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Série 20

Exercice 1. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (−3x− y + 2z, 3x− 7y + 6z, x− y − 2z).

a. Montrer que f possède une unique valeur propre dont on déterminera la valeur.

b. Quelle est sa multiplicité algébrique ? Sa multiplicité géométrique ?

c. Déterminer une base de l’unique sous-espace propre de f .

Solution:

a. La matrice de f en base canonique est :

A =

−3 −1 2

3 −7 6

1 −1 −2

 .

Calculons le polynôme caractéristique de f . On trouve :∣∣∣∣∣∣
−3−X −1 2

3 −7−X 6

1 −1 −2−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−3−X −4−X 2

3 −4−X 6

1 0 −2−X

∣∣∣∣∣∣ = −(X + 4)

∣∣∣∣∣∣
−3−X 1 2

3 1 6

1 0 −2−X

∣∣∣∣∣∣ = · · ·

· · · = −(X + 4)

∣∣∣∣∣∣
−3−X 1 2

6 +X 0 4

1 0 −2−X

∣∣∣∣∣∣ = (X + 4)

∣∣∣∣6 +X 4

1 −2−X

∣∣∣∣ = (X + 4)(−X2 − 8X − 16) = −(X + 4)3.

Dans cette série d’égalité, la première a été obtenue via l’opération C2 ← C2 + C1, la seconde par extraction du facteur

−X − 4, la troisième via l’opération L2 ← L2 − L1 et la quatrième en développant selon la deuxième colonne. On voit donc

que f possède une seule valeur propre, à savoir ω = −4.
b. D’après le calcul effectué au a. on voit directement que −4 est de multiplicité algébrique 3. Pour déterminer sa multiplicité

géométrique, calculons la matrice :

A+ 4I3 =

1 −1 2

3 −3 6

1 −1 2

 =

1

3

1

(
1 −1 2

)
.

On voit donc que l’application f +4 idR3 est de rang 1, si bien que son noyau est de dimension 2. La multiplicité géométrique

de −4 est égale à 2.

c. La décomposition colonne-ligne trouvée en b. nous permet de dire que Ker(f + 4 idR3) est le plan vectoriel d’équation :

x− y + 2z = 0.

Pour trouver une base de ce plan vectoriel il n’y a qu’à sélectionner deux éléments non proportionnels dessus comme par

exemple :

(1, 1, 0), (0, 2, 1).

Ce n’est pas demandé, mais c’est une bonne idée de vérifier que les deux triplets que l’on vient d’écrire sont effectivement

vecteurs propres de f en calculant directement leurs images par f :{
f(1, 1, 0) = (−3 · 1− 1 + 2 · 0, 3 · 1− 7 · 1 + 6 · 0, 1− 1− 2 · 0) = (−4,−4, 0) = −4(1, 1, 0)
f(0, 2, 1) = (−3 · 0− 2 + 2 · 1, 3 · 0− 7 · 2 + 6 · 1, 0− 2− 2 · 1) = (0,−8,−4) = −4(0, 2, 1).

Exercice 2. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (−3x− 2y, 6x+ 5y, 2x+ 2y − z).

a. Identifier les valeurs propres de f et donner pour chacune sa multiplicité géométrique.

b. Décrire les sous-espaces propres de f par des équations.



c. Représenter sur un croquis les sous-espaces propres de f et faire apparaitre l’action de f sur chacun d’eux.

Solution:

a. La matrice de f en base canonique est :

A =

−3 −2 0

6 5 0

2 2 −1

 .

Calculons le polynôme caractéristique de f . On trouve :∣∣∣∣∣∣
−3−X −2 0

6 5−X 0

2 2 −1−X

∣∣∣∣∣∣ = −(X + 1)

∣∣∣∣−3−X −2
6 5−X

∣∣∣∣ = −(X + 1)(X2 − 2X − 3) = −(X + 1)2(X − 3).

L’application f possède donc deux valeurs propres, à savoir −1 (de multiplicité algébrique 2) et 3 (de multiplicité algébrique

1). Pour déterminer les multiplicités géométriques de ces valeurs propres, calculons les matrices :

A+ I3 =

−2 −2 0

6 6 0

2 2 0

 et A− 3I3 =

−6 −2 0

6 2 0

2 2 −4

 .

La matrice de gauche est de rang 1, ce qui implique que le sous-espace propre Ker(f + idR3) est un plan vectoriel : la

valeur propre −1 est de multiplicité géométrique 2. La matrice de droite est quant à elle de rang 2 (on sait qu’elle est de

déterminant nul et elle n’est visiblement pas de rang ⩽ 1). Par conséquent, le sous-espace propre Ker(f − 3 idR3) est une

droite vectorielle : la valeur propre 3 est de multiplicité géométrique 1 (on aurait aussi pu obtenir cette conclusion en utilisant

l’inégalité d3 ⩽ e3 = 1).

b. La décomposition colonne-ligne suivante :

A+ I3 =

−2 −2 0

6 6 0

2 2 0

 =

−26
2

(
1 1 0

)
montre que Ker(f + idR3) est le plan vectoriel d’équation :

x+ y = 0.

Par ailleurs, le sous-espace Ker(f − 3 idR3) est l’ensemble des solutions du système :
− 6x− 2y = 0

6x+ 2y = 0

2x+ 2y − 4z = 0

⇔

{
y = −3x
z = −x

⇔ (x, y, z) = x(1,−3,−1).

Il s’agit donc de la droite vectorielle engendrée par (−1, 3, 1), qui a pour équations :

−x = y
3 = z.

c. Voici deux figures représentants les éléments demandés :



Exercice 3. On donne l’application linéaire :

f : R3 → R3, (x, y, z)→ (8x+ y − 10z,−7x+ 7z, x+ y − 3z).

a. Calculer le polynôme caractéristique de f .

b. Quelles sont les valeurs propres de f ? Déterminer leurs multiplicités géométriques.

c. Déterminer une base de chaque sous-espace propre de f .

Solution:

a. La matrice de f en base canonique est :

A =

 8 1 −10
−7 0 7

1 1 −3

 .

Calculons le polynôme caractéristique de f . On trouve :∣∣∣∣∣∣
8−X 1 −10
−7 −X 7

1 1 −3−X

∣∣∣∣∣∣ =
∣∣∣∣∣∣
8−X 1 −2−X

−7 −X 0

1 1 −2−X

∣∣∣∣∣∣ = −(X + 2)

∣∣∣∣∣∣
8−X 1 1

−7 −X 0

1 1 1

∣∣∣∣∣∣ = · · ·

· · · = −(X + 2)

∣∣∣∣∣∣
7−X 0 0

−7 −X 0

1 1 1

∣∣∣∣∣∣ = −(X + 2)(7−X)

∣∣∣∣−X 0

1 1

∣∣∣∣ = (X + 2)(7−X)X.

b. L’application f possède donc trois valeurs propres, à savoir −2, 0 et 7. Ces trois valeurs propres sont de multiplicité algébrique

1 et donc aussi de multiplicité géométrique 1.

c. Commençons par écrire les trois matrices :

A+ 2I3 =

10 1 −10
−7 2 7

1 1 −1

 , A =

 8 1 −10
−7 0 7

1 1 −3

 et A− 7I3 =

 1 1 −10
−7 −7 7

1 1 −10

 .

On sait par avance que chacune d’elle est de rang 2. Le sous-espace Ker(f + 2 idR3) est l’ensemble des solutions du système :
10x+ y − 10z = 0

− 7x+ 2y + 7z = 0

x+ y − z = 0

⇔


10x+ y − 10z = 0

− 27x+ 27z = 0

− 9x+ 9z = 0

⇔

{
y = 0

z = x
⇔ (x, y, z) = x(1, 0, 1).

Il s’agit donc de la droite vectorielle engendrée par (1, 0, 1). Le sous-espace Ker f est l’ensemble des solutions du système :
8x+ y − 10z = 0

− 7x+ 7z = 0

x+ y − 3z = 0

⇔

{
y = 2x

z = x
⇔ (x, y, z) = x(1, 2, 1).

Il s’agit donc de la droite vectorielle engendrée par (1, 2, 1). Le sous-espace Ker(f − 7 idR3) est l’ensemble des solutions du

système : 
x+ y − 10z = 0

− 7x− 7y + 7z = 0

x+ y − 10z = 0

⇔

{
x+ y − 10z = 0

− x− y + z = 0
⇔

{
y = −x
z = 0

⇔ (x, y, z) = x(1,−1, 0).

Il s’agit donc de la droite vectorielle engendrée par (1,−1, 0).

Exercice 4. Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse, sachant que :

f : R3 → R3, (x, y, z)→ (−2x− 29y + 11z, 8x+ 41y − 14z, 22x+ 94y − 31z).

a. f a une valeur propre de multiplicité géométrique 3. b. (−1, 1, 2) est vecteur propre de f . c. 0 est valeur propre de f .

Solution: Notons A la matrice de f en base canonique :

A =

−2 −29 11

8 41 −14
22 94 −31

 .



a. C’est faux. Si ω était une telle valeur propre, alors on aurait :

Ker(f − ω idR2) = R3

si bien que f serait égale à ω idR3 . Or A n’est pas de la forme ωI3.

b. C’est vrai. Pour décider si (−1, 1, 2) est vecteur propre de f il suffit de tester s’il est proportionnel à son image par f . Or :

f(−1, 1, 2) = (2− 29 + 22,−8 + 41− 28,−22 + 94− 62) = (−5, 5, 10) = 5(−1, 1, 2).

Par conséquent, (−1, 1, 2) est vecteur propre de f pour la valeur propre 5.

c. C’est vrai. 0 est valeur propre de f si et seulement si le déterminant de A est nul. Or :

detA =

∣∣∣∣∣∣
−2 −29 11

8 41 −14
22 94 −31

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−2 4 11

8 −1 −14
22 1 −31

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−90 0 135

30 0 −45
22 1 −31

∣∣∣∣∣∣ = −
∣∣∣∣−90 135

30 −45

∣∣∣∣ = − ∣∣∣∣ 0 0

30 −45

∣∣∣∣ = 0.

Dans cette série d’égalités, la deuxième a été obtenue via C2 ← C2 + 3C3, la troisième via L1 ← L1 − 4L3 et L2 ← L2 + L3,

la quatrième en développant par rapport à la seconde colonne et la cinquième via l’opération L1 ← L1 + 3L2.

Exercice 5. On donne la matrice 3× 3 suivante :

A =

α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

 .

Montrer la formule suivante pour le calcul du polynôme caractéristique de A :

χA(X) = −X3 + (α1,1 + α2,2 + α3,3)︸ ︷︷ ︸
trA

X2 − (

∣∣∣∣α1,1 α1,2

α2,1 α2,2

∣∣∣∣+ ∣∣∣∣α1,1 α1,3

α3,1 α3,3

∣∣∣∣+ ∣∣∣∣α2,2 α2,3

α3,2 α3,3

∣∣∣∣)X +

∣∣∣∣∣∣
α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

∣∣∣∣∣∣︸ ︷︷ ︸
detA

.

Solution: Ecrivons directement le déterminant sous forme développée :

χA(X) =

∣∣∣∣∣∣
α1,1 −X α1,2 α1,3

α2,1 α2,2 −X α2,3

α3,1 α3,2 α3,3 −X

∣∣∣∣∣∣ = (α1,1 −X)(α2,2 −X)(α3,3 −X) + α1,2α2,3α3,1 + α1,3α2,1α3,2 · · ·

· · · − (α1,1 −X)α3,2α2,3 − α3,1(α2,2 −X)α1,3 − α2,1α1,2(α3,3 −X) .

Le développement du premier terme dans cette somme est :

(α1,1 −X)(α2,2 −X)(α3,3 −X) = −X3 + (α1,1 + α2,2 + α3,3)X
2 − (α1,1α2,2 + α1,1α3,3 + α2,2α3,3)X + α1,1α2,2α3,3 .

En réinjectant dans l’expression ci-dessus, on trouve :

χA(X) = −X3 + (α1,1 + α2,2 + α3,3)X
2 − (α1,1α2,2 + α1,1α3,3 + α2,2α3,3 − α3,2α2,3 − α3,1α1,3 − α2,1α1,2)X + · · ·

· · ·+ α1,1α2,2α3,3 + α1,2α2,3α3,1 + α1,3α2,1α3,2 − α1,1α3,2α2,3 − α2,2α3,1α1,3 − α3,3α2,1α1,2 .

Il ne reste plus qu’à constater que les coefficients obtenus sont égaux à ceux de la formule donnée dans l’énoncé :

χA(X) = −X3 + (α1,1 + α2,2 + α3,3)︸ ︷︷ ︸
trA

X2 − (

∣∣∣∣α1,1 α1,2

α2,1 α2,2

∣∣∣∣+ ∣∣∣∣α1,1 α1,3

α3,1 α3,3

∣∣∣∣+ ∣∣∣∣α2,2 α2,3

α3,2 α3,3

∣∣∣∣)X +

∣∣∣∣∣∣
α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

∣∣∣∣∣∣︸ ︷︷ ︸
detA

.

Exercice 6. aaa

a. Quels sont les polynômes caractéristiques possibles d’une projection ? Autrement dit, déterminer l’ensemble :

{χA(X) | A ∈ M3(R) matrice de projection}.

b. Si le polynôme caractéristique de l’application linéaire :

f : R3 → R3



appartient à l’ensemble trouvé au a., est-ce que f est obligatoirement une projection ?

Solution:

a. Donnons-nous une projection :

f : R3 → R3

de matrice A en base canonique et appelons r le rang de f . Si r = 0, alors l’application f est nulle, si bien que :

χA(X) =

∣∣∣∣∣∣
−X 0 0

0 −X 0

0 0 −X

∣∣∣∣∣∣ = −X3.

Si r = 3, l’application f est l’identité (c’est la seule projection inversible), si bien que :

χA(X) =

∣∣∣∣∣∣
1−X 0 0

0 1−X 0

0 0 1−X

∣∣∣∣∣∣ = (1−X)3.

Supposons dorénavant que r ∈ {1, 2}. Dans ce cas 0 est valeur propre de f , le sous-espace propre associé étant :

Ker f = {v ∈ R3 | f(v) = (0, 0, 0)}.

La multiplicité géométrique de 0 est donc 3− r, si bien que sa multiplicité algébrique est supérieure ou égale à 3− r :

e0 ⩾ d0 = 3− r.

L’application f étant une projection, on sait par ailleurs que :

Ker(f − idR3) = Im f.

Comme ce sous-espace vectoriel est non nul (car r ̸= 0), on voit donc que 1 est valeur propre de f , de multiplicité géométrique

r. On a donc :

e1 ⩾ d1 = r.

En combinant les deux inégalités trouvées ci-dessus on obtient :

e0 + e1 ⩾ 3.

Or la somme des multiplicités algébriques de toutes les valeurs propres de f est toujours inférieure ou égale à 3. On peut donc

conclure que 0 et 1 sont les seules valeurs propres de f et que leurs multiplicités algébriques sont respectivement :

e0 = 3− r et e1 = r.

Autrement dit, le polynôme caractéristique de f vaut :

X2(1−X)︸ ︷︷ ︸
si r=1

ou −X(1−X)2︸ ︷︷ ︸
si r=2

.

En résumé, il y a quatre polynômes caractéristique possibles pour une projection dans R3, à savoir :

−X3︸ ︷︷ ︸
si r=0

, X2(1−X) = −X3 +X2︸ ︷︷ ︸
si r=1

, −X(1−X)2 = −X3 + 2X2 −X︸ ︷︷ ︸
si r=2

, (1−X)3 = −X3 + 3X2 − 3X + 1︸ ︷︷ ︸
si r=3

.

Une petite remarque pour finir. En inspectant les polynômes trouvés on peut constater que le coefficient de X2 est toujours

égal au rang. Or d’après la formule générale vue au cours pour le polynôme caractéristique, ce coefficient est aussi égal à la

trace. On retrouve donc le résultat vu à l’exercice 7 de la série 19, à savoir que si f est une projection alors :

tr f = rg f.

b. Non. Par exemple, l’application :

f : R3 → R3 , (x, y, z)→ (z, 0, 0)

a pour polynôme caractéristique :

χf (X) =

∣∣∣∣∣∣
−X 0 1

0 −X 0

0 0 −X

∣∣∣∣∣∣ = −X3

(c’est-à-dire le même que l’application nulle). Pour autant, cette application n’est pas une projection, comme on peut le

vérifier par exemple en itérant f deux fois :

f(f(x, y, z)) = f(z, 0, 0) = (0, 0, 0).

On voit donc que f ◦ f est nulle, et qu’elle n’est donc pas égale à f . Pour voir que f n’est pas une projection on peut aussi

constater que f est de rang 1 mais n’est pas de trace 1. Avoir son polynôme caractéristique égal à l’un de ceux identifiés au

a. est donc une condition nécessaire pour être une projection, mais pas une condition suffisante.



Exercice 7. Vrai ou faux ? Pour toute application linéaire f : R3 → R3 dont le réel ω est valeur propre ...

a. ... le réel ω + 1 est valeur propre de l’application linéaire f + idR3 .

b. ... l’application linéaire f ◦ f − ω2 idR3 est non inversible.

c. ... si ω est la seule valeur propre de f alors elle a pour multiplicité algébrique 3.

Si vous pensez que c’est vrai expliquez pourquoi. Si vous pensez que c’est faux donnez un contre-exemple.

Solution:

a. C’est vrai. Pour montrer cela, donnons-nous un vecteur propre (non nul) v de f pour la valeur propre ω. On a donc :

f(v) = ωv.

On en déduit :

f(v) + v︸ ︷︷ ︸
(f+idR3 )(v)

= ωv + v = (ω + 1)v

Par conséquent, v est vecteur propre pour f + idR3 associé à la valeur propre ω + 1.

b. C’est vrai. Reprenons les notations du a. On a alors :

f(f(v))︸ ︷︷ ︸
(f◦f)(v)

= f(ωv) = ω f(v)︸︷︷︸
ωv

= ω2v.

si bien que :

(f ◦ f − ω2 idR3)(v) = (0, 0, 0)

Le noyau de l’application f ◦ f − ω2 idR3 est donc non nul, si bien que cette application n’est pas inversible.

c. C’est faux. Il est en effet possible que le polynôme carctéristique de f possède une unique racine et que celle-ci soit de

multiplicité algébrique 1. Par exemple, considérons l’application linéaire :

f : R3 → R3, (x, y, z)→ (x, z,−y)

dont la matrice en base canonique est :

A =

1 0 0

0 0 1

0 −1 0

 .

On a alors :

χA(X) =

∣∣∣∣∣∣
1−X 0 0

0 −X 1

0 −1 −X

∣∣∣∣∣∣ = (1−X)

∣∣∣∣−X 1

−1 −X

∣∣∣∣ = (1−X)(X2 + 1).

L’application f possède une unique valeur propre, à savoir 1, et celle-ci est de multiplicité algébrique 1.


