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Exercice 1. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (2x− 4y, x− 3y + z,−x+ y + z).

a. Calculer le polynôme caractéristique de f et le factoriser.

b. f est-elle diagonalisable ? Si oui, déterminer une base propre pour f .

c. Représenter sur un croquis les sous-espaces propres de f ainsi qu’un point (x, y, z) et son image f(x, y, z) par f .

Solution: Notons :

A =

 2 −4 0

1 −3 1

−1 1 1


la matrice de f dans la base canonique.

a. Calculons le polynôme caractéristique de f :∣∣∣∣∣∣
2−X −4 0

1 −3−X 1

−1 1 1−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2−X −2−X 0

1 −2−X 1

−1 0 1−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1−X 0 −1

1 −2−X 1

−1 0 1−X

∣∣∣∣∣∣ = · · ·
· · · = −(X + 2)

∣∣∣∣1−X −1
−1 1−X

∣∣∣∣ = −(X + 2)((1−X)2 − 1) = −(X + 2)X(X − 2).

Dans cette série d’égalités, la première est obtenue via l’opération C2 ← C2+C1, la seconde via L1 ← L1−L2 et la troisième

par développement par rapport à la deuxième colonne.

b. L’application linéaire f possède trois valeurs propres distinctes : elle est donc diagonalisable. Par ailleurs on sait que pour

produire une base propre pour f il suffit de sélectionner un vecteur propre (non nul) dans chaque sous-espace propre et de les

”mettre ensemble” : la famille obtenue est automatiquement une base de R3, et elle est formée de vecteurs propres. Ecrivons

alors les trois matrices :

A+ 2I3 =

 4 −4 0

1 −1 1

−1 1 3

 , A =

 2 −4 0

1 −3 1

−1 1 1

 , A− 2I3 =

 0 −4 0

1 −5 1

−1 1 −1

 .

On sait par avance que chacune d’elle est de rang 2. Le sous-espace Ker(f + 2 idR3) est l’ensemble des solutions du système :
4x− 4y = 0

x− y + z = 0

− x+ y + 3z = 0

⇔

{
y = x

z = 0
⇔ (x, y, z) = x(1, 1, 0).

Il s’agit donc de la droite vectorielle engendrée par (1, 1, 0). Le sous-espace Ker f est l’ensemble des solutions du système :
2x− 4y = 0

x− 3y + z = 0

− x+ y + z = 0

⇔

{
x = 2y

z = y
⇔ (x, y, z) = y(2, 1, 1).

Il s’agit donc de la droite vectorielle engendrée par (2, 1, 1). Le sous-espace Ker(f − 2 idR3) est l’ensemble des solutions du

système : 
− 4y = 0

x− 5y + z = 0

− x+ y − z = 0

⇔

{
y = 0

z = −x
⇔ (x, y, z) = x(1, 0,−1).

Il s’agit donc de la droite vectorielle engendrée par (1, 0,−1). Posons alors :

B = (1, 1, 0), (2, 1, 1), (1, 0,−1).

La famille B est une base propre pour f . On a :

[f ]B =

−2 0 0

0 0 0

0 0 2

 .



c. La figure suivante représente les trois sous-espaces propres de f ainsi qu’un point (x, y, z) et son image f(x, y, z) par f :

Une fois (x, y, z) décomposé selon les trois axes, on ”passe” à f(x, y, z) de la façon suivante : la ”coordonnée orange” est

multipliée par −2, la ”coordonnée bleue” est mise à zéro et la ”coordonnée verte” est quant à elle multipliée par 2.

Exercice 2. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (4x− 5z,−2x+ y + 4z, 3x+ 2y − 2z).

a. Calculer f(1,−1, 1). En déduire une valeur propre de f .

b. L’application linéaire f est-elle diagonalisable ? Justifier votre réponse.

Solution:

a. Un calcul direct donne :

f(1,−1, 1) = (4− 5,−2− 1 + 4, 3− 2− 2) = (−1, 1,−1) = −(1,−1, 1).

On en déduit que (1,−1, 1) est un vecteur propre pour f , associé à la valeur propre −1.
b. Calculons le polynôme caractéristique de f . On trouve :∣∣∣∣∣∣

4−X 0 −5
−2 1−X 4

3 2 −2−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
4−X 0 −5
2−X 1−X −1

3 2 −2−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
4−X 0 −5
−1−X −1−X 1 +X

3 2 −2−X

∣∣∣∣∣∣ = · · ·

· · · =

∣∣∣∣∣∣
−1−X −5 −5

0 0 1 +X

1−X −X −2−X

∣∣∣∣∣∣ = −(1 +X)

∣∣∣∣−1−X −5
1−X −X

∣∣∣∣ = −(1 +X)(X2 − 4X + 5).

Dans cette série d’égalités, la première est obtenue via l’opération L2 ← L2+L1, la seconde via L2 ← L2−L3, la troisième via

les opérations C1 ← C1 + C3 et C2 ← C2 + C3 et la quatrième en développant par rapport à la deuxième ligne. Remarquons

à présent que le trinôme qui est apparu dans la factorisation a pour discriminant −4 < 0 et n’a donc pas de racine. La valeur

propre −1 de f trouvée au a. est donc la seule. Comme f n’est pas l’application − idR3 on peut conclure qu’elle n’est pas

diagonalisable.

Remarque : le fait que −1 soit de multiplicité algébrique 1 entraine qu’elle est aussi de multiplicité géométrique 1. Le

sous-espace vectoriel Ker(f + idR3) est donc une droite vectorielle. D’après a., c’est donc la droite vectorielle engendrée par

(1,−1, 1).

Exercice 3. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ 1
5 (4x− 2y − 7z,−x+ 3y − 7z,−x− 2y − 2z).

a. Calculer le polynôme caractéristique de f . Donner les valeurs propres de f et leurs multiplicités algébriques.



b. f est-elle diagonalisable ? Si oui, déterminer une base propre pour f .

c. Faire apparaitre sur un croquis un point (x, y, z) et son image f(x, y, z) par f . Quelle est la nature géométrique de f ?

Solution: Notons :

A = 1
5

 4 −2 −7
−1 3 −7
−1 −2 −2


la matrice de f dans la base canonique.

a. Calculons le polynôme caractéristique de f . On trouve :

1
125

∣∣∣∣∣∣
4− 5X −2 −7
−1 3− 5X −7
−1 −2 −2− 5X

∣∣∣∣∣∣ = 1
125

∣∣∣∣∣∣
5− 5X 5X − 5 0

−1 3− 5X −7
−1 −2 −2− 5X

∣∣∣∣∣∣ = 1
125

∣∣∣∣∣∣
5− 5X 0 0

−1 2− 5X −7
−1 −3 −2− 5X

∣∣∣∣∣∣ = · · ·
· · · = 1

25 (1−X)

∣∣∣∣2− 5X −7
−3 −2− 5X

∣∣∣∣ = 1
25 (1−X)(25X2 − 25) = −(X + 1)(X − 1)2.

Dans cette série d’égalités, la première est obtenue via l’opération L1 ← L1−L2, la seconde via C2 ← C2+C1 et la troisième

en développant par rapport à la première ligne. L’application linéaire f possède donc deux valeurs propres, à savoir : −1, de
multiplicité algébrique 1 et 1, de multiplicité algébrique 2.

b. Ecrivons les deux matrices :

A+ I3 = 1
5

 9 −2 −7
−1 8 −7
−1 −2 3

 , A− I3 = 1
5

−1 −2 −7
−1 −2 −7
−1 −2 −7

 = − 1
5

1

1

1

(
1 2 7

)
.

Celle de droite est de rang 1, et la décomposition écrite montre que le sous-espace propre associé est le plan vectoriel :

Ker(f − idR3) : x+ 2y + 7z = 0.

A ce stade on peut d’ores et déjà affirmer que f est diagonalisable. Pour trouver une base propre de f il suffit alors de ”mettre

ensemble” une base du plan vectoriel que l’on vient d’identifier et un vecteur propre (non nul) pour la valeur propre −1. Le
sous-espace Ker(f + idR3) est l’ensemble des solutions du système :

9x− 2y − 7z = 0

− x+ 8y − 7z = 0

− x− 2y + 3z = 0

⇔


9x− 2y − 7z = 0

− x+ 8y − 7z = 0

− 10y + 10z = 0

⇔

{
x = z

y = z
⇔ (x, y, z) = x(1, 1, 1).

Il s’agit donc de la droite vectorielle engendrée par (1, 1, 1). Posons alors :

B = (2,−1, 0), (7, 0,−1), (1, 1, 1).

La famille B est une base propre pour f . On a :

[f ]B =

1 0 0

0 1 0

0 0 −1

 .

c. La figure suivante représente les deux sous-espaces propres de f ainsi qu’un point (x, y, z) et son image f(x, y, z) par f :



Une fois (x, y, z) décomposé selon les trois axes, on ”passe” à f(x, y, z) de la façon suivante : la ”coordonnée orange” et la

”coordonnée bleue” sont préservées, tandis que ”coordonnée verte” est multipliée par −1. L’application linéaire f se visualise

donc comme la symétrie par rapport au plan vectoriel d’équation x + 2y + 3z = 0, parallèlement à la droite vectorielle

d’équations x = y = z.

Exercice 4. Etant donnés α, β, γ ∈ R3, on considère l’application linéaire :

f : R3 → R3, (x, y, z)→ (αz, βy, γx).

a. Si αγ < 0 montrer que f n’est pas diagonalisable.

b. Si αγ > 0 montrer que f est diagonalisable.

c. On suppose que αγ = 0. f est-elle diagonalisable ?

Solution: La matrice de f en base canonique est :

A =

0 0 α

0 β 0

γ 0 0


et son polynôme caractéristique vaut : ∣∣∣∣∣∣

−X 0 α

0 β −X 0

γ 0 −X

∣∣∣∣∣∣ = (β −X)(X2 − αγ).

a. Supposons que αγ < 0. Dans ce cas, la seule valeur propre de f est β. Sa multiplicité algébrique est 1, et donc sa multiplicité

géométrique également. Par conséquent, f n’est pas diagonalisable.

b. Supposons à présent que αγ > 0. Dans ce cas, le polynôme caractéristique de f se factorise sous la forme suivante :∣∣∣∣∣∣
−X 0 α

0 β −X 0

γ 0 −X

∣∣∣∣∣∣ = (β −X)(X −√αγ)(X +
√
αγ).

Dans cette factorisation on voit apparaitre trois racines, mais il faut prendre garde au fait qu’elles ne sont pas forcément

distinctes. Du fait que αγ > 0, on est en tout cas sûr que les deux dernières racines écrites sont différentes :

√
αγ ̸= −√αγ.

Si β est distinct de ces deux racines, alors f possède trois valeurs propres distinctes et on sait dans ce cas qu’elle est

diagonalisable. Supposons à présent que :

β ∈ {−√αγ,√αγ}.



Les racines du polynôme caractéristique de f sont donc β, de multiplicité algébrique 2, et −β de multiplicité algébrique 1.

On sait dans ce cas que f est diagonalisable si et seulement si la multiplicité géométrique de β est aussi égale à 2, autrement

dit, si l’on arrive à produire deux vecteurs propres non proportionnels pour la valeur propre β. Or une recherche de vecteurs

propres montre par exemple que (0, 1, 0) et (α, 0, β) (qui est bien non nul, puis que αγ > 0) fonctionnent :

f(0, 1, 0) = (0, β, 0) = β(0, 1, 0) et f(α, 0, β) = (αβ, 0, αγ) = (αβ, 0, β2) = β(α, 0, β).

Comme ils ne sont pas proportionnels on peut conclure que f est bien diagonalisable dans ce cas aussi.

c. Supposons que αγ = 0. Dans ce cas, le polynôme caractéristique de f se factorise sous la forme suivante :∣∣∣∣∣∣
−X 0 α

0 β −X 0

γ 0 −X

∣∣∣∣∣∣ = (β −X)X2.

Si β = 0 alors 0 est la seule valeur propre de f , si bien que f est diagonalisable si et seulement si c’est l’application nulle,

autrement dit si et seulement si :

α = γ = 0.

Supposons à présent que β est non nul. Dans ce cas, f est diagonalisable si et seulement si la valeur propre 0 a pour multiplicité

géométrique 2, ou autrement dit si et seulement si la matrice :

A =

0 0 α

0 β 0

γ 0 0


est de rang 1. Comme β est non nul, ceci ne se produira à nouveau que si :

α = γ = 0.

En conclusion, on voit que, sous l’hypothèse que αγ = 0, f est diagonalisable si et seulement si α et γ sont nuls. Si l’un de

ces deux coefficients est nul sans que l’autre le soit alors l’application n’est pas diagonalisable.

Exercice 5. On donne une application linéaire f : R3 → R3 de rang 1 et on note λ = tr f .

a. On suppose que λ est non nul. Montrer que f est diagonalisable.

b. Qu’en est-il si λ est nul ? f est-elle diagonalisable ? Justifier.

Solution:

a. L’application f étant de rang 1 et de trace non nulle, on sait que g = 1
λf est la projection sur :

Im f = Vect(v1)︸ ︷︷ ︸
droite vectorielle

parallèlement à :

Ker f = Vect(v2, v3)︸ ︷︷ ︸
plan vectoriel

.

On a donc : 
g(v1) = v1

g(v2) = (0, 0, 0)

g(v3) = (0, 0, 0)

⇔


f(v1) = λv1

f(v2) = (0, 0, 0)

f(v3) = (0, 0, 0).

La famille :

B = v1, v2, v3

est une base de R3 formée de vecteurs propres pour f . L’application linéaire f est donc diagonalisable :

[f ]B =

λ 0 0

0 0 0

0 0 0

 .

b. Supposons que λ est nul. Dans ce cas on sait, du fait que f est de rang 1, que :

f ◦ f︸ ︷︷ ︸
λf

= 0.



Ceci permet alors de voir que 0 est la seule valeur propre de f . En effet, si ω est valeur propre de f et v est un vecteur propre

(non nul) pour cette valeur propre, on a :

f(v) = ωv ⇒ f(f(v))︸ ︷︷ ︸
(0,0,0)

= ωf(v) = ω2v.

Comme v est non nul on voit que ω2 est nul, ou encore que ω est nul. Si f était diagonalisable elle serait donc l’application

nulle, or elle est de rang 1. On en déduit que f n’est pas diagonalisable dans ce cas.

Exercice 6. On donne deux applications linéaires f, g : R3 → R3 qui commutent, c’est-à-dire vérifiant :

f ◦ g = g ◦ f.

a. Si v est un vecteur propre (non nul) de f , que peut-on-dire de g(v) ?

b. On suppose que f possède trois valeurs propres distinctes. Montrer que g est diagonalisable.

c. Le résultat du b. est-il encore valable si l’on suppose seulement que f est diagonalisable ?

Solution:

a. Supposons que le vecteur propre v de f soit attaché à la valeur propre ω, c’est-à-dire que l’on a :

f(v) = ωv.

En utilisant le fait que f et g commutent, on trouve alors :

f(g(v)) = g(f(v)) = g(ωv) = ωg(v).

Cette égalité signifie exactement que g(v) est un vecteur propre de f pour la valeur propre ω. En d’autres termes, on vient

de montrer que g ”stabilise” chacun des sous-espaces propres de f .

b. Sous l’hypothèse que f possède trois valeurs propres distinctes on sait qu’elle est diagonalisable et que chacun de ses sous-

espaces propres est une droite vectorielle. En reprenant les notations du a. on voit donc que le sous-espace propre de f pour

la valeur propre ω est :

Ker(f − ω idR3) = Vect(v).

Comme g(v) lui appartient, on peut en déduire que c’est un multiple scalaire de v. Autrement dit, v est aussi un vecteur

propre de g. En résumé, on vient de montrer qu’un vecteur propre pour f est automatiquement vecteur propre pour g. Une

base propre pour f est donc automatiquement une base propre pour g. Par conséquent g est diagonalisable puisque f l’est.

On a même montré que ces deux applications peuvent même être ”simultanément diagonalisées”, c’est-à-dire diagonalisées

dans la même base.

c. Non. Par exemple, prenons f = idR3 et pour g une application linéaire non diagonalisable. Il est clair que f est diagonalisable

et que f et g commutent. Par contre, par choix même de g cette application n’est pas diagonalisable. La conclusion du b. ne

tient donc pas sous l’hypothèse (plus faible) que f est seulement diagonalisable.


