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Série 17

Exercice 1. On donne les applications linéaires :

g: R 5 R3 (z,y,2) = Br+y—2,20—5y,y+22) et h:R>=R3 (2,9,2) = (x+2,9 4z + 3y — 2).
Dans chaque cas, donner l'expression de f(x,y,2) en fonction de z,y et z, ou f est 'application linéaire donnée :

a. f =bg b. f =29+ 3h c. f=goh —idgs.

Solution: Notons B et C' les matrices de f et g en base canonique :

3 1 -1 1 0 1
B=12 -5 0 et C=10 1 0
0 1 2 4 3 -1

a. Par définition de la multiplication scalaire sur une application linéaire, on a ici :
f(z,y,2) =bg(x,y,2) = 5Bz +y — z,2x — by,y + 2z) = (152 4+ 5y — 5z, 10 — 25y, 5y + 10z2).

Alternativement, on peut aussi calculer la matrice A de f en base canonique :

3 1 -1 15 5 =5
A=5B=5|2 -5 0 |=110 =25 O
0 1 2 0 ) 10

puis écrire la formule définissant f en utilisant la matrice que I'on a trouvée. On retombe évidemment sur la méme formule.

b. Par définition de la multiplication scalaire et de ’addition sur les applications linéaires, on a ici :

<o = (62 4 2y — 22,42 — 10y, 2y + 42) + (3z + 32,3y, 122 + 9y — 32) = (92 + 2y + 2,42 — Ty, 122 4+ 11y + 2).

La aussi on peut commencer par calculer la matrice A de f en base canonique :

3 1 -1 1 0 1 9 2 1
A=2B+3C=2(2 -5 0 |+3|0 1 0 ]=]4 -7 0
0 1 2 4 3 -1 12 11 1

puis écrire la formule définissant f en utilisant la matrice que 'on a trouvée. On retombe évidemment sur la méme formule.

c. Par définition de la composition, on a :
(goh)(z,y,z) = g(h(z,y,2) =g+ z,y,d4e+3y—2) = Bx+2)+y— (4o +3y—2),2(x+2) —by,y+2(4x+3y —2)) =---
o= (—x—2y+42,2x — 5y + 22,8z + Ty — 22).
On obtient alors :
f(z,y,2) = (goh —idps)(2,y,2) = (90 h)(2,y,2) — (2,y,2) = (=2 — 2y + 42,22 — Sy + 22,82 + Ty — 22) — (z,y,2) = -+~
coo=(—2x — 2y + 42,2z — 6y + 22,8z + Ty — 32).

Un raisonnement matriciel est bien évidemment possible ici aussi :

3 1 -1 1 0 1 1 0 0 -1 -2 4 1 0 0 -2 -2 4
A=BC—-I,=[|2 -5 0 0 1 -0 1 0)]=12 -5 2|—-1010|=(2 -6 2
0 1 2 4 3 -1 0 0 1 8 7T =2 0 0 1 8 T =3

On retombe bien sir sur la méme formule.



Exercice 2. Déterminer une application linéaire f : R?® — R? de rang 1 telle que :
Im(f +g) = Vect((3,1,—4)), ou g:R>—=R? (2,y,2) = (=92 + 3y — 62,61 — 2y + 4z, 15z — 5y + 102).

Indication : on pourra utiliser des décompositions colonnes-lignes.

Solution: La matrice de g en base canonique est :

-9 3 -6 -3
B=16 -2 4]|=(2]3B -1 2.
15 -5 10 5

Par conséquent, g est de rang 1. Elle se décompose sous la forme :

Recherchons alors via sa matrice A en base canonique une application linéaire f vérifiant les conditions de I’énoncé. Comme f est
de rang 1, la matrice A doit se décomposer comme produit d’une colonne et d’'une ligne :

A=C1L.

Par ailleurs, f + g doit également étre de rang 1, si bien que la matrice A + B doit aussi se décomposer comme produit d’une
colonne et d’une ligne. De plus la colonne peut étre prise égale aux coordonnées de (3,1, —4) en base canonique, puisque 'on sait
que ce triplet forme une base de Im(f + ¢g). En d’autre termes on peut écrire une décomposition du type :

3
A+B=1| 1 | Ls.
—4

Matriciellement, le probleme posé consiste donc a trouver une colonne C; et des lignes Lq et Lo telles que :

-3
CiLi+ [ 2 |3 -1
5

Posons alors :

3
2) = 1)L2
—4
3 -3 6
Li=Ly=(3 -1 2) et Ci=|1 —(2 = -1
—4 5 -9

Clairement, 1’égalité matricielle ci-dessus est vérifiée :

6 -3 3
-1/ -1 2)+ 2B -1 2)=(1[|(B -1 2.
-9 5 —4

L’application f : R?® — R3 dont la matrice en base canonique est :

6
A=(-1|(3 -1 2),
-9

c’est-a-dire 'application définie par :
f(z,y,2) = 3z —y +22)(6,-1,-9)

est donc solution du probleme posé. Elle est bien de rang 1, et ’application :
f+9:R =R (2,y,2) = (3z —y+22)(3,1, —4)

a bien pour image la droite vectorielle engendrée par (3,1, —4).

Exercice 3. On suppose donnée une application linéaire f : R® — R? vérifiant les conditions suivantes :
fof=0 et f(2,3,5)=f(-1,0,3)=(1,2,-1).

a. Déterminer le rang de f puis une base de Im f.

b. Décrire Ker f par une (ou des) équation(s).




c. Déterminer 'expression de f(x,y, z) en fonction de z,y et z.

Solution:

a. L’hypothése que f o f est I'application nulle entraine que Im f est contenu dans Ker f. En effet :

v €lmf = f(v) =1(0,0,00 = wekKerf.
H@wz) F(f(.9.2))

La dimension de Im f est donc inférieure ou égale a la dimension de Ker f. Or :
dim(Im f)=rgf et dim(Kerf)=3-rgf,
la derniere égalité ayant lieu par le théoréeme du rang. On en déduit alors :

rgf<3—rgf

ce qui, du fait que le rang est un entier, montre que f est de rang 0 ou 1. Comme Im f n’est pas le sous-espace nul (puisqu’il
contient (1,2, —1)), on voit donc que rg f = 1 : Im f est une droite vectorielle, & savoir celle engendrée par (1,2, —1) et Ker f
est un plan vectoriel.

b. On a vu au a. que Ker f est un plan vectoriel qui contient :
Im f = Vect((1,2,—1)).

En particulier, le triplet (1,2, —1) est dans le noyau de f. Par ailleurs, en utilisant la donnée de I’énoncé et la linéarité de f
on trouve :

f(2,3,5) — f(-1,0,3) = £(3,3,2) = (0,0,0).

Autrement dit, (3,3,2) est aussi élément du noyau de f. On voit donc que Ker f a pour équation :

z 1 3
2 3 1 3 1 3
g: —21 g—‘_l 2‘90—’_1 2’y+‘2 32—7x—5y—32—0.

c. L’application f étant de rang 1, on sait, au vu des résultats du a. et du b., qu’elle possede une expression du type :
fz,y,2) = a(Tz — by — 32)(1,2,—1)
ol « est un réel non nul. On obtient alors :
f(=1,0,3) = =16a(1,2,-1) = (1,2,-1) = a=—%.
Autrement dit, f est donnée par la formule :

flz,y,2) = %(73: — by —32)(—1,-2,1).

Exercice 4. Est-il vrai ou faux de dire que, pour toutes applications linéaires f,g: R> — R3 on a :

a. Ker f C Ker(go f)? c. Ker(f+g)NKerg C Ker f?
b. Im(fog) CImg? d. Im(f4+¢g)CImf =ImgCImf?
Solution:

a. C’est vrai. En effet :

veKerf = f(v) =(0,0,0) = g(f(v)) = g(0,0,0) = (0,0,0) = v & Ker(go f).
(gof)(v)

Tout élément du noyau de f appartient donc au noyau de g o f, ce qui montre I'inclusion voulue.

b. C’est faux. En effet, prenons par exemple :

g:R®* = R3 (z,9,2) — (2,0,0) = 2(1,0,0).



L’application linéaire ¢ ainsi choisie est de rang 1 et son image est la droite vectorielle engendrée par (1,0, 0). Lorsque 1’on
compose par f, on obtient I’application :

fog:R® = R3 (2,9,2) — f(z,0,0) = 2£(1,0,0).
Si I'on choisit f de sorte & ce que f(1,0,0) soit non proportionnel & (1,0,0), on aura alors que f o g est aussi de rang 1 et :
Im(f o g) = Vect(f(1,0,0)) ¢ Im g = Vect((1,0,0)).
Prenons alors par exemple :
f:R?® = R3 (x,y,2) = (0,2,0) = 2(0,1,0)
pour laquelle f(1,0,0) = (0,1,0) n’est pas proportionnel a (1,0,0).

c. C’est vrai. En effet, donnons-nous un élément v de R?® qui est a la fois dans le noyau de f + g et dans celui de g. On a donc :

(f +9)(v) = f(v) +g(v) =(0,0,0) et g(v)=(0,0,0),
d’ou1 'on déduit par soustraction que :
f(v) =(0,0,0).
Autrement dit, v appartient au noyau de f. Ceci achéve de prouver 'inclusion désirée.
d. C’est vrai. Pour le montrer, supposons que :
Im(f+g) CIm f
et donnons-nous un élément w de Im g. Notre but est de montrer que w appartient aussi & Im f. Tout d’abord, on sait que w
peut s’écrire sous la forme :
w=g(v)
avec v € R3. Par ailleurs, ’hypothese que :

Im(f+g) CImf

nous assure que l’on peut trouver un élément v’ de R? tel que :

(f+9)(v) = f(v) +9(v) = flv) +w = f()
~—~—
€Im(f+g) €Im(f)

Par linéarité de f, on voit alors que :
w=f(') = fv) =f' —v).

Ceci acheve de prouver que w est élément de Im f, puisqu’on vient de I’écrire comme I'image par f d’un élément de R3.

Exercice 5. Etant donné un parametre o € R, on s’intéresse aux applications linéaires f, g : R? — R? suivantes :
fz,y,2) = (=7Tx—12y+152, 11z + 16y — 252, Te+4y—192) et g(z,y,2) = (ax—6y—4z, (3a—2)y+a?z,z+ (a—1)y+22).

a. Quel est le rang de f7?
b. Déterminer le rang de g. On discutera en fonction de la valeur du parametre réel a.

c. Méme question que b. mais pour f o g.

Solution:

a. La matrice de f en base canonique est :

-7 —12 15
A=111 16 —25
7 4  -19

Les lignes (et de méme, les colonnes) de A ne sont pas deux-a-deux proportionnelles. Par conséquent, A est de rang supérieur
ou égal a 2. Pour décider si elle est de rang 2 ou de rang 3, calculons son déterminant :

-7 —12 15 14 0 —42 14 0 —42
11 16 —-25|=|11 16 —-25|=|-17 0 51 |=0,
7 4 -19 7 4 -19 7 4 =19

la premiere égalité étant obtenue en appliquant U'opération L; < L; + 3L3, la deuxieme en appliquant Lo <— Lo — 4L3, et la
troisieme en constatant que :

(14 0 —42)=14(1 0 -3) et (=17 0 51)=-17(1 0 -3),

si bien que, dans le dernier déterminant écrit, la premiere et la deuxieéme ligne sont proportionnelles. On peut en conclure que
A (et donc aussi f) est de rang 2.



b. La matrice de g en base canonique est :

« —6 —4
B=10 3a—-2 a?
1 a-1 2

Calculons le déterminant de B :

—6 —4 0 —a?—-6 —4-2
o 9 a-a 9 @ a—a?2—-6 —4—2a 3a—a? -2 —4—2«
0 3a—2 a“|=|0 3a—2 le} = 30— 92 o2 :30z—a2—2 o2
1 a-1 2 1 a—1 2

la premiere égalité étant obtenue en appliquant 'opération L < Li; — aLs, la deuxiéme en développant par rapport a la
troisieme ligne et la troisieme en appliquant Cy < C7 — C5. En observant qu’il y a maintenant le méme facteur qui apparait
deux fois sur la premiere colonne, on trouve :

det B = (30 — a® — 2) 1 *4;220‘ — (= 1)(2—a) (0 + 20+ 4).
—_——
(a=1)(2—a) (a+1)243>0

Discutons alors selon la valeur de «. Tout d’abord, si a ¢ {1,2} on voit que g est de rang 3, car le déterminant de B est non
nul. Supposons maintenant que o = 1. On a alors :

1 -6 —4
B=10 1 1
1 0 2
On sait par avance que le déterminant de cette matrice est nul. Elle est donc de rang inférieur ou égal a 2. De plus, ses colonnes

(et de méme, ses lignes) ne sont pas deux-a-deux proportionnelles, donc son rang est supérieur ou égal & 2. En conclusion,
elle est de rang 2. Supposons alors que &« = 2. On a :

2 -6 —4
B=10 4 4
1 1 2

On sait par avance que le déterminant de cette matrice est nul. Elle est donc de rang inférieur ou égal a 2. De plus, ses colonnes
(et de méme, ses lignes) ne sont pas deux-a-deux proportionnelles, donc son rang est supérieur ou égal & 2. En conclusion,
elle est de rang 2. En résumé, on a montré que :

3sia¢{l,2}
T =
&9 2siae{l,2}.

c. Utilisons les résultats trouvés au a. et au b. pour discuter du rang de f o g en fonction de a. Tout d’abord, si @ ¢ {1,2} on a
montré au b. que g est inversible. Dans ce cas on sait alors que f o g et f ont le méme rang. D’apres le a. on voit donc que
fogest de rang 2. Supposons a présent que o = 1 et cherchons la matrice de f o g en base canonique :

-7 =12 15 1 -6 —4 8 30 46
AB=|11 16 =25 0 1 1 |=|-14 -50 -78
7 4  -19 1 0 2 —-12 -38 —62

On sait par avance que le rang de cette matrice est inférieur aux rangs de A et de B. Autrement dit, on sait que cette matrice
est de rang inférieur ou égal a 2. De plus, le calcul ci-dessus montre que les colonnes (et de méme, les lignes) de AB ne sont
pas deux-a-deux proportionnelles, si bien qu’elle est de rang supérieur ou égal a 2. En conclusion, on voit que dans ce cas AB
est de rang 2. Supposons alors que a = 2 et cherchons la matrice de f o g en base canonique :

-7 —12 15 2 -6 —4 1 9 10
AB=1[11 16 -25 0 4 4 | =1-3 -2 =30
7 4  -19 1 1 2 -5 —45 -50

Cette matrice est visiblement non nulle et ses colonnes (ou de méme, ses lignes) sont deux-a-deux proportionnelles. On en
conclut que dans ce cas AB est de rang 1. En résumé :

28l a#2

1sia=2.

rg(fog) = {

Remarque : au niveau géométrique, la différence observée entre les deux derniers cas étudiés provient du positionnement de
Img (qui est un plan vectoriel) par rapport a Ker f (qui est une droite vectorielle). Lorsque o = 2 par exemple, on peut
montrer que le noyau de f est contenu dans I'image de g. En passant de g & f o g le noyau est alors augmenté : il y a dans
Ker(f o g) les éléments de la droite vectorielle Ker g, mais aussi les éléments de R® qui sont envoyés par g dans Ker f. Dans
le cas ot & = 1 on ne trouve pas de tels nouveaux éléments, puisque Ker f et Im g s’intersectent seulement en (0,0, 0).



Exercice 6. On donne ’application linéaire suivante :
f:R3 = R3 (2,y,2) = (3z 4y + 72,7z + 8y + 52,52 + 3y + 9z).

a. Décrire le noyau et I'image de f.

b. Déterminer le rang de f o f. Indication : que peut-on-dire de Ker(f o f) ¢

c. Trouver ensuite, en fonction de ’entier n > 3, le rang de I'application linéaire fo fo---o f.
—_——

n fois

Solution: Notons A la matrice de f en base canonique, c¢’est-a-dire la matrice :
3 1 7
A=|7 8 5
5 3 9

a. Les colonnes de A (ou de méme, les lignes) ne sont pas deux-a-deux proportionnelles. Par conséquent, A est de rang supérieur
ou égal a 2. Pour décider si elle de rang 2 ou 3, calculons son déterminant :

3 1 7 0o 17 0 1 0
7 8 5|=|-17 8 5|=|-17 8 =51|=0,
5 3 9 -4 3 9 -4 3 -12

la premiere égalité étant obtenue en appliquant I'opération C7 < C; — 3C5, la deuxieme en appliquant C3 + C3 — 7C5 et
la derniére en constatant que dans le déterminant obtenu, les colonnes 1 et 3 sont proportionnelles. La matrice A est donc
de rang 2. Le travail effectué jusqu’ici permet d’écrire une décomposition colonne-ligne minimale de A. En effet, on a en fait
détecté la relation suivante entre les colonnes de A :

3 1 7 1 7 3 1
3(17]-3([8))=(5]-7|8 ou encore 51 =3[7]-2(8
5 3 9 3 9 5 3
On trouve alors :
3 1 7 3 1
A=(7]( 0 0)+(8](0 1 0)+ 5 00 1)=|7](1 0 3)+[8](0 1 -2).
5 3 9 5 3
——
3 1
3[7]-2]8
5 3

Dans cette décomposition, on sait que les lignes correspondent a des équations pour le noyau de f :

rz+32=0
(r,y,2) eKerf < < (z,y,2) =(—32,22,2).
y—22=0 —
2(—3,2,1)
On voit donc que Ker f est la droite vectorielle engendrée par (—3,2,1). De plus, dans la décomposition de A ci-dessus, les
colonnes correspondent a une base de 'image de f, qui est donc le plan vectoriel d’équation :
7 8
I : =
m f ‘5 3

— =—192 —4 17z =
T ‘5 3 . 8,2 9x y+ 172 =0

ot g W

1

31 31
8 o
3

SIS

b. Montrons que f o f et f ont le méme noyau. Tout d’abord, I'inclusion :
Ker f C Ker(f o f)

est toujours vraie, puisque, pour tout v € R3, on a :

f(’U)Z(O,O,O) = (fof)(’l))Zf(f<’l)))Zf(0,0,0)2<0,070)-

L’inclusion dans I'autre sens n’est pas toujours vraie, mais elle I’est dans le cas qui nous intéresse ici. Pour le montrer,
donnons-nous un élément v du noyau de f o f et cherchons a montrer qu’il est dans le noyau de f. Notre hypothése est donc
que :

(f o /)(v) = f(f(v)) = (0,0,0).




Intéressons-nous alors & w = f(v). C’est par définition méme un élément de Im f. 11 est aussi élément de Ker f, puisque :
f(w) = f(f(v)) = (0,0,0).

Or, d’apres les résultats obtenus au a., on voit que :
Ker fNIm f = {(0,0,0)}

puisque le triplet (—3,2, 1) n’appartient pas au plan vectoriel d’équation —192 — 4y + 17z = 0. Par conséquent, w = (0,0, 0),
ou, autrement dit, f(v) = (0,0,0). Ceci achéve de montrer I'inclusion dans lautre sens, si bien que 'on a établi que :

Ker f = Ker(f o f).

Par le théoréeme du rang, on voit maintenant que f o f a le méme rang que f, a savoir 2.

¢. On procede exactement comme ci-dessus pour montrer par récurrence que :

Ker(fo fo---of)=Vect((-3,2,1)).
n fois

pour tout entier n > 2 (I'initialisation au cas n = 2 a été établie ci-dessus). Pour ’hérédité, supposons la propriété vraie pour
n et montrons-la pour n 4 1. Tout d’abord, 'inclusion :

Vect((—3,2,1)) C Ker(fo fo---of)
n+1 fois

est claire, puisqu’un multiple scalaire de (—3,2, 1) est envoyé sur (0,0,0) par f, et donc aussi par f composée n + 1 fois avec
elle-méme. Pour l'inclusion dans 'autre sens, donnons-nous un élément :

veEKer(fofo---of).

n+1 fois

On a donc :
(fofo-of)w)=(fofo--of)(f(v))=1(0,0,0)
n+1 fois n fois
si bien w = f(v), qui est par définition méme un élément de Im f, est aussi dans le noyau de f o f o---o f. D’aprés 'hypothese

n fois
de récurrence w appartient donc au noyau de f, et on a déja vu au b. que :

Ker f nIm f = {(0,0,0)}.

Par conséquent, w = (0,0, 0), ou, autrement dit, f(v) = (0,0,0). D’apres le a. on voit donc bien que v est un multiple scalaire
de (—3,2,1), ce qui achéve la preuve par récurrence. Pour conclure, utilisons le théoréme du rang : le noyau de fo fo---o f
—_—

n fois
étant une droite vectorielle, cette application linéaire est de rang 3 — 1 = 2.

Exercice 7. On donne deux applications linéaires f, g : R? — R3 telles que :

rgf=1, rgg=2, Imf¢Img.

Montrer alors que f + g est de rang 2 si et seulement si Ker g C Ker f. Indication : on pourra étudier le noyau de f + g.

Solution: Im f est une droite vectorielle (car rg f = 1) et Im g est un plan vectoriel (car rgg = 2). Par conséquent dire que Im f
n’est pas contenue dans Im g, c’est la méme chose que de dire que :

Im fNImg = {(0,0,0)}.
Cherchons alors a déterminer le noyau de f + g :
veKer(f+g9) < (f+g9)(v)=(0,0,00 < fv)=-gk) < flv)=gw)=(0,0,00 < veKerfnKerg.
€Im fNlmg
Autrement dit, dans la situation étudiée ici, on a :
Ker(f + g) = Ker f NKerg.

D’apres le théoreme du rang, on voit donc que f + g est de rang 2 si et seulement si Ker f N Ker g est de dimension 1. Toujours
d’apres le théoreme du rang, Ker f est un plan vectoriel et Ker g une droite vectorielle, si bien que leur intersection est de dimension
1 si et seulement si Ker g C Ker f, ce qui achéve la preuve.



