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Exercice 1. On donne l’application linéaire f suivante ainsi que la famille B d’éléments de R3 :

f : R3 → R3, (x, y, z) → (2x, 6x− y,−3x+ 2y + z) et B = (0, 0, 1), (0,−1, 1), (1, 2, 1).

a. Montrer que B est une base de R3. Pour tout élément v = (x, y, z) de R3, écrire la décomposition de v sur B.
b. Déterminer la famille f(B). En déduire les matrices [f ]B,Bcan et [f ]B, où on note Bcan la base canonique de R3.

c. Calculer la matrice [f ]Bcan,B.

Solution:

a. Les éléments (0, 0, 1) et (0,−1, 1) ne sont pas proportionnels (ils engendrent un plan vectoriel) et en les combinant on ne

peut pas obtenir le triplet (1, 2, 1) (ce triplet ne se trouve pas sur le plan vectoriel engendré par (0, 0, 1) et (0,−1, 1)). Par

conséquent la famille B est bien une base de R3. La présence de nombreux zéros dans ses éléments rend possible la recherche

”à vue” de la décomposition de v = (x, y, z) sur B. On obtient :

(x, y, z) = (z − 3x+ y)(0, 0, 1) + (−y + 2x)(0,−1, 1) + x(1, 2, 1).

En termes de coordonnées, on a donc montré que :

[v]B =

−3x+ y + z

2x− y

x

 .

Pour obtenir ces coordonnées on aurait aussi pu introduire la matrice de passage P de Bcan à B et utiliser la formule de

conversion des coordonnées canoniques aux coordonnées en base B vue au cours. On trouve alors (le calcul de l’inverse n’est

pas détaillé ici) :

P =

0 0 1

0 −1 2

1 1 1

 , P−1 =

−3 1 1

2 −1 0

1 0 0

 , [v]B = P−1

x

y

z

 =

−3x+ y + z

2x− y

x

 .

b. La famille f(B) (image de B par f) est obtenue en appliquant f à chaque élément de B. Un calcul direct donne alors :

f(0, 0, 1) = (0, 0, 1), f(0,−1, 1) = (0, 1,−1), f(1, 2, 1) = (2, 4, 2).

Passons alors au calcul des matrices demandées. Les colonnes de la matrice [f ]B,Bcan
ne sont autres que :

[f(0, 0, 1)]Bcan
=

0

0

1

 , [f(0,−1, 1)]Bcan
=

 0

1

−1

 , [f(1, 2, 1)]Bcan
=

2

4

2

 .

Autrement dit, on obtient :

[f ]B,Bcan
=

0 0 2

0 1 4

1 −1 2

 .

Pour le calcul de la matrice [f ]B, on doit maintenant rechercher les coordonnées des éléments de f(B) non plus dans la base

canonique mais dans la base B de R3, ou, ce qui revient au même, on doit décomposer f(B) sur B. Or, les calculs faits ci-dessus

permettent aisément d’écrire ces décompositions :
f(0, 0, 1) = (0, 0, 1) = 1(0, 0, 1) + 0(0, 1,−1) + 0(1, 2, 1)

f(0,−1, 1) = (0, 1,−1) = 0(0, 0, 1)− (0, 1,−1) + 0(1, 2, 1)

f(1, 2, 1) = (2, 4, 2) = 0(0, 0, 1) + 0(0, 1,−1) + 2(1, 2, 1)

Les colonnes de la matrice [f ]B sont donc :

[f(0, 0, 1)]B =

1

0

0

 , [f(0,−1, 1)]B =

 0

−1

0

 , [f(1, 2, 1)]B =

0

0

2

 .

Autrement dit :

[f ]B =

1 0 0

0 −1 0

0 0 2

 .



c. Calculons la famille f(Bcan) (image par f de la base canonique de R3) :

f(1, 0, 0) = (2, 6,−3), f(0, 1, 0) = (0,−1, 2), f(0, 0, 1) = (0, 0, 1).

En utilisant la formule générale trouvée au a. pour les coordonnées en base B on obtient alors :

[f(1, 0, 0)]B =

−3

−2

2

 , [f(0, 1, 0)]B =

1

1

0

 , [f(0, 0, 1)]B =

1

0

0

 .

On vient en fait d’identifier les colonnes de la matrice recherchée. Par conséquent :

[f ]Bcan,B =

−3 1 1

−2 1 0

2 0 0

 .

Exercice 2. On donne l’application linéaire f suivante ainsi que la famille B d’éléments de R3 :

f : R3 → R3, (x, y, z) → (x+ y + 3z)(1, 2,−1) et B = (2, 4,−2), (0, 1, 0), (0, 0, 1).

a. Montrer que B est une base de R3. Pour tout élément v = (x, y, z) de R3, écrire la décomposition de v sur B.
b. Calculer la famille f(B) et la décomposer sur B. En déduire la matrice [f ]B représentant f en base B.
c. Vérifier vos résultats du a. et b. en testant la validité de la formule [f(v)]B = [f ]B [v]B.

Solution:

a. Les éléments (0, 1, 0) et (0, 0, 1) ne sont pas proportionnels (ils engendrent un plan vectoriel) et en les combinant on ne

peut pas obtenir le triplet (2, 4,−2) (ce triplet ne se trouve pas sur le plan vectoriel engendré par (0, 1, 0) et (0, 0, 1)). Par

conséquent la famille B est bien une base de R3. La présence de nombreux zéros dans ses éléments rend possible la recherche

”à vue” de la décomposition de v = (x, y, z) sur B. On obtient :

(x, y, z) = x
2 (2, 4,−2) + (y − 2x)(0, 1, 0) + (z + x)(0, 0, 1).

En termes de coordonnées, on a donc montré que :

[v]B =

 x
2

y − 2x

z + x

 .

b. La famille f(B) (image de B par f) est obtenue en appliquant f à chaque élément de B :

f(2, 4,−2) = (0, 0, 0)︸ ︷︷ ︸
(2+4+3·(−2))(1,2,−1)

, f(0, 1, 0) = (1, 2,−1)︸ ︷︷ ︸
(0+1+3·0)(1,2,−1)

, f(0, 0, 1) = (3, 6,−3)︸ ︷︷ ︸
(0+0+3·1)(1,2,−1)

On obtient alors les décompositions suivantes :
f(2, 4,−2) = 0(2, 4,−2) + 0(0, 1, 0) + 0(0, 0, 1)

f(0, 1, 0) = 1
2 (2, 4,−2) + 0(0, 1, 0) + 0(0, 0, 1)

f(0, 0, 1) = 3
2 (2, 4,−2) + 0(0, 1, 0) + 0(0, 0, 1)

La matrice [f ]B représentant f en base B contient les coefficients trouvés dans ces décompositions écrits en colonnes (c’est la

matrice ”[f(B)]B”, dont les colonnes sont les coordonnées des éléments de f(B) en base B). On obtient :

[f ]B =

0 1
2

3
2

0 0 0

0 0 0

 .

c. Calculons [f(v)]B en décomposant f(v) dans la base B :

f(x, y, z) = (x+ y + 3z)(1, 2,−1) = 1
2 (x+ y + 3z)(2, 4,−2) + 0(0, 1, 0) + 0(0, 0, 1).

On en déduit :

[f(v)]B = 1
2

x+ y + 3z

0

0

 .

D’après les résultats du a. et du b., on trouve aussi :

[f ]B[v]B =

0 1
2

3
2

0 0 0

0 0 0

 x
2

y − 2x

z + x

 = 1
2

y − 2x+ 3(z + x)

0

0

 = 1
2

x+ y + 3z

0

0

 .

La formule donnée dans l’énoncé est donc bien vérifiée ici.



Exercice 3. Décrire le noyau et l’image de l’application linéaire suivante :

f : R3 → R3, (x, y, z) → (x− z, y − x, z − y).

Dans chacun des cas suivants, déterminer alors si possible des bases B et B′ de R3 vérifiant la condition donnée.

a. [f ]B,B′ =

1 0 0

0 1 0

0 0 0

 b. [f ]B,B′ =

0 2 0

0 0 −1

0 0 0

 c. [f ]B,B′ =

0 0 0

0 0 0

0 1 1

.

Indication : on commencera par écrire la décomposition voulue de f(B) dans B′.

Solution: Le noyau de f est le sous-espace vectoriel de R3 d’équations x = y = z. C’est donc la droite vectorielle engendrée par

(1, 1, 1) :

Ker f = Vect((1, 1, 1)).

L’application f est de rang 2. Le sous-espace vectoriel Im f est un plan vectoriel, dont on obtient une base à chaque fois que l’on

produit par f deux éléments de R3 qui ne sont pas proportionnels, comme par exemple :

f(1, 0, 0) = (1,−1, 0) et f(0, 1, 0) = (0, 1,−1).

On voit donc que le plan vectoriel Im f a pour équation :∣∣∣∣∣∣
x 1 0

y −1 1

z 0 −1

∣∣∣∣∣∣ =
∣∣∣∣−1 1

0 −1

∣∣∣∣x−
∣∣∣∣1 0

0 −1

∣∣∣∣ y + ∣∣∣∣ 1 0

−1 1

∣∣∣∣ z = x+ y + z = 0.

a. La question posée ici demande de trouver deux bases B = v1, v2, v3 et B′ = v′1, v
′
2, v

′
3 de R3 telles que :

[f ]B,B′ =

1 0 0

0 1 0

0 0 0


︸ ︷︷ ︸

”[f(B)]B′”

⇔


f(v1) = v′1

f(v2) = v′2

f(v3) = (0, 0, 0).

La dernière condition demande à v3 d’être dans le noyau de f , et donc d’être un multiple scalaire de (1, 1, 1). Posons alors

par exemple :

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1, 1, 1).

La famille B est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et le troisième n’en est pas

combinaison linéaire. Pour construire cette famille, on a choisi pour v3 un élément particulier (non nul) dans le noyau de f ,

que l’on a ensuite complété (en allant ”au plus simple”) en une base de R3. Posons ensuite :

v′1 = (1,−1, 0)︸ ︷︷ ︸
f(v1)

, v′2 = (0, 1,−1)︸ ︷︷ ︸
f(v2)

, v′3 = (1, 0, 0).

Définie de cette manière la famille B′ est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et

appartiennent au plan vectoriel d’équation x+ y + z = 0 (c’est-à-dire à Im f) et le dernier n’en est pas combinaison linéaire,

puisqu’il est situé en dehors de ce plan vectoriel. Par ailleurs, les relations écrites ci-dessus sont bien vérifiées, si bien que la

matrice [f ]B,B′ est bien celle demandée.

b. La question posée ici demande de trouver deux bases B = v1, v2, v3 et B′ = v′1, v
′
2, v

′
3 de R3 telles que :

[f ]B,B′ =

0 2 0

0 0 −1

0 0 0


︸ ︷︷ ︸

”[f(B)]B′”

⇔


f(v1) = (0, 0, 0)

f(v2) = 2v′1

f(v3) = −v′2.

La première condition demande à v1 d’être dans le noyau de f , et donc d’être un multiple scalaire de (1, 1, 1). Posons alors

par exemple :

v1 = (1, 1, 1), v2 = (1, 0, 0), v3 = (0, 1, 0).

La famille B est bien une base de R3 : les deux derniers éléments ne sont pas proportionnels et le premier n’en est pas

combinaison linéaire. Pour construire cette famille, on a choisi pour v1 un élément particulier (non nul) dans le noyau de f ,

que l’on a ensuite complété (en allant ”au plus simple”) en une base de R3. Posons ensuite :

v′1 = ( 12 ,−
1
2 , 0)︸ ︷︷ ︸

1
2 f(v2)

, v′2 = (0,−1, 1)︸ ︷︷ ︸
−f(v3)

, v′3 = (1, 0, 0).



Définie de cette manière la famille B′ est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et

appartiennent au plan vectoriel d’équation x+ y + z = 0 (c’est-à-dire à Im f) et le dernier n’en est pas combinaison linéaire,

puisqu’il est situé en dehors de ce plan vectoriel. Par ailleurs, les relations écrites ci-dessus sont bien vérifiées, si bien que la

matrice [f ]B,B′ est bien celle demandée.

c. Il est ici impossible de trouver de telles bases B et B′. En effet, le rang de [f ]B,B′ est égal à 2 (et ce peu importe le choix de

bases), et la matrice proposée ici est de rang 1.

Exercice 4. On donne l’application linéaire f : R3 → R3 vérifiant :

[f ]B,B′ =

 2 0 0

−3 1 −1

1 2 −2

 où

{
B = (11,−29, 34), (20, 31,−57), (−14,−35, 61)

B′ = (3,−5, 1), (2, 0, 3), (4, 7, 2).

On ne demande pas de vérifier que B et B′ sont des bases de R3.

a. Quel est le rang de f ? b. Déterminer une base de Ker f . c. Donner une (ou des) équation(s) de Im f .

Solution: Notons :

v1 = (11,−29, 34), v2 = (20, 31,−57), v3 = (−14,−35, 61)︸ ︷︷ ︸
B

et v′1 = (3,−5, 1), v′2 = (2, 0, 3), v′3 = (4, 7, 2)︸ ︷︷ ︸
B′

.

a. De manière générale, on sait que le rang de f est égal à celui de toute matrice qui la représente (indépendamment du choix

des bases utilisées). En particulier le rang de f est celui de la matrice : 2 0 0

−3 1 −1

1 2 −2

 .

Or, dans cette matrice, les deux premières colonnes ne sont pas proportionnelles et les deux dernières sont opposées. Cette

matrice est donc de rang 2, si bien que f est également de rang 2.

b. On a observé au a. que la somme des deux dernières colonnes de la matrice [f ]B,B′ est nulle, ou, autrement dit : 2 0 0

−3 1 −1

1 2 −2

0

1

1

 =

0

0

0

 .

De cette égalité matricielle on peut alors déduire que l’élément v de R3 vérifiant :

[v]B =

0

1

1

 ou, autrement dit, v = 0 · v1 + 1 · v2 + 1 · v3 = (6,−4, 4)

est dans le noyau de f . En effet, pour cet élément v on obtient :

[f(v)]B′ =

 2 0 0

−3 1 −1

1 2 −2


︸ ︷︷ ︸

[f ]B,B′

0

1

1


︸ ︷︷ ︸
[v]B

=

0

0

0

 ⇒ f(v) = (0, 0, 0)︸ ︷︷ ︸
v∈Ker f

.

Toujours d’après le a. on sait aussi que Ker f est une droite vectorielle. On voit donc que (6,−4, 4) en est une base (et donc

aussi (3,−2, 2), ou tout multiple scalaire non nul de (6,−4, 4)).

Remarque : attention de ne pas déduire de l’égalité matricielle ci-dessus que (0, 1, 1) est dans le noyau de f , comme ce serait

le cas si f était l’application :

R3 → R3, (x, y, z) → (2x,−3x+ y − z, x+ 2y − 2z).

c. Rappelons que la matrice représentative de f dans les bases B et B′ contient dans ses colonnes les coordonnées des éléments

de f(B) en base B′. Autrement dit, on a :
f(v1) = 2v′1 − 3v′2 + v′3 = 2(3,−5, 1)− 3(2, 0, 3) + (4, 7, 2) = (4,−3,−5)

f(v2) = v′2 + 2v′3 = (2, 0, 3) + 2(4, 7, 2) = (10, 14, 7)

f(v3) = −v′2 − 2v′3 = −(2, 0, 3)− 2(4, 7, 2) = (−10,−14,−7).



Ces trois éléments appartiennent à Im f (puisqu’ils sont ”produits” par f). Par ailleurs, on sait d’après le a. que f est de rang

2, si bien que Im f est un plan vectoriel de R3. On en déduit qu’il admet pour équation :∣∣∣∣∣∣
x 4 10

y −3 14

z −5 7

∣∣∣∣∣∣ = x

∣∣∣∣−3 14

−5 7

∣∣∣∣− y

∣∣∣∣ 4 10

−5 7

∣∣∣∣+ z

∣∣∣∣ 4 10

−3 14

∣∣∣∣ = 49x− 78y + 86z = 0

Remarque : comme ci-dessus, attention de ne pas déduire de la matrice [f ]B,B′ que (2,−3, 1), (0, 1, 2) et (0,−1, 2) appartiennent

à l’image de f , comme ce serait le cas si f était l’application :

R3 → R3, (x, y, z) → (2x,−3x+ y − z, x+ 2y − 2z).

Ce sont pluôt ici les éléments de R3 dont les coordonnées en base B′ (et non en base canonique) sont : 2

−3

1

 ,

0

1

2

 ,

 0

−1

2


qui se trouvent dans l’image de f .

Exercice 5. Décrire le noyau et l’image de l’application linéaire suivante :

f : R3 → R3, (x, y, z) → (3x+ 2y + z,−3x+ z,−y − z).

Si c’est possible, déterminer alors une base B de R3 vérifiant la condition donnée.

a. La dernière colonne de la matrice [f ]B est nulle.

b. Même condition qu’au a. et, en supplément, la dernière ligne de la matrice [f ]B est nulle.

c. Mêmes conditions qu’au b. et, en supplément, la première colonne de la matrice [f ]B est
(

0
1
0

)
.

Solution: Le noyau de f est le sous-espace vectoriel de R3 formé des solutions du système :
3x+ 2y + z = 0

− 3x+ z = 0

− y − z = 0

⇔

{
z = 3x

y = −3x
⇔ (x, y, z) = x(1,−3, 3).

C’est donc la droite vectorielle engendrée par (1,−3, 3) :

Ker f = Vect((1,−3, 3)).

L’application f est de rang 2. Le sous-espace vectoriel Im f est un plan vectoriel, dont on obtient une base à chaque fois que l’on

produit par f deux éléments de R3 qui ne sont pas proportionnels, comme par exemple :

f(1, 0, 0) = (3,−3, 0) = 3(1,−1, 0) et f(0, 1, 0) = (2, 0,−1).

On voit donc que le plan vectoriel Im f admet (1,−1, 0), (2, 0,−1) pour base et possède donc pour équation :∣∣∣∣∣∣
x 1 2

y −1 0

z 0 −1

∣∣∣∣∣∣ =
∣∣∣∣−1 0

0 −1

∣∣∣∣x−
∣∣∣∣1 2

0 −1

∣∣∣∣ y + ∣∣∣∣ 1 2

−1 0

∣∣∣∣ z = x+ y + 2z = 0.

a. Notons v1, v2, v3 les éléments de la base B recherchée. La dernière colonne de [f ]B est nulle si et seulement si :

[f(v3)]B =

0

0

0


︸ ︷︷ ︸
3ème colonne de [f ]B

⇔ f(v3) = (0, 0, 0) ⇔ v3 ∈ Ker f.

Posons alors :

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1,−3, 3).

La famille B définie de cette manière est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et le

troisième n’en est pas combinaison linéaire. Par ailleurs, d’après la description du noyau de f obtenue ci-dessus on voit que

B vérifie bien la condition proposée ici.



b. La question posée revient à demander à ce que la matrice de f dans la base B soit de la forme suivante :

[f ]B =

α γ 0

β δ 0

0 0 0


pour certains réels α, β, γ et δ. De manière équivalente, on souhaite satisfaire des relations du type :

f(v1) = αv1 + βv2

f(v2) = γv1 + δv2

f(v3) = (0, 0, 0).

Les deux premières relations seront vérifiées si v1, v2 forment une base de Im f : en effet, dans ce cas f(v1) et f(v2) s’écriront

automatiquement comme combinaison linéaire de v1 et v2, puisqu’ils appartiennent à Im f . Posons alors :

v1 = (1,−1, 0), v2 = (2, 0,−1), v3 = (1,−3, 3).

La famille B ainsi définie est bien base de R3 : les deux premiers éléments ne sont pas proportionnels et engendrent le plan

vectoriel d’équation x + y + 2z = 0, sur lequel le troisième élément ne se trouve pas. Elle vérifie bien des relations du type

ci-dessus et répond donc bien au problème posé, d’après l’argument donné ci-dessus. Ce n’est pas demandé, mais cherchons

explicitement la matrice [f ]B. Pour cela, calculons la famille f(B) et décomposons-la sur B. On trouve :
f(1,−1, 0) = (1,−3, 1) = 3(1,−1, 0)− (2, 0,−1)

f(2, 0,−1) = (5,−7, 1) = 7(1,−1, 0)− (2, 0,−1)

f(v3) = (0, 0, 0).

si bien que :

[f ]B =

 3 7 0

−1 −1 0

0 0 0

 .

c. En reprenant les notations ci-dessus, on voit que l’on souhaite maintenant satisfaire des relations du type :
f(v1) = v2

f(v2) = γv1 + δv2

f(v3) = (0, 0, 0)

(correspondant au cas où α = 0 et β = 1). Posons alors :

v1 = (1,−1, 0), v2 = (1,−3, 1)︸ ︷︷ ︸
f(v1)

, v3 = (1,−3, 3).

La famille B ainsi définie est bien base de R3 : les deux premiers éléments ne sont pas proportionnels et engendrent le plan

vectoriel d’équation x + y + 2z = 0 (c’est-à-dire Im f), sur lequel le troisième élément ne se trouve pas. Calculons alors la

famille f(B) et décomposons-la sur B. On trouve :
f(1,−1, 0) = (1,−3, 1)

f(1,−3, 1) = (−2,−2, 2) = −4(1,−1, 0) + 2(1,−3, 1)

f(v3) = (0, 0, 0).

si bien que :

[f ]B =

0 −4 0

1 2 0

0 0 0


a bien la forme voulue.

Exercice 6. On donne une application linéaire f : R3 → R3 ainsi qu’une base B de R3. On suppose que f est inversible.

a. Montrer que la famille f(B) est une base de R3. Pour tout élément v de R3, calculer aussi [f(v)]f(B) en fonction de [v]B.

Pour chacune des affirmations suivantes, dire si elle vraie ou fausse. Justifier votre réponse.

b. [f ]B,f(B) = I3 c. [f ]f(B) = [f ]B d. [f ]f(B),B = [f ◦ f ]B.

Solution:



a. Notons :

B = v1, v2, v3 et f(B) = v′1, v
′
2, v

′
3, où v′1 = f(v1), v

′
2 = f(v2) et v

′
3 = f(v3).

Pour voir que f(B) est une base de R3 montrons par exemple que :

Vect(v′1, v
′
2, v

′
3) = R3.

Donnons-nous un élément w de R3 et cherchons à prouver qu’il peut s’écrire comme une combinaison linéaire de v′1, v
′
2 et v′3.

Pour cela, considérons v = f−1(w) l’unique antécédent de w par f (ou, ce qui revient au même, l’image de w par l’application

inverse f−1) et décomposons-le sur la base B de R3 :

v = t1v1 + t2v2 + t3v3.

En appliquant f on obtient alors, puisque celle-ci est linéaire :

w = f(v) = f(t1v1 + t2v2 + t3v3) = t1f(v1) + t2f(v2) + t3f(v3) = t1v
′
1 + t2v

′
2 + t3v

′
3.

Ceci achève de montrer que tout élément de R3 est combinaison linéaire des 3 éléments de la famille f(B), si bien que celle-ci

est bien une base de R3. En plus, nous avons établi que les coordonnées de w = f(v) dans la base f(B) sont égales à celles de

v dans la base B :

[f(v)]f(B) = [v]B =

t1
t2
t3

 .

b. Les colonnes de la matrice [f ]B,f(B) sont les coordonnnées de f(v1), f(v2) et f(v3) dans la base f(B). On trouve :

[f(v1)]f(B) = [v1]B =

1

0

0


︸ ︷︷ ︸

car v1=1v1+0v2+0v3

, [f(v2)]f(B) = [v2]B =

0

1

0


︸ ︷︷ ︸

car v2=0v1+1v2+0v3

, [f(v3)]f(B) = [v3]B =

0

0

1


︸ ︷︷ ︸

car v3=0v1+0v2+1v3

.

En mettant côte-à-côte ces colonnes on trouve maintenant :

[f ]B,f(B) =

1 0 0

0 1 0

0 0 1

 = I3.

L’affirmation proposée est donc vraie.

c. Les colonnes de la matrice [f ]f(B) sont les coordonnnées de f(v′1), f(v
′
2) et f(v

′
3) dans la base f(B). Par exemple :

[f(v′1)]f(B)︸ ︷︷ ︸
première colonne de [f ]f(B)

= [v′1]B = [f(v1)]B = [f ]B[v1]B = [f ]B

1

0

0

 .

︸ ︷︷ ︸
première colonne de [f ]B

En raisonnant de même pour la deuxième et la troisième colonne, on voit que les colonnes [f ]f(B) et [f ]B sont les mêmes.

Autrement dit, ces deux matrices sont égales. L’affirmation proposée est donc vraie.

d. Les colonnes de la matrice [f ]f(B),B sont les coordonnées de f(v′1), f(v
′
2) et f(v

′
3) dans la base B. Par exemple :

[f(v′1)]B︸ ︷︷ ︸
première colonne de [f ]f(B),B

= [f(f(v1))]B = [(f ◦ f)(v1)]B = [f ◦ f ]B[v1]B = [f ◦ f ]B

1

0

0

 .

︸ ︷︷ ︸
première colonne de [f◦f ]B

En raisonnant de même pour la deuxième et la troisième colonne, on voit que les colonnes [f ]f(B),B et [f ◦ f ]B sont les mêmes.

Autrement dit, ces deux matrices sont égales. L’affirmation proposée est donc vraie.

Exercice 7. On considère les applications linéaires f, g : R3 → R3 définies par :

f(x, y, z) = (−16x+ 8y − 8z, 10x− 5y + 5z, 2x− y + z) et g(x, y, z) = (−21x+ 3y − 13z, 13x− 2y + 8z, 3x+ 2z).

a. Déterminer les noyaux de f et g.

b. Trouver, si possible, deux bases B et B′ de R3 vérifiant :

[f ]B,B′ =

1 0 0

0 0 0

0 0 0

 et [g]B,B′ =

1 0 0

0 0 0

0 0 1

 .



Indication : on commencera par écrire les décompositions voulues de f(B) et g(B) dans B′.

Solution:

a. En réécrivant f sous la forme :

f(x, y, z) = (2x− y + z)(−8, 5, 1)

on voit que f est de rang 1 et que son noyau est le plan vectoriel d’équation 2x− y+ z = 0. Cherchons à écrire une expression

similaire pour g :

g(x, y, z) = x (−21, 13, 3)︸ ︷︷ ︸
g(1,0,0)

+y (3,−2, 0)︸ ︷︷ ︸
g(0,1,0)

+z (−13, 8, 2)︸ ︷︷ ︸
g(0,0,1)

.

Il est clair que les triplets en facteur de x et z ne sont pas proportionnels. On sait donc que g est de rang au moins égal à 2.

Pour décider si ce rang vaut 2 ou 3, on cherche à combiner ces deux triplets pour retrouver celui du milieu. Afin de créer un

zéro en troisième position on est alors naturellement conduit à considérer :

2(−21, 13, 3)− 3(−13, 8, 2) = (−3, 2, 0) = −(3,−2, 0).

Cela nous permet de réécrire g sous la forme :

g(x, y, z) = x(−21, 13, 3) + y(−2(−21, 13, 3) + 3(−13, 8, 2)) + z(−13, 8, 2) = (x− 2y)(−21, 13, 3) + (3y + z)(−13, 8, 2).

Sous cette forme, on voit que le noyau de g est la droite vectorielle d’équation x
2 = y = − z

3 (qui est engendrée par (2, 1,−3)).

b. Il s’agit de trouver deux bases B = v1, v2, v3 et B′ = v′1, v
′
2, v

′
3 de R3 telles que :

f(v1) = v′1

f(v2) = 0

f(v3) = 0

et


g(v1) = v′1

g(v2) = 0

g(v3) = v′3.

Cherchons à satisfaire ces conditions. Tout d’abord, comme v2 doit être dans le noyau de g (deuxième condition dans le

deuxième système), au vu du résultat trouvé en a., on est amené à poser v2 = (2, 1,−3) (à un multiple scalaire près). On

peut alors vérifier directement que f(v2) = (0, 0, 0) (deuxième condition dans le premier système). Les premières conditions

des deux systèmes impliquent que v1 a même image par f et g, c’est-à-dire qu’il appartient à Ker(f − g). Les coordonnées de

v1 sont donc solutions du système :
− 16x+ 8y − 8z = −21x+ 3y − 13z

10x− 5y + 5z = 13x− 2y + 8z

2x− y + z = 3x+ 2z

⇔


5x+ 5y + 5z = 0

− 3x− 3y − 3z = 0

− x− y − z = 0

⇔ x+ y + z = 0.

Le sous-espace vectoriel Ker(f − g) est donc le plan vectoriel d’équation x+ y + z = 0. Remarquons que les coordonnées de

v2 vérifient cette équation. Ce n’est pas surprenant, puisqu’on a déjà vu que :

f(v2) = g(v2) = (0, 0, 0),

si bien que v2 se trouve dans ce plan vectoriel. Choisissons alors pour v1 un autre élément de Ker(f − g), qui n’est pas lié à

v2, en posant par exemple v1 = (1,−1, 0). La valeur de v′1 est donc maintenant imposée :

v′1 = f(v1) = g(v1) = (−24, 15, 3).

D’après la troisième condition du premier système, v3 appartient au noyau de f . En utilisant l’équation trouvée en a., posons

alors par exemple v3 = (0, 1, 1) (on fait attention à ne pas prendre v3 lié à v2, car ce dernier se trouve aussi dans le noyau de

f). La dernière condition impose alors la valeur de v′3 :

v′3 = g(v3) = g(0, 1, 1) = (−10, 6, 2).

Le seul élément qui n’a pas encore été défini est v′2. Aucune condition ne semble imposée sur lui, mise à part le fait qu’il forme

avec v′1 et v′3 une base de R3. Posons alors v′2 = (1, 0, 0) (de cette façon, il semble effectivement impossible de combiner v′1 et

v′2, qui ne sont visiblement pas proportionnels, pour obtenir v′3). A présent, récapitulons notre résultat. On pose :

B = (1,−1, 0), (2, 1,−3), (0, 1, 1) et B′ = (−24, 15, 3), (1, 0, 0), (−10, 6, 2).

On vérifie que ces familles sont des bases de R3, par exemple en calculant les déterminants :∣∣∣∣∣∣
1 2 0

−1 1 1

0 −3 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 0

0 3 1

0 −3 1

∣∣∣∣∣∣ =
∣∣∣∣ 3 1

−3 1

∣∣∣∣ = 6 ̸= 0 et

∣∣∣∣∣∣
−24 1 −10

15 0 6

3 0 2

∣∣∣∣∣∣ = −
∣∣∣∣15 6

3 2

∣∣∣∣ = −12 ̸= 0.

Par ailleurs, les conditions désirées sont satisfaites pour ces bases (on a tout fait pour ça !), car :
f(1,−1, 0) = (−24, 15, 3)

f(2, 1,−3) = (0, 0, 0)

f(0, 1, 1) = (0, 0, 0)

et


g(1,−1, 0) = (−24, 15, 3)

g(2, 1,−3) = (0, 0, 0)

g(0, 1, 1) = (−10, 6, 2).


