, ceci ne se produira & nouveau que si :
a=vy=0.

En conclusion, on voit que, sous I’hypothese que ay = 0, f est diagonalisable si et seulement si « et v sont nuls. Si 'un de
ces deux coefficients est nul sans que 1'autre le soit alors ’application n’est pas diagonalisable.

Exercice 5. On donne une application linéaire f : R® — R? de rang 1 et on note \ = tr f.

a. On suppose que A est non nul. Montrer que f est diagonalisable.

b. Qu’en est-il si A est nul? f est-elle diagonalisable ? Justifier.

Solution:
a. L’application f étant de rang 1 et de trace non nulle, on sait que g = % f est la projection sur :
Im f = Vect(vy)
—_———
droite vectorielle

parallelement a :
Ker f = Vect(va, v3) .

plan vectoriel

On a donc :
g(v1) = v f(v1) = Au
g(v2) =(0,0,0) = ¢ f(v2) =(0,0,0)
g(vs) = (0,0,0) f(vs) = (0,0,0).
La famille :

B = v1,v2,v3

est une base de R? formée de vecteurs propres pour f. L’application linéaire f est donc diagonalisable :

X000
[fls={0 0 0
000

b. Supposons que A est nul. Dans ce cas on sait, du fait que f est de rang 1, que :

fof=0.
S~
Af



Ceci permet alors de voir que 0 est la seule valeur propre de f. En effet, si w est valeur propre de f et v est un vecteur propre
(non nul) pour cette valeur propre, on a :

W) =w = f(f0) = wf©) = w?.
N——
(0,0,0)

Comme v est non nul on voit que w? est nul, ou encore que w est nul. Si f était diagonalisable elle serait donc I'application
nulle, or elle est de rang 1. On en déduit que f n’est pas diagonalisable dans ce cas.

Exercice 6. On donne deux applications linéaires f, g : R? — R? qui commutent, c’est-a-dire vérifiant :
fog=golf.

a. Si v est un vecteur propre (non nul) de f, que peut-on-dire de g(v) ?
b. On suppose que f possede trois valeurs propres distinctes. Montrer que g est diagonalisable.

c. Le résultat du b. est-il encore valable si I’on suppose seulement que f est diagonalisable 7

Solution:

a. Supposons que le vecteur propre v de f soit attaché a la valeur propre w, c’est-a-dire que l'on a :

fw) = wo.

En utilisant le fait que f et g commutent, on trouve alors :

f(g(v)) = g(f(v)) = g(wv) = wg(v).

Cette égalité signifie exactement que g(v) est un vecteur propre de f pour la valeur propre w. En d’autres termes, on vient
de montrer que g ”stabilise” chacun des sous-espaces propres de f.

b. Sous ’hypothese que f possede trois valeurs propres distinctes on sait qu’elle est diagonalisable et que chacun de ses sous-
espaces propres est une droite vectorielle. En reprenant les notations du a. on voit donc que le sous-espace propre de f pour
la valeur propre w est :

Ker(f — widgs) = Vect(v).

Comme g(v) lui appartient, on peut en déduire que c’est un multiple scalaire de v. Autrement dit, v est aussi un vecteur
propre de g. En résumé, on vient de montrer qu'un vecteur propre pour f est automatiquement vecteur propre pour g. Une
base propre pour f est donc automatiquement une base propre pour g. Par conséquent g est diagonalisable puisque f D'est.
On a méme montré que ces deux applications peuvent méme étre ”simultanément diagonalisées”, c’est-a-dire diagonalisées
dans la méme base.

c. Non. Par exemple, prenons f = idgs et pour g une application linéaire non diagonalisable. Il est clair que f est diagonalisable
et que f et g commutent. Par contre, par choix méme de g cette application n’est pas diagonalisable. La conclusion du b. ne
tient donc pas sous ’hypothese (plus faible) que f est seulement diagonalisable.



