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Exercice 1. On donne les applications linéaires :

g : R3 → R3, (x, y, z)→ (3x+ y − z, 2x− 5y, y + 2z) et h : R3 → R3, (x, y, z)→ (x+ z, y, 4x+ 3y − z).

Dans chaque cas, donner l’expression de f(x, y, z) en fonction de x, y et z, où f est l’application linéaire donnée :

a. f = 5g b. f = 2g + 3h c. f = g ◦ h− idR3 .

Solution: Notons B et C les matrices de f et g en base canonique :

B =

3 1 −1
2 −5 0

0 1 2

 et C =

1 0 1

0 1 0

4 3 −1

 .

a. Par définition de la multiplication scalaire sur une application linéaire, on a ici :

f(x, y, z) = 5g(x, y, z) = 5(3x+ y − z, 2x− 5y, y + 2z) = (15x+ 5y − 5z, 10x− 25y, 5y + 10z).

Alternativement, on peut aussi calculer la matrice A de f en base canonique :

A = 5B = 5

3 1 −1
2 −5 0

0 1 2

 =

15 5 −5
10 −25 0

0 5 10


puis écrire la formule définissant f en utilisant la matrice que l’on a trouvée. On retombe évidemment sur la même formule.

b. Par définition de la multiplication scalaire et de l’addition sur les applications linéaires, on a ici :

f(x, yz) = (2g + 3h)(x, y, z) = 2g(x, y, z) + 3h(x, y, z) = 2(3x+ y − z, 2x− 5y, y + 2z) + 3(x+ z, y, 4x+ 3y − z) = · · ·

· · · = (6x+ 2y − 2z, 4x− 10y, 2y + 4z) + (3x+ 3z, 3y, 12x+ 9y − 3z) = (9x+ 2y + z, 4x− 7y, 12x+ 11y + z).

Là aussi on peut commencer par calculer la matrice A de f en base canonique :

A = 2B + 3C = 2

3 1 −1
2 −5 0

0 1 2

+ 3

1 0 1

0 1 0

4 3 −1

 =

 9 2 1

4 −7 0

12 11 1


puis écrire la formule définissant f en utilisant la matrice que l’on a trouvée. On retombe évidemment sur la même formule.

c. Par définition de la composition, on a :

(g ◦ h)(x, y, z) = g(h(x, y, z)) = g(x+ z, y, 4x+3y− z) = (3(x+ z)+ y− (4x+3y− z), 2(x+ z)− 5y, y+2(4x+3y− z)) = · · ·

· · · = (−x− 2y + 4z, 2x− 5y + 2z, 8x+ 7y − 2z).

On obtient alors :

f(x, y, z) = (g ◦ h− idR3)(x, y, z) = (g ◦ h)(x, y, z)− (x, y, z) = (−x− 2y + 4z, 2x− 5y + 2z, 8x+ 7y − 2z)− (x, y, z) = · · ·

· · · = (−2x− 2y + 4z, 2x− 6y + 2z, 8x+ 7y − 3z).

Un raisonnement matriciel est bien évidemment possible ici aussi :

A = BC − I2 =

3 1 −1
2 −5 0

0 1 2

1 0 1

0 1 0

4 3 −1

−
1 0 0

0 1 0

0 0 1

 =

−1 −2 4

2 −5 2

8 7 −2

−
1 0 0

0 1 0

0 0 1

 =

−2 −2 4

2 −6 2

8 7 −3

 .

On retombe bien sûr sur la même formule.



Exercice 2. Déterminer une application linéaire f : R3 → R3 de rang 1 telle que :

Im(f + g) = Vect((3, 1,−4)) , où g : R3 → R3, (x, y, z)→ (−9x+ 3y − 6z, 6x− 2y + 4z, 15x− 5y + 10z).

Indication : on pourra utiliser des décompositions colonnes-lignes.

Solution: La matrice de g en base canonique est :

B =

−9 3 −6
6 −2 4

15 −5 10

 =

−32
5

(
3 −1 2

)
.

Par conséquent, g est de rang 1. Elle se décompose sous la forme :

g(x, y, z) = (3x− y + 2z)(−3, 2, 5).

Recherchons alors via sa matrice A en base canonique une application linéaire f vérifiant les conditions de l’énoncé. Comme f est

de rang 1, la matrice A doit se décomposer comme produit d’une colonne et d’une ligne :

A = C1L1.

Par ailleurs, f + g doit également être de rang 1, si bien que la matrice A + B doit aussi se décomposer comme produit d’une

colonne et d’une ligne. De plus la colonne peut être prise égale aux coordonnées de (3, 1,−4) en base canonique, puisque l’on sait

que ce triplet forme une base de Im(f + g). En d’autre termes on peut écrire une décomposition du type :

A+B =

 3

1

−4

L2.

Matriciellement, le problème posé consiste donc à trouver une colonne C1 et des lignes L1 et L2 telles que :

C1L1 +

−32
5

(
3 −1 2

)
=

 3

1

−4

L2.

Posons alors :

L1 = L2 =
(
3 −1 2

)
et C1 =

 3

1

−4

−
−32

5

 =

 6

−1
−9

 .

Clairement, l’égalité matricielle ci-dessus est vérifiée : 6

−1
−9

(
3 −1 2

)
+

−32
5

(
3 −1 2

)
=

 3

1

−4

(
3 −1 2

)
.

L’application f : R3 → R3 dont la matrice en base canonique est :

A =

 6

−1
−9

(
3 −1 2

)
,

c’est-à-dire l’application définie par :

f(x, y, z) = (3x− y + 2z)(6,−1,−9)

est donc solution du problème posé. Elle est bien de rang 1, et l’application :

f + g : R3 → R3, (x, y, z)→ (3x− y + 2z)(3, 1,−4)

a bien pour image la droite vectorielle engendrée par (3, 1,−4).

Exercice 3. On suppose donnée une application linéaire f : R3 → R3 vérifiant les conditions suivantes :

f ◦ f = 0 et f(2, 3, 5) = f(−1, 0, 3) = (1, 2,−1).

a. Déterminer le rang de f puis une base de Im f .

b. Décrire Ker f par une (ou des) équation(s).



c. Déterminer l’expression de f(x, y, z) en fonction de x, y et z.

Solution:

a. L’hypothèse que f ◦ f est l’application nulle entraine que Im f est contenu dans Ker f . En effet :

v︸︷︷︸
f(x,y,z)

∈ Im f ⇒ f(v)︸︷︷︸
f(f(x,y,z))

= (0, 0, 0) ⇒ v ∈ Ker f.

La dimension de Im f est donc inférieure ou égale à la dimension de Ker f . Or :

dim(Im f) = rg f et dim(Ker f) = 3− rg f,

la dernière égalité ayant lieu par le théorème du rang. On en déduit alors :

rg f ⩽ 3− rg f

ce qui, du fait que le rang est un entier, montre que f est de rang 0 ou 1. Comme Im f n’est pas le sous-espace nul (puisqu’il

contient (1, 2,−1)), on voit donc que rg f = 1 : Im f est une droite vectorielle, à savoir celle engendrée par (1, 2,−1) et Ker f

est un plan vectoriel.

b. On a vu au a. que Ker f est un plan vectoriel qui contient :

Im f = Vect((1, 2,−1)).

En particulier, le triplet (1, 2,−1) est dans le noyau de f . Par ailleurs, en utilisant la donnée de l’énoncé et la linéarité de f

on trouve :

f(2, 3, 5)− f(−1, 0, 3) = f(3, 3, 2) = (0, 0, 0).

Autrement dit, (3, 3, 2) est aussi élément du noyau de f . On voit donc que Ker f a pour équation :∣∣∣∣∣∣
x 1 3

y 2 3

z −1 2

∣∣∣∣∣∣ =
∣∣∣∣ 2 3

−1 2

∣∣∣∣x− ∣∣∣∣ 1 3

−1 2

∣∣∣∣ y + ∣∣∣∣1 3

2 3

∣∣∣∣ z = 7x− 5y − 3z = 0.

c. L’application f étant de rang 1, on sait, au vu des résultats du a. et du b., qu’elle possède une expression du type :

f(x, y, z) = α(7x− 5y − 3z)(1, 2,−1)

où α est un réel non nul. On obtient alors :

f(−1, 0, 3) = −16α(1, 2,−1) = (1, 2,−1) ⇒ α = − 1
16 .

Autrement dit, f est donnée par la formule :

f(x, y, z) = 1
16 (7x− 5y − 3z)(−1,−2, 1).

Exercice 4. Est-il vrai ou faux de dire que, pour toutes applications linéaires f, g : R3 → R3 on a :

a. Ker f ⊂ Ker(g ◦ f) ?

b. Im(f ◦ g) ⊂ Im g ?

c. Ker(f + g) ∩Ker g ⊂ Ker f ?

d. Im(f + g) ⊂ Im f ⇒ Im g ⊂ Im f ?

Solution:

a. C’est vrai. En effet :

v ∈ Ker f ⇒ f(v) = (0, 0, 0) ⇒ g(f(v))︸ ︷︷ ︸
(g◦f)(v)

= g(0, 0, 0) = (0, 0, 0) ⇒ v ∈ Ker(g ◦ f).

Tout élément du noyau de f appartient donc au noyau de g ◦ f , ce qui montre l’inclusion voulue.

b. C’est faux. En effet, prenons par exemple :

g : R3 → R3, (x, y, z)→ (x, 0, 0) = x(1, 0, 0).



L’application linéaire g ainsi choisie est de rang 1 et son image est la droite vectorielle engendrée par (1, 0, 0). Lorsque l’on

compose par f , on obtient l’application :

f ◦ g : R3 → R3, (x, y, z)→ f(x, 0, 0) = xf(1, 0, 0).

Si l’on choisit f de sorte à ce que f(1, 0, 0) soit non proportionnel à (1, 0, 0), on aura alors que f ◦ g est aussi de rang 1 et :

Im(f ◦ g) = Vect(f(1, 0, 0)) ̸⊂ Im g = Vect((1, 0, 0)).

Prenons alors par exemple :

f : R3 → R3, (x, y, z)→ (0, x, 0) = x(0, 1, 0)

pour laquelle f(1, 0, 0) = (0, 1, 0) n’est pas proportionnel à (1, 0, 0).

c. C’est vrai. En effet, donnons-nous un élément v de R3 qui est à la fois dans le noyau de f + g et dans celui de g. On a donc :

(f + g)(v) = f(v) + g(v) = (0, 0, 0) et g(v) = (0, 0, 0),

d’où l’on déduit par soustraction que :

f(v) = (0, 0, 0).

Autrement dit, v appartient au noyau de f . Ceci achève de prouver l’inclusion désirée.

d. C’est vrai. Pour le montrer, supposons que :

Im(f + g) ⊂ Im f

et donnons-nous un élément w de Im g. Notre but est de montrer que w appartient aussi à Im f . Tout d’abord, on sait que w

peut s’écrire sous la forme :

w = g(v)

avec v ∈ R3. Par ailleurs, l’hypothèse que :

Im(f + g) ⊂ Im f

nous assure que l’on peut trouver un élément v′ de R3 tel que :

(f + g)(v) = f(v) + g(v) = f(v) + w︸ ︷︷ ︸
∈Im(f+g)

= f(v′)︸ ︷︷ ︸
∈Im(f)

Par linéarité de f , on voit alors que :

w = f(v′)− f(v) = f(v′ − v).

Ceci achève de prouver que w est élément de Im f , puisqu’on vient de l’écrire comme l’image par f d’un élément de R3.

Exercice 5. Etant donné un paramètre α ∈ R, on s’intéresse aux applications linéaires f, g : R3 → R3 suivantes :

f(x, y, z) = (−7x−12y+15z, 11x+16y−25z, 7x+4y−19z) et g(x, y, z) = (αx−6y−4z, (3α−2)y+α2z, x+(α−1)y+2z).

a. Quel est le rang de f ?

b. Déterminer le rang de g. On discutera en fonction de la valeur du paramètre réel α.

c. Même question que b. mais pour f ◦ g.

Solution:

a. La matrice de f en base canonique est :

A =

−7 −12 15

11 16 −25
7 4 −19

 .

Les lignes (et de même, les colonnes) de A ne sont pas deux-à-deux proportionnelles. Par conséquent, A est de rang supérieur

ou égal à 2. Pour décider si elle est de rang 2 ou de rang 3, calculons son déterminant :∣∣∣∣∣∣
−7 −12 15

11 16 −25
7 4 −19

∣∣∣∣∣∣ =
∣∣∣∣∣∣
14 0 −42
11 16 −25
7 4 −19

∣∣∣∣∣∣ =
∣∣∣∣∣∣
14 0 −42
−17 0 51

7 4 −19

∣∣∣∣∣∣ = 0,

la première égalité étant obtenue en appliquant l’opération L1 ← L1 + 3L3, la deuxième en appliquant L2 ← L2 − 4L3, et la

troisième en constatant que :(
14 0 −42

)
= 14

(
1 0 −3

)
et

(
−17 0 51

)
= −17

(
1 0 −3

)
,

si bien que, dans le dernier déterminant écrit, la première et la deuxième ligne sont proportionnelles. On peut en conclure que

A (et donc aussi f) est de rang 2.



b. La matrice de g en base canonique est :

B =

α −6 −4
0 3α− 2 α2

1 α− 1 2

 .

Calculons le déterminant de B :∣∣∣∣∣∣
α −6 −4
0 3α− 2 α2

1 α− 1 2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 α− α2 − 6 −4− 2α

0 3α− 2 α2

1 α− 1 2

∣∣∣∣∣∣ =
∣∣∣∣α− α2 − 6 −4− 2α

3α− 2 α2

∣∣∣∣ = ∣∣∣∣3α− α2 − 2 −4− 2α

3α− α2 − 2 α2

∣∣∣∣
la première égalité étant obtenue en appliquant l’opération L1 ← L1 − αL3, la deuxième en développant par rapport à la

troisième ligne et la troisième en appliquant C1 ← C1 − C2. En observant qu’il y a maintenant le même facteur qui apparait

deux fois sur la première colonne, on trouve :

detB = (3α− α2 − 2)︸ ︷︷ ︸
(α−1)(2−α)

∣∣∣∣1 −4− 2α

1 α2

∣∣∣∣ = (α− 1)(2− α) (α2 + 2α+ 4)︸ ︷︷ ︸
(α+1)2+3>0

.

Discutons alors selon la valeur de α. Tout d’abord, si α /∈ {1, 2} on voit que g est de rang 3, car le déterminant de B est non

nul. Supposons maintenant que α = 1. On a alors :

B =

1 −6 −4
0 1 1

1 0 2

 .

On sait par avance que le déterminant de cette matrice est nul. Elle est donc de rang inférieur ou égal à 2. De plus, ses colonnes

(et de même, ses lignes) ne sont pas deux-à-deux proportionnelles, donc son rang est supérieur ou égal à 2. En conclusion,

elle est de rang 2. Supposons alors que α = 2. On a :

B =

2 −6 −4
0 4 4

1 1 2

 .

On sait par avance que le déterminant de cette matrice est nul. Elle est donc de rang inférieur ou égal à 2. De plus, ses colonnes

(et de même, ses lignes) ne sont pas deux-à-deux proportionnelles, donc son rang est supérieur ou égal à 2. En conclusion,

elle est de rang 2. En résumé, on a montré que :

rg g =

{
3 si α /∈ {1, 2}
2 si α ∈ {1, 2}.

c. Utilisons les résultats trouvés au a. et au b. pour discuter du rang de f ◦ g en fonction de α. Tout d’abord, si α /∈ {1, 2} on a

montré au b. que g est inversible. Dans ce cas on sait alors que f ◦ g et f ont le même rang. D’après le a. on voit donc que

f ◦ g est de rang 2. Supposons à présent que α = 1 et cherchons la matrice de f ◦ g en base canonique :

AB =

−7 −12 15

11 16 −25
7 4 −19

1 −6 −4
0 1 1

1 0 2

 =

 8 30 46

−14 −50 −78
−12 −38 −62

 .

On sait par avance que le rang de cette matrice est inférieur aux rangs de A et de B. Autrement dit, on sait que cette matrice

est de rang inférieur ou égal à 2. De plus, le calcul ci-dessus montre que les colonnes (et de même, les lignes) de AB ne sont

pas deux-à-deux proportionnelles, si bien qu’elle est de rang supérieur ou égal à 2. En conclusion, on voit que dans ce cas AB

est de rang 2. Supposons alors que α = 2 et cherchons la matrice de f ◦ g en base canonique :

AB =

−7 −12 15

11 16 −25
7 4 −19

2 −6 −4
0 4 4

1 1 2

 =

 1 9 10

−3 −27 −30
−5 −45 −50

 .

Cette matrice est visiblement non nulle et ses colonnes (ou de même, ses lignes) sont deux-à-deux proportionnelles. On en

conclut que dans ce cas AB est de rang 1. En résumé :

rg(f ◦ g) =

{
2 si α ̸= 2

1 si α = 2.

Remarque : au niveau géométrique, la différence observée entre les deux derniers cas étudiés provient du positionnement de

Im g (qui est un plan vectoriel) par rapport à Ker f (qui est une droite vectorielle). Lorsque α = 2 par exemple, on peut

montrer que le noyau de f est contenu dans l’image de g. En passant de g à f ◦ g le noyau est alors augmenté : il y a dans

Ker(f ◦ g) les éléments de la droite vectorielle Ker g, mais aussi les éléments de R3 qui sont envoyés par g dans Ker f . Dans

le cas où α = 1 on ne trouve pas de tels nouveaux éléments, puisque Ker f et Im g s’intersectent seulement en (0, 0, 0).



Exercice 6. On donne l’application linéaire suivante :

f : R3 → R3, (x, y, z)→ (3x+ y + 7z, 7x+ 8y + 5z, 5x+ 3y + 9z).

a. Décrire le noyau et l’image de f .

b. Déterminer le rang de f ◦ f . Indication : que peut-on-dire de Ker(f ◦ f) ?
c. Trouver ensuite, en fonction de l’entier n ⩾ 3, le rang de l’application linéaire f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n fois

.

Solution: Notons A la matrice de f en base canonique, c’est-à-dire la matrice :

A =

3 1 7

7 8 5

5 3 9

 .

a. Les colonnes de A (ou de même, les lignes) ne sont pas deux-à-deux proportionnelles. Par conséquent, A est de rang supérieur

ou égal à 2. Pour décider si elle de rang 2 ou 3, calculons son déterminant :∣∣∣∣∣∣
3 1 7

7 8 5

5 3 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 1 7

−17 8 5

−4 3 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 1 0

−17 8 −51
−4 3 −12

∣∣∣∣∣∣ = 0,

la première égalité étant obtenue en appliquant l’opération C1 ← C1 − 3C2, la deuxième en appliquant C3 ← C3 − 7C2 et

la dernière en constatant que dans le déterminant obtenu, les colonnes 1 et 3 sont proportionnelles. La matrice A est donc

de rang 2. Le travail effectué jusqu’ici permet d’écrire une décomposition colonne-ligne minimale de A. En effet, on a en fait

détecté la relation suivante entre les colonnes de A :

3(

3

7

5

− 3

1

8

3

) =

7

5

9

− 7

1

8

3

 ou encore

7

5

9

 = 3

3

7

5

− 2

1

8

3

 .

On trouve alors :

A =

3

7

5

(
1 0 0

)
+

1

8

3

(
0 1 0

)
+

7

5

9


︸ ︷︷ ︸

3


3

7

5

−2


1

8

3



(
0 0 1

)
=

3

7

5

(
1 0 3

)
+

1

8

3

(
0 1 −2

)
.

Dans cette décomposition, on sait que les lignes correspondent à des équations pour le noyau de f :

(x, y, z) ∈ Ker f ⇔

{
x+ 3z = 0

y − 2z = 0
⇔ (x, y, z) = (−3z, 2z, z)︸ ︷︷ ︸

z(−3,2,1)

.

On voit donc que Ker f est la droite vectorielle engendrée par (−3, 2, 1). De plus, dans la décomposition de A ci-dessus, les

colonnes correspondent à une base de l’image de f , qui est donc le plan vectoriel d’équation :

Im f :

∣∣∣∣∣∣
3 1 x

7 8 y

5 3 z

∣∣∣∣∣∣ =
∣∣∣∣7 8

5 3

∣∣∣∣x− ∣∣∣∣3 1

5 3

∣∣∣∣ y + ∣∣∣∣3 1

7 8

∣∣∣∣ z = −19x− 4y + 17z = 0

b. Montrons que f ◦ f et f ont le même noyau. Tout d’abord, l’inclusion :

Ker f ⊂ Ker(f ◦ f)

est toujours vraie, puisque, pour tout v ∈ R3, on a :

f(v) = (0, 0, 0) ⇒ (f ◦ f)(v) = f(f(v)) = f(0, 0, 0) = (0, 0, 0).

L’inclusion dans l’autre sens n’est pas toujours vraie, mais elle l’est dans le cas qui nous intéresse ici. Pour le montrer,

donnons-nous un élément v du noyau de f ◦ f et cherchons à montrer qu’il est dans le noyau de f . Notre hypothèse est donc

que :

(f ◦ f)(v) = f(f(v)) = (0, 0, 0).



Intéressons-nous alors à w = f(v). C’est par définition même un élément de Im f . Il est aussi élément de Ker f , puisque :

f(w) = f(f(v)) = (0, 0, 0).

Or, d’après les résultats obtenus au a., on voit que :

Ker f ∩ Im f = {(0, 0, 0)}

puisque le triplet (−3, 2, 1) n’appartient pas au plan vectoriel d’équation −19x− 4y + 17z = 0. Par conséquent, w = (0, 0, 0),

ou, autrement dit, f(v) = (0, 0, 0). Ceci achève de montrer l’inclusion dans l’autre sens, si bien que l’on a établi que :

Ker f = Ker(f ◦ f).

Par le théorème du rang, on voit maintenant que f ◦ f a le même rang que f , à savoir 2.

c. On procède exactement comme ci-dessus pour montrer par récurrence que :

Ker(f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

) = Vect((−3, 2, 1)).

pour tout entier n ⩾ 2 (l’initialisation au cas n = 2 a été établie ci-dessus). Pour l’hérédité, supposons la propriété vraie pour

n et montrons-la pour n+ 1. Tout d’abord, l’inclusion :

Vect((−3, 2, 1)) ⊂ Ker(f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n+1 fois

)

est claire, puisqu’un multiple scalaire de (−3, 2, 1) est envoyé sur (0, 0, 0) par f , et donc aussi par f composée n+ 1 fois avec

elle-même. Pour l’inclusion dans l’autre sens, donnons-nous un élément :

v ∈ Ker(f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n+1 fois

).

On a donc :

(f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n+1 fois

)(v) = (f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

)(f(v)) = (0, 0, 0)

si bien w = f(v), qui est par définition même un élément de Im f , est aussi dans le noyau de f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

. D’après l’hypothèse

de récurrence w appartient donc au noyau de f , et on a déjà vu au b. que :

Ker f ∩ Im f = {(0, 0, 0)}.

Par conséquent, w = (0, 0, 0), ou, autrement dit, f(v) = (0, 0, 0). D’après le a. on voit donc bien que v est un multiple scalaire

de (−3, 2, 1), ce qui achève la preuve par récurrence. Pour conclure, utilisons le théorème du rang : le noyau de f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

étant une droite vectorielle, cette application linéaire est de rang 3− 1 = 2.

Exercice 7. On donne deux applications linéaires f, g : R3 → R3 telles que :

rg f = 1, rg g = 2, Im f ̸⊂ Im g.

Montrer alors que f + g est de rang 2 si et seulement si Ker g ⊂ Ker f . Indication : on pourra étudier le noyau de f + g.

Solution: Im f est une droite vectorielle (car rg f = 1) et Im g est un plan vectoriel (car rg g = 2). Par conséquent dire que Im f

n’est pas contenue dans Im g, c’est la même chose que de dire que :

Im f ∩ Im g = {(0, 0, 0)}.

Cherchons alors à déterminer le noyau de f + g :

v ∈ Ker(f + g) ⇔ (f + g)(v) = (0, 0, 0) ⇔ f(v) = −g(v)︸ ︷︷ ︸
∈Im f∩Im g

⇔ f(v) = g(v) = (0, 0, 0) ⇔ v ∈ Ker f ∩Ker g.

Autrement dit, dans la situation étudiée ici, on a :

Ker(f + g) = Ker f ∩Ker g.

D’après le théorème du rang, on voit donc que f + g est de rang 2 si et seulement si Ker f ∩ Ker g est de dimension 1. Toujours

d’après le théorème du rang, Ker f est un plan vectoriel et Ker g une droite vectorielle, si bien que leur intersection est de dimension

1 si et seulement si Ker g ⊂ Ker f , ce qui achève la preuve.


