
Algèbre Linéaire Semestre d’automne, CMS, EPFL

Série 4

Exercice 1. On donne E = {α, β, γ, δ} et A = {α, β, δ}, ainsi que l’application f : E → E définie par :

f(α) = γ, f(β) = α, f(γ) = δ et f(δ) = α.

a. Déterminer l’image directe f(A) de A par f .

b. Expliciter l’image réciproque f−1(A) de A par f .

c. Donner un sous-ensemble B de E possédant 2 éléments et tel que f(B) = f(A) et f−1(B) = f−1(A).

Solution:

a. Par définition de l’image directe, on a :

f(A) = {f(α), f(β), f(δ)} = {α, γ}.

b. L’image réciproque f−1(A) de A par f est le sous-ensemble formé des éléments de E dont l’image par f appartient à

A = {α, β, δ}. En inspectant les 4 éléments de E, on trouve alors que :

f−1(A) = {β, γ, δ}.

On peut aussi voir le sous-ensemble f−1(A) comme obtenu en collectant ensemble les antécédents de α (à savoir β et δ), ceux

de β (qui n’en a pas) et de δ (à savoir γ).

c. On trouve que B = {α, δ} convient. En effet, on a :

f(B) = {f(α), f(δ)} = {α, γ} = f(A) et f−1(B) = f−1({α}) ∪ f−1({δ}) = {β, γ, δ} = f−1(A).

Exercice 2. On considère l’application :

f : [0, 2π] → R, x→ 1

sin(x) + 2
.

a. Identifier l’image directe de [0, 2π] par f , puis celle de [0, π].

b. Déterminer l’ensemble des antécédents de 1
2 par f .

c. Expliciter l’image réciproque de [−7, 2
5 ] par f .

Solution:

a. Suivons l’évolution de f(x) lorsque x varie de 0 à 2π. Tout d’abord, pour x allant de 0 à π
2 , on sait que sin(x) va croitre de

0 à 1, si bien que f(x) va décroitre de 1
2 à 1

3 . Ensuite, pour x allant de π
2 à 3π

2 , on sait que sin(x) va décroitre de 1 à −1, si

bien que f(x) va croitre de 1
3 à 1. Enfin, pour x allant de 3π

2 à 2π, on sait que sin(x) va croitre de −1 à 0, si bien que f(x)

va décroitre de 1 à 1
2 . Quand on fait le bilan des valeurs prises par f(x), on trouve donc que :

f([0, 2π]) = [1
3 , 1].

En raisonnant de la même manière, on trouve que pour x allant de 0 à π, le réel f(x) prend toutes les valeurs entre 1
3 et 1

2 .

Autrement dit :

f([0, π]) = [ 1
3 ,

1
2 ].

b. Il s’agit de déterminer tous les réels x ∈ [0, 2π] qui vérifient :

f(x) = 1
2 ⇔

1

sin(x) + 2
= 1

2 ⇔ sin(x) + 2 = 2 ⇔ sin(x) = 0.

On voit alors qu’il y a 3 antécédents à 1
2 par f , à savoir 0,π et 2π. Autrement dit :

f−1({ 1
2}) = {0, π, 2π}.



c. Il s’agit de trouver tous les réels x ∈ [0, 2π] tels que :

f(x) ∈ [−7, 2
5 ].

On a vu en a. que f(x) est toujours dans l’intervalle [ 1
3 , 1], ce qui permet d’écrire :

f(x) ∈ [−7, 2
5 ] ⇔ f(x) ∈ [ 1

3 ,
2
5 ] ⇔ 1

3 6
1

sin(x) + 2
6 2

5 ⇔
5
2 6 sin(x) + 2 6 3 ⇔ 1

2 6 sin(x) 6 1.

En définitive, on obtient donc :

f−1([−7, 2
5 ]) = [π6 ,

5π
6 ].

Exercice 3. On considère l’application :

f : R→ R2, t→ (t2, t4).

a. Calculer l’image de 2 par f . Est-ce que (9, 3) possède un antécédent par f ?

b. Etant donné (x, y) ∈ R2, déterminer l’ensemble f−1({(x, y)}). Combien possède-t-il d’éléments ?

c. Expliciter l’image directe de R par f .

d. Déterminer l’image réciproque f−1(B) de l’ensemble B = {(x, 5x), x ∈ R} par l’application f .

Solution:

a. On trouve f(2) = (22, 24) = (4, 16). Le couple (9, 3) n’a pas d’antécédent par f . En effet, il est impossible de trouver un réel

t tel que t2 = 9 et t4 = 3, car on aurait alors 3 = t4 = (t2)2 = 92 = 81.

b. L’ensemble f−1({(x, y)}) est l’ensemble des réels t tels que :

(t2, t4) = (x, y) ⇔

{
t2 = x

t4 = y.

Pour que ce système d’équations (en t) ait (au moins) une solution, il faut que x > 0 et y = x2. Si l’une de ces conditions

n’est pas remplie, on sait donc d’ores et déjà que le couple (x, y) n’a aucun antécédent par f . Supposons maintenant que les

deux conditions sont remplies. Dans ce cas, on a : {
t2 = x

t4 = y.
⇔ t = ±

√
x.

On trouve donc finalement :

f−1({(x, y)}) =


{−
√
x,
√
x} si x > 0 et y = x2

{0} si x = y = 0

∅ si x < 0 ou y 6= x2.

Le couple (x, y) possède donc 2 antécédents par f si x > 0 et y = x2, 1 seul si x = y = 0 et 0 si x < 0 ou y 6= x2.

c. L’ensemble f(R) est formé des couples (x, y) qui possèdent (au moins) un antécédent par f . D’après le raisonnement effectué

au b. on voit donc que :

f(R) = {(x, y) ∈ R2, x > 0 et y = x2}.

d. Il s’agit de collecter ensemble les antécédents des couples du type (x, 5x) pour x ∈ R. Or, d’après le résultat trouvé en b., on

voit qu’un tel couple possède (au moins) un antécédent uniquement si x > 0 et 5x = x2, c’est-à-dire uniquement si x = 0 ou

x = 5. On trouve alors :

f−1({(x, 5x), x ∈ R}) = f−1({(0, 0), (5, 25)}) = {−
√

5, 0,
√

5}.

Exercice 4. On note A le sous-ensemble [−4, 0] de R. On considère aussi l’application :

f : R→ R, x→ x2 + 6x+ 7.

a. Identifier l’image directe de R par f .

b. Etant donné y ∈ R, déterminer l’ensemble f−1({y}). Combien y possède-t-il d’antécédents par f dans A ?

c. Expliciter les sous-ensembles f(A) et f−1(f(A))) de R.



Solution:

a. Donnons deux méthodes pour déterminer le sous-ensemble f(R). Dans la première, utilisons nos connaissances sur la fonction

f , qui est une fonction trinôme du second degré. Comme le coefficient de x2 est positif (il vaut ici 1), on sait que f va prendre

toutes les valeurs supérieures ou égales à son minimum, qui est atteint pour x = − 6
2·1 = −3. Comme la valeur de ce minimum

est f(−3) = (−3)2 + 6 · (−3) + 7 = −2, on trouve donc que :

f(R) = [−2,+∞[.

Dans la deuxième méthode, on exprime le fait que f(R) est formé des réels y ∈ R possédant au moins un antécédent par f ,

c’est-à-dire pour lesquels l’équation du second degré (en x) :

f(x) = x2 + 6x+ 7 = y ⇔ x2 + 6x+ 7− y = 0

possède au moins une solution. On sait alors que cette condition est équivalente à ce que :

∆ = 62 − 4(7− y) = 4y + 8 > 0 ⇔ y > −2.

On retrouve donc le fait que f(R) est formé de tous les réels supérieurs ou égaux à −2.

b. L’ensemble f−1({y}) n’est autre que l’ensemble des solutions de l’équation du second degré vue en a. On trouve alors :

f−1({y}) =


{−3−

√
y + 2,−3 +

√
y + 2} si y > −2

{−3} si y = −2

∅ si y < −2.

Discutons à présent du nombre d’éléments de f−1({y}) qui appartiennent à A, c’est-à-dire qui sont compris (au sens large)

entre −4 et 0. Pour y < −2, ce nombre vaut 0, car l’ensemble f−1({y}) est vide. Pour y = −2, on voit que l’unique élément

de f−1({y}), à savoir −3, appartient à A, si bien que le nombre recherché vaut 1. Pour y > −2, observons que, d’une part :

−3−
√
y + 2 ∈ A ⇔ −4 6 −3−

√
y + 2 6 0 ⇔ −3 6

√
y + 2 6 1 ⇔ y 6 −1

et, d’autre part :

−3 +
√
y + 2 ∈ A ⇔ −4 6 −3 +

√
y + 2 6 0 ⇔ −1 6

√
y + 2 6 3 ⇔ y 6 7

On voit donc que si −2 < y 6 −1 alors les deux antécédents de y par f appartiennent à A. Si −1 < y 6 7, on trouve qu’un

seul antécédent de y appartient à A (il s’agit de −3 +
√
y + 2, l’autre antécédent, −3 −

√
y + 2, étant ”sorti” de A). Enfin,

pour y > 7, aucun des deux antécédents de y par f n’appartient à A. En résumé :

Card(f−1({y}) ∩A) =


0 si y ∈ ]−∞,−2[∪]7,+∞[

1 si y ∈ {−2}∪]− 1, 7]

2 si y ∈ ]− 2,−1].

c. On sait que f(A) est formé des éléments y de R qui possèdent (au moins) un antécédent dans A. D’après le raisonnement

effectué au b. on voit donc que :

f(A) = [−2, 7].

Une autre manière de s’y prendre pour déterminer f(A) consiste à suivre l’évolution de f(x) lorque x parcourt l’intervalle

A = [−4, 0]. Au ”début”, c’est-à-dire pour x = −4, on trouve f(x) = f(−4) = −1. Ensuite, lorsque x varie de −4 à −3, la

fonction f décroit jusqu’à atteindre la valeur f(−3) = −2 (son minimum). Elle va ensuite croitre pour x allant de −3 à 0,

passant de la valeur f(−3) = −2 à f(0) = 7. Lorsque l’on fait le bilan des valeurs obtenues pour f(x), on retrouve alors que :

f(A) = [−2, 7].

Pour expliciter f−1(f(A)), donnons à nouveau deux méthodes. Dans la première, donnons-nous x ∈ R et écrivons :

x ∈ f−1(f(A)) ⇔ f(x) ∈ f(A) ⇔ x2 + 6x+ 7 ∈ [−2, 7] ⇔ −2 6 (x+ 3)2 − 2 6 7 ⇔ · · ·

· · · ⇔ 0 6 (x+ 3)2 6 9 ⇔ −3 6 x+ 3 6 3 ⇔ −6 6 x 6 0 ⇔ x ∈ [−6, 0].

On obtient donc :

f−1(f(A)) = [−6, 0].

Pour la deuxième méthode, rappelons nous que l’ensemble f−1(f(A)) = f−1([−2, 7]) est obtenu en collectant tous les

antécédents de y par f , pour y parcourant [−2, 7]. Autrement dit, en effectuant la réunion de tous les ensembles :

f−1({y}) = {−3−
√
y + 2,−3 +

√
y + 2} pour y ∈ [−2, 7].

Or, pour y allant de −2 à 7, le réel −3−
√
y + 2 décroit de −3 à −6 et le réel −3 +

√
y + 2 croit de −3 à 0. En mettant toutes

ces valeurs ensemble, on retrouve bien que f−1([−2, 7]) = [−6, 0].



Exercice 5. On donne une application f : E → F entre deux ensembles. Soit B un sous-ensemble de F .

a. Montrer que l’inclusion f(f−1(B)) ⊂ B est toujours vérifiée.

b. Sur un exemple de votre choix, montrer que l’inclusion du a. peut être stricte.

c. Montrer qu’on a en fait f(f−1(B)) = B ∩ f(E).

Solution:

a. Soit y un élément de f(f−1(B)). Par définition, il s’écrit y = f(x) pour un certain x ∈ f−1(B). On voit donc que x est un

antécédent par f d’un élément de B, ce qui permet de dire que f(x) appartient à B. Comme y = f(x), on a donc bien établi

que y appartient à B. Autrement dit, tout élément de f(f−1(B)) est aussi élément de B, ce qui montre l’inclusion recherchée.

b. Prenons par exemple pour f l’application constante nulle de R dans R, c’est-à-dire :

f : R→ R, x→ 0.

Posons aussi B = R. On obtient alors :

f−1(R) = R︸ ︷︷ ︸
tout x∈R vérifie f(x)∈R

et donc f(f−1(R)) = f(R) = {0}.

Dans ce cas, on voit donc que l’inclusion f(f−1(R)) ⊂ R dont il est question en a. est stricte.

c. Raisonnons par double inclusion. Pour établir l’inclusion ” ⊂ ”, donnons-nous un élément y de f(f−1(B)). On a déjà vu au

a. que y appartient à B. Par ailleurs, y possède au moins un antécédent par f , et appartient donc à f(E). En définitive, y

est élément de B ∩ f(E). Pour établir l’inclusion ” ⊃ ”, donnons-nous un élément y de B ∩ f(E). Comme y est dans f(E),

il possède au moins un antécédent x par f . De plus, y appartient à B, si bien que x est un antécédent d’un élément de B, et

appartient donc à f−1(B). Ainsi, y est l’image par f d’un élément de f−1(B), et appartient donc à f(f−1(B)). Ceci achève

de prouver l’égalité voulue.

Exercice 6. On donne une application f : E → F entre deux ensembles. Démontrer que :

∀A ⊂ E, ∀B ⊂ F, f(A) ∩B = ∅ ⇔ A ∩ f−1(B) = ∅.

Indication : procéder par double implication et utiliser des raisonnements par contraposée.

Solution: Pour démontrer cette équivalence, on raisonne par double implication. Commençons par l’implication ” ⇒ ”. On peut

par exemple procéder par contraposée, en montrant :

∀A ⊂ E, ∀B ⊂ F, A ∩ f−1(B) 6= ∅⇒ f(A) ∩B 6= ∅.

Sous l’hypothèse que A∩ f−1(B) 6= ∅, on peut trouver un élément x de A tel que f(x) appartient à B. On voit alors que y = f(x)

est un élément de f(A) qui est aussi dans B. Par conséquent f(A) ∩ B 6= ∅ (puisque y appartient à cette intersection). Montrons

à présent l’implication ”⇐ ”, également par contraposée. On veut donc montrer :

∀A ⊂ E, ∀B ⊂ F, f(A) ∩B 6= ∅⇒ A ∩ f−1(B) 6= ∅.

Sous l’hypothèse que f(A)∩B 6= ∅, on peut trouver un élément y de B qui appartient aussi à f(A), et qui peut donc s’écrire sous

la forme y = f(x), pour un certain x dans A. On voit alors que x est un élément de A qui est aussi dans f−1(B). Par conséquent

A∩f−1(B) 6= ∅ (puisque x appartient à cette intersection). Ceci achève la preuve de l’équivalence proposée, par double implication.


