Algebre Linéaire Semestre d’automne, CMS, EPFL

Série 8

Exercice 1. Sur une feuille de papier, reproduire (approximativement) la figure suivante :
(0,0)

L] (1’ 0)

(0,1)

a. Placer (3,—1) sur le dessin. Calculer ensuite —3(3,—1) et donner une construction géométrique du résultat.
b. Placer (2,1) et (—1,—1) sur le dessin. Calculer (2,1) + (=1, —1) et donner une construction géométrique du résultat.

c. Représenter sur le dessin la droite vectorielle Vect((3,2)) et en donner une équation.

Solution:

a. Pour placer (3,—1), on peut imaginer la ”grille” associée au repére du plan qui nous a été donné.

En partant de (0,0), on doit alors faire trois "pas de type (1,0)” et un ”pas de type (0, —1)" (ce qui correspond & un ”pas de
type (0,1)” mais en arriere). Effectuons maintenant le calcul demandé. On trouve :

7%(37 *1) = (*%7 %)

Le point correspondant sur le dessin peut étre obtenu géométriquement en prenant le milieu du segment joignant (0,0) a
(3,—1) (qui correspond & (3, —3)) puis en le "retournant” autour de (0,0).

b. A nouveau, pour placer (2,1) et (—1,—1) sur la figure on peut imaginer la ”grille” associée au repére du plan qui nous été
donné. On obtient :



(—1,-1)

T2

Effectuons maintenant le calcul demandé. On trouve :
(2a ]-) + (_]-, _1) = (2 - ]-7 1- 1) = (170)

Géométriquement, cette égalité correspond au fait qu’en reliant (0,0),(2,1),(1,0),(—1,—1) (dans cet ordre) on obtient un
parallélogramme :

(—1,-1)

{0,0)

(2.1)

c. Appelons V' la droite vectorielle proposée :
V = Vect((3,2)) = {t(3,2) |t € R}.

Voici quelques éléments de R? appartenant & V :

3
(Oa O)a (37 2)v (6a4)7 (_3a _2)7 (_57 _1)a cee
0(3,2) 1(3,2) 2(3,2) —(3,2) 1( )
) 3,2

On obtient une représentation géométrique de V en reliant les différents points ci-dessus :



Enfin, la droite vectorielle V' a pour équation :

V:

z 3
y 2

Vo2 = 3;;.

’ =0 ouencore 2z

= 3y.

Exercice 2. Dans R2?, on donne la famille :

o o

(3,2)

(0,0)

B= (3a 2)7 (47 1)

a
b. Quel élément de R? a pour coordonnées (_31) dans la base B?

. Pour tout (z,y) € R?, calculer [(x,y)]s et écrire la décomposition correspondante de (x,y) dans la base B.

. Montrer que B est une base de R? et déterminer la matrice de passage de Bea, & B.

. Faire apparaitre géométriquement la décomposition trouvée au c. sur la figure ci-dessous.

Solution:

a. (3,2) et (4,1) ne sont pas proportionnels, si bien que B est une base de R2. La matrice de passage de Bea, & B est :

Rappelons que cette matrice contient dans ses colonnes les coordonnées dans Be,, des éléments de B. Ici :

()

13,2500 — (g) et [ 1))s — (




b. Par définition méme des coordonnées dans une base, c’est I’élément :
3(3,2) = (4,1) = (9,6) — (4,1) = (5,5)

qui a pour coordonnées ( 3 ) dans la base B.

c. Utilisons la formule vue en cours, qui dit que les coordonnées en base BB sont obtenues en multipliant celles en base canonique
par P~1. Autrement dit :

-1
_ 3 4 T 1 1 —4\ [z 1 (—z+4y
= P 1 z = = — = = .
S (y> (2 1> (y) -5 (—2 3) <y> 5 (21’—31/)
(=9 5ean
La décomposition demandée est donc :

(0,9) = 5 (—o + 49)(3,2) + 2 (20— 3y) (4, 1)

d. Géométriquement, la décomposition trouvée en b. correspond a faire apparaitre un parallélogramme dont une diagonale est
le segment joignant (0,0) & (z,y) et dont deux des cotés s’appuient sur les droites vectorielles engendrées par (3,2) et (4,1) :

Exercice 3. Placer (z,0) et (0,y) sur le dessin ci-dessous.

(0,0)

Indication : ot se trouvent (1,0) et (0,1) ?

Solution: Cherchons d’abord & placer (1,0) et (0,1) sur le dessin en essayant a tatons de les produire & partir de (—1, 3) et (2, —2).
Commencons par observer que (2, —2) = (1,—1), si bien que l'on peut placer (1, —1) au milieu entre (0,0) et (2,—-2) :



()

(-1.3) ,

Ensuite, observons que (—1,3) + (1, —1) = (0, 2), si bien que 'on obtient (0,2) en ”complétant le parallélogramme” :

(,y)
(0,2)
(-1,3) B,
N TR
(1,-1)
(0,0)
Comme £(0,2) = (0,1), on obtient (0,1) au milieu entre (0,0) et (0,2) :
(2, y)
0,2)
(-1.3) .
(0,1) q
. . "y

(1,-1)
(0,0)

Enfin, I’égalité (1,—1) + (0,1) = (1,0) montre que I'on peut obtenir (1,0) en ”complétant le parallélogramme” :

(. )

(-13) .

Maintenant que l'on a placé (1,0) et (0,1), on peut tracer les axes de coordonnées (c’est-a-dire les droites vectorielles d’équations
y =0 et z = 0) puis identifier (z,0) et (0,y) en décomposant (x,y) selon ces deux axes :



/

Exercice 4. Donner un exemple de base B de R? qui vérifie :

a. que 'on a légalité [(0,1)]g = (1).
b. en plus de la condition du a., que la premieére coordonnée de (2, 1) en base B est nulle.

c. en plus des conditions du a. et du b., que les deux coordonnées de (1, 1) en base B sont égales.

Solution: Considérons une base de R? :

B = (Avlu)a (pa 0) (avec

A
r ‘ £0).
U o
a. Légalité [(0,1)]g = (1, ) est satisfaite si et seulement si :
(Aylu) - (p7 G) = (07 1) C’est—é—dire (>‘7.u) = (pv 0) + (07 1) = (pv o+ 1)

En résumé, pour construire une base qui répond a la question, on doit donc choisir 4 réels A, i, p, o vérifiant :

PP
A=p,pu=0c+1 et = —p#0.
psp=oc+1e ’U+1 U‘ p#

Voici quelques exemples :
(1’1)7<1’0) (1’2)7<1’1) (170)7<1’_1) (2?_4)7(27_5)

Ce n’est pas demandé, mais cherchons maintenant a visualiser le travail que ’on vient d’effectuer sur un dessin. Commencons
pour cela par nous donner une représentation géométrique de R? via le choix d’un repere du plan.

0,1) R e .

Placons alors sur le dessin une base du type trouvé ci-dessus.



Cela fait apparaitre deux nouveaux axes (le premier étant la droite vectorielle engendrée par (p,o + 1) et le deuxiéme celle
engendrée par (p,0)) que l'on peut utiliser & leur tour pour définir des coordonnées sur le plan. En décomposant (0, 1) sur
ces deux axes, on voit maintenant apparaitre les coordonnées [(0,1)]p = (_11) qui correspondent a l’égalité :

(Ov 1) = (p,U + 1) - (pa 0)'

. La nouvelle condition signifie exactement que (2, 1) est un multiple scalaire de (p, o). Autrement dit, aux conditions identifiées
au a., on doit maintenant ajouter que :
p=20.

Les bases solutions du probléme posé ont donc la forme :
B = (20,0+1),(20,0) (avec o #0).
Voici quelques exemples :
(2,2),(2,1) (—=2,0),(-2,-1) (6,4),(6,3) (—10,—4), (—10,-5)

A nouveau, cherchons & visualiser le travail effectué. Pour cela, placons sur le dessin une base du type trouvé ci-dessus.

Au vu des décompositions suivantes (qui se vérifient bien sur le dessin) :
(170) = (20-3 o+ 1) - (2O-a 0)7 (27 1) = O(2Ua o+ 1) + %(2O’v O')

on voit que les conditions requises sont remplies : dans la base B, (0,1) a pour coordonnées (_11 ), et la deuxieme coordonnée
de (2,1) est nulle (le point correspondant se trouve sur le deuxieme axe de coordonnées).

. On a vu que, sous les conditions du a. et du b., la matrice de passage de Bca, & B est du type :

200 20
P = .
(a—!—l 0) (avec o # 0)

Exprimons alors les coordonnées de (1,1) en base B :

e (1) == (L0 ) ()=

N =
RIS
N

q‘“
N———



Les deux coordonnées de (1,1) en base B sont donc égales si et seulement si :

1_ 1,1 sadtadive o — L
5=—3 135, Cestadireo=3.

On voit donc qu’il existe une seule base de R? satisfaisant les conditions données, & savoir :
B = (13 %)ﬂ (17 %)

Pour terminer, cherchons & nouveau une visualisation du probléeme que l'on vient de résoudre. Pour cela, plagons la base
trouvée sur le dessin.

Au vu des décompositions suivantes (qui se vérifient bien sur le dessin) :
(170) = (13%)*(17%)7 (271) :O(lv%)+2(1>%)v (171) = %(L%)Jr%(l?%)

on voit que les conditions requises sont remplies : dans la base B, (0,1) a pour coordonnées (_11 ), la deuxieme coordonnée de
(2,1) est nulle (le point correspondant se trouve sur le deuxiéme axe de coordonnées), et les deux coordonnées de (1,1) sont
égales.

Exercice 5. Déterminer la valeur du réel o sachant que I’on a I'inclusion :

Vect((1,a +4), (o, 5 + 6)) C Vect((a — 1,02 + 5)).

Solution:  Observons pour commencer que, pour tout réel «, le sous-espace vectoriel :
Vect((a — 1,02 + 5))

est une droite vectorielle, car :
—1,0% +5) # (0,0).
(a—1,0°+5)#(0,0)
>0
On en déduit que, si a vérifie la condition donnée, alors :
Vect((1, o+ 4), (o, 5o + 6)) # R?

car R? n’est contenu dans aucune droite vectorielle. On en déduit que, nécessairement :

1 o
=0 & o*-a-6=0 & aec{-23}
a+4 ba+6
5a+6—a(a+4)
Pour ces deux valeurs de «, voyons maintenant si I'inclusion étudiée est vérifiée ou non. Pour o« = —2, cette inclusion s’écrit :

Vect((1, =2 +4), (2,5 (=2) +6)) C Vect((—2 —1,(=2)* +5)).

Vect((1,2)) Vect((1,-3))

Elle est donc fausse, car (1,2) n’est pas multiple scalaire de (1, —3). Pour a = 3, cette inclusion s’écrit :

Vect((1,3 +4),(3,5-3+6)) C Vect((3 — 1,32 +5)).

Vect((1,7)) Vect((1,7))

Elle est donc vraie. En résumé, il y a un seul réel solution du probleme posé, a savoir a = 3.



Exercice 6. L’application f : R? — R? est-elle linéaire ? Si oui, en donner la matrice (dans la base canonique).

a. f:(z,y) = (22 — 9%, ay) b. f:(z,y) = (x —y, 22 + y) c. fi(zy)— (x+1,y).

Solution: Rappelons qu'une application f : R? — R? est linéaire si elle est définie par une formule du type :

f(z,y) = (ax + By, yx + dy)

ou «, 3,7, 9 sont des coeflicients réels. On sait aussi qu’une application linéaire respecte I’addition et la multiplication scalaire.

a. L’application f proposée ici n’est pas linéaire. En effet, & cause de la présence des carrés dans la premiere coordonnée et du
produit croisé dans la deuxiéme, la formule définissant f n’a pas la forme voulue. On peut aussi par exemple constater que
pour tout (x,y) on a :

f (—l‘, _y) = f(z,y)
—(z,y)

alors que pour une application linéaire ils devraient étre opposés (car on pourrait ”sortir” le —1).
1 -1
A =
2 1

c. L’application f proposée ici n’est pas linéaire. En effet, a cause de la présence de la constante 1 dans la premiere coordonnée,
la formule définissant f n’a pas la forme voulue. On peut aussi par exemple constater que f(0,0) est égal a (1,0), alors que

b. L’application f est linéaire, de matrice :

dans la base canonique.

pour une application linéaire il devrait étre égal a (0,0).

Exercice 7. On donne f,g: R? — R? linéaires de matrices A et B (dans la base canonique) ainsi que w € R. On pose :

a. f+g:R?2 - R? b. wf:R?— R? c. fog:R? - R?
(z,y) = f(z,y) + 9(=,y) (z,y) = wf(z,y) (z,y) = flg9(z,y))-

Montrer que les applications ainsi définies sont linéaires et calculer leurs matrices en fonction de A et B.

Solution:
Notons :

A (a 5) ot B = (A f‘)_
v 6 p o
On a donc les expressions suivantes pour f et g :
f(z,y) = (ax + By, yx +6y) et g(x,y) = (A\v + py, pr + oy).

a. Par un calcul direct, on obtient :

(f +9)(x,y) = (ax + By, vz + dy) + (A\z + py, pr + 0y) = ((a + Nz + (B8 + p)y, (v + p)z + (0 + 0)y).

flx,y) g(z,y)

D’apres 'expression obtenue, on voit que 'application f + g est linéaire. Elle a pour matrice :

(oc—i—)\ B+M>—A+B.
Y+p 6+0

b. Par un calcul direct, on obtient :

wf(z,y) = w(ax + By, vz + 0y) = (wax + wPy, wyx + wdy).
f(z,y)

D’apres 'expression obtenue, on voit que l'application wf est linéaire. Elle a pour matrice :

<wa wﬂ) WA
wy wd



c. Par un calcul direct, on obtient :

(fog)(z,y) = f (A + py, pr + oy) = (a(Ax + py) + Blpx + oy),y(A\x + py) + é(pr + oy)) = - -

g(z,y)

wo= (@A + Bp)r + (ap + Ba)y, (YA + dp)x + (yp + do)y).

D’apres 'expression obtenue, on voit que 'application f o g est linéaire. Elle a pour matrice :

al+Bp ap+pBo\ (o B\ (A p 4B
YA+6p yu+ oo v 6)\p o '
Remarque : le résultat du c. fournit une justification de la définition du produit matriciel donné au cours. Ce produit correspond
en effet a la composition, une opération couramment utilisée quand on manipule des applications.

Exercice 8. On donne une application quelconque f : R? — R2. Montrer que :
f linéaire <= f respecte 'addition et la multiplication scalaire de RZ.

Indication : pour” <7, décomposer (x,y) dans la base canonique puis appliquer f.

Solution: On raisonne par double implication. Commencons par prouver ” = ”. Supposons pour cela que f est linéaire et montrons
qu’elle respecte I’addition et la multiplication scalaire. On a donc I’expression suivante :

f(x,y) = (e + By, v + dy)
pour certains coeflicients réels «, 3,7, d. Par un calcul direct, on obtient alors :
¥(z,y), (¢',y) €R?, - fle+al,y+y) = (ale+2) + By +y) (@ +2) +0y +¢)) =
o= (az + By, vz + 0y) + (az’ + By, vz’ +8y) = f(z,y) + f(, 1)
Autrement dit, 'image d’une somme est la somme des images : f respecte ’addition de R%. On a aussi :
Vt € R, V(z,y) €R?, f(tz, ty) = (a(tz) + B(ty), y(tx) + 6(ty)) = t(ax + By, yr + 6y) = tf(x,y).

Autrement dit, f respecte la multiplication scalaire de R2. Passons & la preuve de ” < ”. Supposons pour cela que f respecte
I’addition et la multiplication scalaire et montrons qu’elle est linéaire. Posons :

(Oé,’}/) - f(l,O) et (ﬁ’(S) - f(07 1)'
On a alors, pour tout (z,y) € R? :
f(m,y) = f((I,O) + (O7y)) = f(l‘,O) + f(ovy)

car f respecte I’addition. De plus, vu que f respecte la multiplication scalaire, on trouve :

flxy) =2 f(1,0) +yf(0,1) = x(e,7) + y(8,6) = (ax + By, yx + 0y).
Ceci montre bien que f est linéaire.

Remarque : les deux propriétés étudiées ici sont caractéristiques de la linéarité d’une application de R? dans lui-méme. La premiere
est explicite, au sens ou elle indique de maniére concrete la forme générale d’une telle application, et en tant que telle elle dépend
fortement du fait que l'on travaille ici avec R?. La deuxieéme est implicite et présente donc I’avantage de se généraliser & d’autres
environnements (& savoir les espaces vectoriels, comme on le verra plus tard dans le cours).



