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Exercice 1. Sur une feuille de papier, reproduire (approximativement) la figure suivante :

(0, 0)

(1, 0)

(0, 1)

a. Placer (3,−1) sur le dessin. Calculer ensuite − 1
2 (3,−1) et donner une construction géométrique du résultat.

b. Placer (2, 1) et (−1,−1) sur le dessin. Calculer (2, 1) + (−1,−1) et donner une construction géométrique du résultat.

c. Représenter sur le dessin la droite vectorielle Vect((3, 2)) et en donner une équation.

Solution:

a. Pour placer (3,−1), on peut imaginer la ”grille” associée au repère du plan qui nous a été donné.

En partant de (0, 0), on doit alors faire trois ”pas de type (1, 0)” et un ”pas de type (0,−1)” (ce qui correspond à un ”pas de

type (0, 1)” mais en arrière). Effectuons maintenant le calcul demandé. On trouve :

− 1
2 (3,−1) = (− 3

2 ,
1
2 ).

Le point correspondant sur le dessin peut être obtenu géométriquement en prenant le milieu du segment joignant (0, 0) à

(3,−1) (qui correspond à ( 32 ,−
1
2 )) puis en le ”retournant” autour de (0, 0).

b. A nouveau, pour placer (2, 1) et (−1,−1) sur la figure on peut imaginer la ”grille” associée au repère du plan qui nous été

donné. On obtient :



Effectuons maintenant le calcul demandé. On trouve :

(2, 1) + (−1,−1) = (2− 1, 1− 1) = (1, 0)

Géométriquement, cette égalité correspond au fait qu’en reliant (0, 0), (2, 1), (1, 0), (−1,−1) (dans cet ordre) on obtient un

parallélogramme :

c. Appelons V la droite vectorielle proposée :

V = Vect((3, 2)) = {t(3, 2) | t ∈ R}.

Voici quelques éléments de R2 appartenant à V :

(0, 0)︸ ︷︷ ︸
0(3,2)

, (3, 2)︸ ︷︷ ︸
1(3,2)

, (6, 4)︸ ︷︷ ︸
2(3,2)

, (−3,−2)︸ ︷︷ ︸
−(3,2)

, (−3

2
,−1)︸ ︷︷ ︸

− 1
2 (3,2)

, . . .

On obtient une représentation géométrique de V en reliant les différents points ci-dessus :



Enfin, la droite vectorielle V a pour équation :

V :

∣∣∣∣x 3

y 2

∣∣∣∣ = 0 ou encore 2x = 3y.

Exercice 2. Dans R2, on donne la famille :

B = (3, 2), (4, 1).

a. Montrer que B est une base de R2 et déterminer la matrice de passage de Bcan à B.
b. Quel élément de R2 a pour coordonnées

(
3
−1

)
dans la base B ?

c. Pour tout (x, y) ∈ R2, calculer [(x, y)]B et écrire la décomposition correspondante de (x, y) dans la base B.
d. Faire apparaitre géométriquement la décomposition trouvée au c. sur la figure ci-dessous.

(0, 0)

(4, 1)

(3, 2)

(x, y)

Solution:

a. (3, 2) et (4, 1) ne sont pas proportionnels, si bien que B est une base de R2. La matrice de passage de Bcan à B est :

P =

(
3 4

2 1

)
.

Rappelons que cette matrice contient dans ses colonnes les coordonnées dans Bcan des éléments de B. Ici :

[(3, 2)]Bcan
=

(
3

2

)
et [(4, 1)]Bcan

=

(
4

1

)
.



b. Par définition même des coordonnées dans une base, c’est l’élément :

3(3, 2)− (4, 1) = (9, 6)− (4, 1) = (5, 5)

qui a pour coordonnées
(

3
−1

)
dans la base B.

c. Utilisons la formule vue en cours, qui dit que les coordonnées en base B sont obtenues en multipliant celles en base canonique

par P−1. Autrement dit :

[(x, y)]B = P−1

(
x

y

)
︸︷︷︸

[(x,y)]Bcan

=

(
3 4

2 1

)−1 (
x

y

)
=

1

−5

(
1 −4

−2 3

)(
x

y

)
=

1

5

(
−x+ 4y

2x− 3y

)
.

La décomposition demandée est donc :

(x, y) =
1

5
(−x+ 4y)(3, 2) +

1

5
(2x− 3y)(4, 1).

d. Géométriquement, la décomposition trouvée en b. correspond à faire apparaitre un parallélogramme dont une diagonale est

le segment joignant (0, 0) à (x, y) et dont deux des côtés s’appuient sur les droites vectorielles engendrées par (3, 2) et (4, 1) :

(0, 0)

(4, 1)

(3, 2)
(x, y)

1
5 (−x+ 4y)(3, 2)

1
5 (2x− 3y)(4, 1)

Exercice 3. Placer (x, 0) et (0, y) sur le dessin ci-dessous.

(0, 0)

(−1, 3)

(2,−2)

(x, y)

Indication : où se trouvent (1, 0) et (0, 1) ?

Solution: Cherchons d’abord à placer (1, 0) et (0, 1) sur le dessin en essayant à tâtons de les produire à partir de (−1, 3) et (2,−2).

Commençons par observer que 1
2 (2,−2) = (1,−1), si bien que l’on peut placer (1,−1) au milieu entre (0, 0) et (2,−2) :



Ensuite, observons que (−1, 3) + (1,−1) = (0, 2), si bien que l’on obtient (0, 2) en ”complétant le parallélogramme” :

Comme 1
2 (0, 2) = (0, 1), on obtient (0, 1) au milieu entre (0, 0) et (0, 2) :

Enfin, l’égalité (1,−1) + (0, 1) = (1, 0) montre que l’on peut obtenir (1, 0) en ”complétant le parallélogramme” :

Maintenant que l’on a placé (1, 0) et (0, 1), on peut tracer les axes de coordonnées (c’est-à-dire les droites vectorielles d’équations

y = 0 et x = 0) puis identifier (x, 0) et (0, y) en décomposant (x, y) selon ces deux axes :



Exercice 4. Donner un exemple de base B de R2 qui vérifie :

a. que l’on a l’égalité [(0, 1)]B =
(

1
−1

)
.

b. en plus de la condition du a., que la première coordonnée de (2, 1) en base B est nulle.

c. en plus des conditions du a. et du b., que les deux coordonnées de (1, 1) en base B sont égales.

Solution: Considérons une base de R2 :

B = (λ, µ), (ρ, σ) (avec

∣∣∣∣λ ρ

µ σ

∣∣∣∣ ̸= 0).

a. L’égalité [(0, 1)]B =
(

1
−1

)
est satisfaite si et seulement si :

(λ, µ)− (ρ, σ) = (0, 1) c’est-à-dire (λ, µ) = (ρ, σ) + (0, 1) = (ρ, σ + 1).

En résumé, pour construire une base qui répond à la question, on doit donc choisir 4 réels λ, µ, ρ, σ vérifiant :

λ = ρ, µ = σ + 1 et

∣∣∣∣ ρ ρ

σ + 1 σ

∣∣∣∣ = −ρ ̸= 0.

Voici quelques exemples :

(1, 1), (1, 0) (1, 2), (1, 1) (1, 0), (1,−1) (2,−4), (2,−5) . . .

Ce n’est pas demandé, mais cherchons maintenant à visualiser le travail que l’on vient d’effectuer sur un dessin. Commençons

pour cela par nous donner une représentation géométrique de R2 via le choix d’un repère du plan.

Plaçons alors sur le dessin une base du type trouvé ci-dessus.



Cela fait apparaitre deux nouveaux axes (le premier étant la droite vectorielle engendrée par (ρ, σ + 1) et le deuxième celle

engendrée par (ρ, σ)) que l’on peut utiliser à leur tour pour définir des coordonnées sur le plan. En décomposant (0, 1) sur

ces deux axes, on voit maintenant apparaitre les coordonnées [(0, 1)]B =
(

1
−1

)
qui correspondent à l’égalité :

(0, 1) = (ρ, σ + 1)− (ρ, σ).

b. La nouvelle condition signifie exactement que (2, 1) est un multiple scalaire de (ρ, σ). Autrement dit, aux conditions identifiées

au a., on doit maintenant ajouter que :

ρ = 2σ.

Les bases solutions du problème posé ont donc la forme :

B = (2σ, σ + 1), (2σ, σ) (avec σ ̸= 0).

Voici quelques exemples :

(2, 2), (2, 1) (−2, 0), (−2,−1) (6, 4), (6, 3) (−10,−4), (−10,−5) . . .

A nouveau, cherchons à visualiser le travail effectué. Pour cela, plaçons sur le dessin une base du type trouvé ci-dessus.

Au vu des décompositions suivantes (qui se vérifient bien sur le dessin) :

(1, 0) = (2σ, σ + 1)− (2σ, σ), (2, 1) = 0(2σ, σ + 1) + 1
σ (2σ, σ)

on voit que les conditions requises sont remplies : dans la base B, (0, 1) a pour coordonnées
(

1
−1

)
, et la deuxième coordonnée

de (2, 1) est nulle (le point correspondant se trouve sur le deuxième axe de coordonnées).

c. On a vu que, sous les conditions du a. et du b., la matrice de passage de Bcan à B est du type :

P =

(
2σ 2σ

σ + 1 σ

)
(avec σ ̸= 0).

Exprimons alors les coordonnées de (1, 1) en base B :

[(1, 1)]B = P−1

(
1

1

)
= − 1

2σ

(
σ −2σ

−σ − 1 2σ

)(
1

1

)
=

(
1
2

− 1
2 + 1

2σ

)
.



Les deux coordonnées de (1, 1) en base B sont donc égales si et seulement si :

1
2 = − 1

2 + 1
2σ c’est-à-dire σ = 1

2 .

On voit donc qu’il existe une seule base de R2 satisfaisant les conditions données, à savoir :

B = (1, 3
2 ), (1,

1
2 ).

Pour terminer, cherchons à nouveau une visualisation du problème que l’on vient de résoudre. Pour cela, plaçons la base

trouvée sur le dessin.

Au vu des décompositions suivantes (qui se vérifient bien sur le dessin) :

(1, 0) = (1, 3
2 )− (1, 1

2 ), (2, 1) = 0(1, 3
2 ) + 2(1, 1

2 ), (1, 1) = 1
2 (1,

3
2 ) +

1
2 (1,

1
2 )

on voit que les conditions requises sont remplies : dans la base B, (0, 1) a pour coordonnées
(

1
−1

)
, la deuxième coordonnée de

(2, 1) est nulle (le point correspondant se trouve sur le deuxième axe de coordonnées), et les deux coordonnées de (1, 1) sont

égales.

Exercice 5. Déterminer la valeur du réel α sachant que l’on a l’inclusion :

Vect((1, α+ 4), (α, 5α+ 6)) ⊂ Vect((α− 1, α2 + 5)).

Solution: Observons pour commencer que, pour tout réel α, le sous-espace vectoriel :

Vect((α− 1, α2 + 5))

est une droite vectorielle, car :

(α− 1, α2 + 5︸ ︷︷ ︸
>0

) ̸= (0, 0).

On en déduit que, si α vérifie la condition donnée, alors :

Vect((1, α+ 4), (α, 5α+ 6)) ̸= R2

car R2 n’est contenu dans aucune droite vectorielle. On en déduit que, nécessairement :∣∣∣∣ 1 α

α+ 4 5α+ 6

∣∣∣∣︸ ︷︷ ︸
5α+6−α(α+4)

= 0 ⇔ α2 − α− 6 = 0 ⇔ α ∈ {−2, 3}.

Pour ces deux valeurs de α, voyons maintenant si l’inclusion étudiée est vérifiée ou non. Pour α = −2, cette inclusion s’écrit :

Vect((1,−2 + 4), (−2, 5 · (−2) + 6))︸ ︷︷ ︸
Vect((1,2))

⊂ Vect((−2− 1, (−2)2 + 5))︸ ︷︷ ︸
Vect((1,−3))

.

Elle est donc fausse, car (1, 2) n’est pas multiple scalaire de (1,−3). Pour α = 3, cette inclusion s’écrit :

Vect((1, 3 + 4), (3, 5 · 3 + 6))︸ ︷︷ ︸
Vect((1,7))

⊂ Vect((3− 1, 32 + 5))︸ ︷︷ ︸
Vect((1,7))

.

Elle est donc vraie. En résumé, il y a un seul réel solution du problème posé, à savoir α = 3.



Exercice 6. L’application f : R2 → R2 est-elle linéaire ? Si oui, en donner la matrice (dans la base canonique).

a. f : (x, y) → (x2 − y2, xy) b. f : (x, y) → (x− y, 2x+ y) c. f : (x, y) → (x+ 1, y).

Solution: Rappelons qu’une application f : R2 → R2 est linéaire si elle est définie par une formule du type :

f(x, y) = (αx+ βy, γx+ δy)

où α, β, γ, δ sont des coefficients réels. On sait aussi qu’une application linéaire respecte l’addition et la multiplication scalaire.

a. L’application f proposée ici n’est pas linéaire. En effet, à cause de la présence des carrés dans la première coordonnée et du

produit croisé dans la deuxième, la formule définissant f n’a pas la forme voulue. On peut aussi par exemple constater que

pour tout (x, y) on a :

f (−x,−y)︸ ︷︷ ︸
−(x,y)

= f(x, y)

alors que pour une application linéaire ils devraient être opposés (car on pourrait ”sortir” le −1).

b. L’application f est linéaire, de matrice :

A =

(
1 −1

2 1

)
dans la base canonique.

c. L’application f proposée ici n’est pas linéaire. En effet, à cause de la présence de la constante 1 dans la première coordonnée,

la formule définissant f n’a pas la forme voulue. On peut aussi par exemple constater que f(0, 0) est égal à (1, 0), alors que

pour une application linéaire il devrait être égal à (0, 0).

Exercice 7. On donne f, g : R2 → R2 linéaires de matrices A et B (dans la base canonique) ainsi que ω ∈ R. On pose :

a. f + g : R2 → R2

(x, y) → f(x, y) + g(x, y)

b. ωf : R2 → R2

(x, y) → ωf(x, y)

c. f ◦ g : R2 → R2

(x, y) → f(g(x, y)).

Montrer que les applications ainsi définies sont linéaires et calculer leurs matrices en fonction de A et B.

Solution:

Notons :

A =

(
α β

γ δ

)
et B =

(
λ µ

ρ σ

)
.

On a donc les expressions suivantes pour f et g :

f(x, y) = (αx+ βy, γx+ δy) et g(x, y) = (λx+ µy, ρx+ σy).

a. Par un calcul direct, on obtient :

(f + g)(x, y) = (αx+ βy, γx+ δy)︸ ︷︷ ︸
f(x,y)

+(λx+ µy, ρx+ σy)︸ ︷︷ ︸
g(x,y)

= ((α+ λ)x+ (β + µ)y, (γ + ρ)x+ (δ + σ)y).

D’après l’expression obtenue, on voit que l’application f + g est linéaire. Elle a pour matrice :(
α+ λ β + µ

γ + ρ δ + σ

)
= A+B.

b. Par un calcul direct, on obtient :

ωf(x, y) = ω (αx+ βy, γx+ δy)︸ ︷︷ ︸
f(x,y)

= (ωαx+ ωβy, ωγx+ ωδy).

D’après l’expression obtenue, on voit que l’application ωf est linéaire. Elle a pour matrice :(
ωα ωβ

ωγ ωδ

)
= ωA.



c. Par un calcul direct, on obtient :

(f ◦ g)(x, y) = f (λx+ µy, ρx+ σy)︸ ︷︷ ︸
g(x,y)

= (α(λx+ µy) + β(ρx+ σy), γ(λx+ µy) + δ(ρx+ σy)) = · · ·

· · · = ((αλ+ βρ)x+ (αµ+ βσ)y, (γλ+ δρ)x+ (γµ+ δσ)y).

D’après l’expression obtenue, on voit que l’application f ◦ g est linéaire. Elle a pour matrice :(
αλ+ βρ αµ+ βσ

γλ+ δρ γµ+ δσ

)
=

(
α β

γ δ

)(
λ µ

ρ σ

)
= AB.

Remarque : le résultat du c. fournit une justification de la définition du produit matriciel donné au cours. Ce produit correspond

en effet à la composition, une opération couramment utilisée quand on manipule des applications.

Exercice 8. On donne une application quelconque f : R2 → R2. Montrer que :

f linéaire ⇐⇒ f respecte l’addition et la multiplication scalaire de R2.

Indication : pour ” ⇐ ”, décomposer (x, y) dans la base canonique puis appliquer f .

Solution: On raisonne par double implication. Commençons par prouver ” ⇒ ”. Supposons pour cela que f est linéaire et montrons

qu’elle respecte l’addition et la multiplication scalaire. On a donc l’expression suivante :

f(x, y) = (αx+ βy, γx+ δy)

pour certains coefficients réels α, β, γ, δ. Par un calcul direct, on obtient alors :

∀(x, y), (x′, y′) ∈ R2, f(x+ x′, y + y′) = (α(x+ x′) + β(y + y′), γ(x+ x′) + δ(y + y′)) = · · ·

· · · = (αx+ βy, γx+ δy) + (αx′ + βy′, γx′ + δy′) = f(x, y) + f(x′, y′).

Autrement dit, l’image d’une somme est la somme des images : f respecte l’addition de R2. On a aussi :

∀t ∈ R, ∀(x, y) ∈ R2, f(tx, ty) = (α(tx) + β(ty), γ(tx) + δ(ty)) = t(αx+ βy, γx+ δy) = tf(x, y).

Autrement dit, f respecte la multiplication scalaire de R2. Passons à la preuve de ” ⇐ ”. Supposons pour cela que f respecte

l’addition et la multiplication scalaire et montrons qu’elle est linéaire. Posons :

(α, γ) = f(1, 0) et (β, δ) = f(0, 1).

On a alors, pour tout (x, y) ∈ R2 :

f(x, y) = f((x, 0) + (0, y)) = f(x, 0) + f(0, y)

car f respecte l’addition. De plus, vu que f respecte la multiplication scalaire, on trouve :

f(x, y) = xf(1, 0) + yf(0, 1) = x(α, γ) + y(β, δ) = (αx+ βy, γx+ δy).

Ceci montre bien que f est linéaire.

Remarque : les deux propriétés étudiées ici sont caractéristiques de la linéarité d’une application de R2 dans lui-même. La première

est explicite, au sens où elle indique de manière concrète la forme générale d’une telle application, et en tant que telle elle dépend

fortement du fait que l’on travaille ici avec R2. La deuxième est implicite et présente donc l’avantage de se généraliser à d’autres

environnements (à savoir les espaces vectoriels, comme on le verra plus tard dans le cours).


