
Algèbre Linéaire Semestre d’automne, CMS, EPFL

Série 2

Exercice 1. On considère l’énoncé suivant : ”Le carré d’un entier naturel différent de 1 est aussi différent de 1”.

a. Exprimer cet énoncé à l’aide de symboles mathématiques (dont le symbole d’implication). Est-il vrai ou faux ?

b. Ecrire la négation de l’énoncé, avec des symboles d’abord, puis en toutes lettres.

c. Mêmes questions a. et b. mais avec l’énoncé suivant :

”Si un produit de deux réels est positif ou nul, alors l’un de ces réels est positif ou nul”.

Solution:

a. L’énoncé proposé ici peut s’exprimer de la manière suivante :

∀n ∈ N, n 6= 1⇒ n2 6= 1.

Il est vrai (le carré de 0 vaut 0 et le carré d’une entier naturel supérieur ou égal à 2 est supérieur ou égal à 4). Observons au

passage que l’énoncé analogue avec les réels, qui s’écrit :

∀x ∈ R, x 6= 1⇒ x2 6= 1

et se lit ”Le carré d’un réel différent de 1 est aussi différent de 1” est, quant à lui, faux (prendre x = −1). Le référentiel dans

lequel on place l’énoncé (c’est-à-dire l’ensemble apparaissant au début) est donc très important.

b. La négation de l’énoncé proposé s’exprime par :

∃n ∈ N, n 6= 1 et n2 = 1

et se lit ”On peut trouver un entier naturel différent de 1 dont le carré vaut 1”.

c. Voici le nouvel énoncé traduit avec des symboles :

∀x ∈ R, ∀y ∈ R, xy > 0⇒ (x > 0 ou y > 0).

Cet énoncé est faux (prendre par exemple x = y = −1). Sa négation s’écrit :

∃x ∈ R, ∃y ∈ R, xy > 0 et (x < 0 et y < 0)

et se lit ”Il existe deux nombres réels strictement négatifs dont le produit est positif ou nul”.

Exercice 2. On considère l’énoncé suivant : ”∀x ∈ R, x2 + 4x+ 3 = 0⇒ x = −1”.

a. Ecrire cet énoncé en toutes lettres. Est-il vrai ou faux ?

b. Ecrire l’énoncé réciproque, à l’aide de symboles d’abord, puis en toutes lettres. Est-il vrai ou faux ?

c. Mêmes questions a. et b. mais avec l’énoncé suivant : ”∀x ∈ R,∀y ∈ R, (x > 0 ou y > 0)⇒ x+ y > 0”.

Solution:

a. Traduisons l’énoncé mot-à-mot : ”Si un réel x vérifie l’égalité x2 + 4x + 3 = 0 alors il est égal à −1” (attention : l’énoncé

n’affirme en aucun cas que −1 est effectivement solution). Voici d’autres traductions possibles : ”−1 est la seule solution

réelle potentielle de (ou le seul candidat-solution à) l’équation x2 + 4x + 3 = 0”, ou encore ”Tout réel différent de −1 n’est

pas solution de l’équation x2 + 4x + 3 = 0” (ce dernier énoncé correspondant en fait plutôt à la contraposée). La résolution

effective de l’équation de degré 2 proposée ici montre que −1 et −3 en sont les deux solutions réelles. Par conséquent, il existe

une solution différente de −1, si bien que l’énoncé proposé est faux.

b. L’énoncé réciproque :

∀x ∈ R, x = −1⇒ x2 + 4x+ 3 = 0

se lit simplement ”Si un réel x est égal à −1, alors il est solution de l’équation x2 + 4x+ 3 = 0”, ou encore ”−1 est solution

de l’équation x2 + 4x+ 3 = 0”. Il est vrai.



c. L’énoncé peut se traduire ici par ”Sous l’hypothèse que l’un des deux réels x ou y est strictement positif, on peut affirmer que

la somme x+ y est strictement positive”, ou encore ”La somme de deux réels est strictement positive dès que l’un des deux

réels est strictement positif”. Ce résultat est faux. Par exemple, la somme de 1 et −2 (qui vaut 1 − 2 = −1) est strictement

négative, et pourtant l’un des deux réels que l’on additionne (à savoir 1) est strictement positif (si bien que si l’on choisit

x = 1 et y = −2, l’hypothèse est vérifiée mais pas la conclusion). La réciproque s’écrit :

∀x ∈ R,∀y ∈ R, x+ y > 0⇒ (x > 0 ou y > 0)

et se lit ”Si la somme de deux réels est strictement positive, alors l’un (au moins) de ces réels est strictement positif”. Elle

est donc vraie (si deux réels sont négatifs ou nuls, alors leur somme est négative ou nulle).

Exercice 3. On s’intéresse aux propriétés suivantes portant sur un entier naturel x ∈ N :

P : ∃y ∈ N, x = 3y Q : ∃z ∈ N, x2 = 3z.

a. Déterminer parmi les entiers x compris entre 0 et 6 ceux qui vérifient P et ceux qui vérifient Q. Qu’observez-vous ?

b. Montrer l’énoncé ”∀x ∈ N, (x vérifie P) ⇒ (x vérifie Q)” après l’avoir traduit en toutes lettres.

c. Ecrire l’énoncé réciproque de celui introduit au b. puis montrer qu’il est vrai, en raisonnant par contraposée.

Solution:

a. La propriété P dit juste que l’entier x est divisible par 3. Entre 0 et 6 on trouve donc qu’elle est vérifiée par 0, 3 et 6. La

propriété Q, quant à elle, signifie que l’entier x2 est divisible par 3. Ecrivons alors la liste des x2, pour x entre 0 et 6 :

02 = 0, 12 = 1, 22 = 4 = 3 + 1, 32 = 9, 42 = 16 = 3 · 5 + 1, 52 = 25 = 3 · 8 + 1, 62 = 36.

On a aussi fait figurer le reste dans la division euclidienne par 3, ce qui permet de voir que les entiers naturels entre 0 et 6

qui vérifient Q sont les mêmes que ceux vérifiant P, à savoir 0, 3 et 6.

b. La propriété à montrer se traduit par : ”Pour tout entier naturel x, si x est un multiple de 3 alors x2 l’est aussi”, ou encore

”Le carré d’un multiple de 3 est aussi multiple de 3”. Pour montrer ceci, donnons-nous un entier naturel x multiple de 3. On

peut donc écrire x = 3y pour un certain entier naturel y. Il vient alors :

x2 = (3y)2 = 9y2 = 3 · (3y2).

On peut donc conclure que l’entier x2 est bien multiple de 3.

c. L’énoncé réciproque s’écrit :

∀x ∈ N, (x vérifie Q) ⇒ (x vérifie P)

et se lit ”Pour tout entier naturel x, si x2 est multiple de 3 alors x est aussi multiple de 3”. La contraposée de cet énoncé

réciproque s’écrit donc :

∀x ∈ N, (x vérifie nonP) ⇒ (x vérifie nonQ)

et se lit ”Si un entier naturel n’est pas multiple de 3, alors son carré non plus”. Pour montrer que ceci est bien vérifié,

donnons-nous un entier naturel x non multiple de 3. Il peut donc s’écrire sous la forme 3y + 1 ou 3y + 2, où y est un entier

naturel (selon que le reste dans la division euclidienne de x par 3 vaut 1 ou 2). On a alors :

x2 = (3y + 1)2 = 9y2 + 6y︸ ︷︷ ︸
multiple de 3

+1 ou x2 = (3y + 2)2 = 9y2 + 12y + 3︸ ︷︷ ︸
multiple de 3

+1.

On en déduit bien que x2 n’est pas multiple de 3 (on a même montré que son reste dans la division par 3 est égal à 1).

Remarque : d’après les résultats montrés en b. et c., on peut maintenant affirmer que les propriétés P et Q sont équivalentes.

Les sous-ensembles de N définis par ces propriétés caractéristiques, à savoir :

{x ∈ N, x vérifie P} et {x ∈ N, x vérifie Q}

sont égaux (il s’agit du sous-ensemble formé des multiples de 3).

Exercice 4. On donne un ensemble E et on souhaite montrer que l’énoncé suivant est vrai :

∀A,B,C sous-ensemble de E, (A ⊂ B ∩ C) ⇔ (A ⊂ B et A ⊂ C).

a. Montrer l’implication ”⇒”, en revenant aux définitions de l’inclusion et de l’intersection de sous-ensembles.

b. De la même manière, montrer l’implication réciproque ”⇐”.



c. L’énoncé suivant est-il vrai ou faux ? Justifier par une démonstration ou un contre-exemple :

∀A,B,C sous-ensemble de E, (A ⊂ B ∪ C) ⇔ (A ⊂ B ou A ⊂ C).

Solution:

a. Pour montrer l’implication ”⇒”, on travaille sous l’hypothèse que A est inclus dans le sous-ensemble B ∩C (c’est-à-dire que

l’on se place dans le cas où cette inclusion a lieu). Par définition de l’inclusion, cela signifie alors que tout élément x de A est

élément de B∩C. Par définition de l’intersection, cela implique ensuite que x appartient à la fois à B et à C. On a donc établi

que, d’une part, tout élément de A appartient à B, c’est-à-dire que A est inclus dans B et, d’autre part, que tout élément de

A appartient à C, c’est-à-dire que A est inclus dans C. On s’arrête ici, car on vient d’obtenir la conclusion souhaitée.

b. Pour montrer l’implication ”⇐”, on travaille cette fois sous l’hypothèse que A est à la fois inclus dans B et dans C. Par

définition de l’inclusion, cela signifie alors que tout élément x de A est élément de B et aussi élément de C. Par définition de

l’intersection, cela implique ensuite que x appartient à B ∩ C. On a donc établi que tout élément de A appartient à B ∩ C,

ce qui constitue la conclusion souhaitée.

c. L’énoncé proposé est (généralement) faux car l’implication ”⇒” pose problème (l’implication ”⇐” est quant à elle vraie, comme

on peut le montrer par un raisonnement analogue à ceux effectués ci-dessus). En effet, de manière informelle, l’hypothèse que

A ⊂ B ∪ C signifie simplement que A est réunion d’un ”bout” de B et d’un ”bout” de C, tandis que la conclusion (A ⊂ B

ou A ⊂ C) signifie que A est tout entier contenu dans B ou tout entier contenu dans C, ce qui semble a priori beaucoup

trop demander. Pour construire un contre-exemple, donnons-nous (si c’est possible), deux éléments distincts α et β de E et

posons :

A = {α, β}, B = {α} et C = {β}.

On voit alors que l’hypothèse est ici remplie (A est en fait égal à B ∪ C) mais pas la conclusion (A n’est contenu ni dans B,

ni dans C). On a donc bien maintenant prouvé que, dans le cas où E possède au moins deux éléments distincts (ce qui est

le cas de la plupart des ensembles !), l’implication ”⇒” n’est pas vérifiée. Observons finalement que si E possède 0 élément

(c’est-à-dire est l’ensemble vide) ou exactement 1 élément l’énoncé proposé est vrai (les possibilités pour les sous-ensembles

A,B et C sont alors très réduites !).

Exercice 5. On donne un ensemble E et on souhaite montrer que l’énoncé suivant est vrai :

∀A,B,C sous-ensemble de E, A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

a. Dans le cas particulier où A = C, identifier les sous-ensembles de part et d’autre de l’égalité et constater qu’ils cöıncident.

b. Prouver le résultat voulu dans le cas général . Indication : raisonner par double inclusion.

Solution:

a. Plaçons-nous donc dans le cas particulier où A = C. Dans ce cas, le membre de gauche de l’égalité que l’on cherche à montrer

est en fait :

A ∪ (B ∩ C) = A ∪ (A ∩B) = A

la dernière égalité ayant lieu car A ∩B est inclus dans A, si bien qu’adjoindre les éléments de A ∩B à ceux de A n’a en fait

aucun effet. Regardons à présent le membre de droite :

(A ∪B) ∩ (A ∪A) = (A ∪B) ∩A = A,

la dernière égalité ayant lieu car A est inclus dans A ∪B, si bien que les éléments de E qui sont à la fois dans A ∪B et dans

A sont exactement ceux de A. On peut donc bien constater ici l’égalité entre le membre de gauche et celui de droite, les deux

étant en fait égaux à A.

b. Montrons tout d’abord ” ⊂ ”. Pour cela, considérons un élément x du sous-ensemble A ∪ (B ∩ C). On peut donc distinguer

deux cas, selon que x appartient à A ou que x appartient B ∩C (au moins l’un des deux cas se produit, car x appartient à la

réunion). Dans le premier cas, x appartient aux deux sous-ensembles A ∪ B et A ∪ C (car il appartient à A), et donc à leur

intersection. Dans le deuxième cas x appartient à B et à C, si bien qu’il appartient également à A ∪ B et A ∪ C et donc à

leur intersection. Dans les deux cas, on voit bien que x appartient à (A ∪B) ∩ (A ∪ C), ce qui montre la première inclusion.

Montrons à présent ”⊃”, c’est-à-dire l’inclusion dans l’autre sens. Pour cela, considérons un élément x du sous-ensemble

(A ∪B) ∩ (A ∪ C). On a donc que x appartient à A ∪B et à A ∪ C. Discutons alors selon que x appartient à A ou à {E(A)

(exactement l’un de ces deux cas se produit). Dans le premier cas, on a directement que x appartient à A ∪ (B ∩ C) (car

x appartient à A). Dans le deuxième cas, observons que x n’appartient pas à A et appartient à A ∪ B. Par conséquent, x

appartient à B. De la même façon, on voit que x appartient à C. On voit finalement que x appartient à B ∩ C, et donc à

A ∪ (B ∩ C). Ceci montre la deuxième inclusion voulue et achève de prouver l’égalité des deux sous-ensembles.



Remarque : le résultat prouvé dans cet exercice porte le nom de ”distributivité de la réunion sur l’intersection”.

Exercice 6. On donne un ensemble E ainsi que deux sous-ensembles A et B.

a. Faire un schéma représentant E,A et B.

b. Placer le sous-ensemble (A∩B)∪ ({E(A)∩B) sur votre schéma. Qu’observez-vous ? Montrer formellement votre résultat.

c. Même question b. mais avec le sous-ensemble A ∩ ({E(A) ∪B).

Solution:

a. La donnée de A et B définit quatre ”secteurs” dans E (certains étant éventuellement vides), que l’on peut représenter

schématiquement de la manière suivante :

A ∩B

A ∩ {E(B) {E(A) ∩ {E(B)

{E(A) ∩B

A {E(A)

B

{E(B)

b. Les deux sous-ensembles dont on fait la réunion sont ici tous deux des ”secteurs” représentés ci-dessus. Faisons alors apparaitre

en rouge la réunion :

A ∩B

A ∩ {E(B) {E(A) ∩ {E(B)

{E(A) ∩B

B

On a donc l’impression que le sous-ensemble proposé n’est autre que B, autrement dit, que :

(A ∩B) ∪ ({E(A) ∩B) = B.

On va donner deux preuves de ce résultat. Dans la première, on raisonne par double inclusion. Considérons dans un premier

temps un élément x du sous-ensemble proposé. Dans ce cas, x appartient à (au moins) l’un des deux sous-ensembles A ∩ B
et {E(A) ∩B. Comme ces deux sous-ensembles sont contenus dans B, on voit que x appartient à B. Ceci montre l’inclusion

” ⊂ ”. Pour montrer l’autre inclusion, donnons-nous un x dans B. On observe alors que, soit x appartient à A, et dans ce cas

x appartient à A∩B, soit il n’appartient pas à A, et dans ce cas il est élément de {E(A)∩B. Dans tous les cas, il appartient

à la réunion (A ∩B) ∪ ({E(A) ∩B). Ceci achève de montrer l’inclusion ” ⊃ ” et donc l’égalité recherchée.

Passons à la deuxième preuve. Dans celle-ci, on va utiliser les règles du calcul ensembliste, et en particulier la règle de

distributivité de l’intersection sur la réunion, afin de chercher à simplifier l’expression donnée. On obtient :

(A ∩B) ∪ ({E(A) ∩B) = (A ∪ {E(A)) ∩B = E ∩B = B.

La preuve est ici plus rapide que celle par double inclusion, car on ne raisonne pas au niveau des éléments de E, mais plus

”globalement”.

c. Représentons sur notre schéma les sous-ensembles A et {E(A) ∪B respectivement :

A ∩B

A ∩ {E(B) {E(A) ∩ {E(B)

{E(A) ∩B

A

A ∩B

A ∩ {E(B) {E(A) ∩ {E(B)

{E(A) ∩B

{E(A) ∪B



En intersectant les deux sous-ensembles obtenus, on obtient alors la figure suivante :

A ∩B

A ∩ {E(B) {E(A) ∩ {E(B)

{E(A) ∩B

A ∩B

On a donc l’impression que le sous-ensemble proposé n’est autre que A ∩B, autrement dit, que :

A ∩ ({E(A) ∪B) = A ∩B.

On va donner à nouveau deux preuves de ce résultat. Dans la première, on raisonne par double inclusion. Considérons dans

un premier temps un élément x du sous-ensemble proposé A∩ ({E(A)∪B). Dans ce cas, x appartient à A. Il appartient aussi

à {E(A) ∪ B, et, du fait qu’il n’appartient pas à {E(A) (puisqu’il appartient à A), on voit donc qu’il appartient à B. Par

conséquent, il appartient à A et B, donc à A∩B. Ceci montre l’inclusion ” ⊂ ”. Pour montrer l’autre inclusion, donnons-nous

un x dans A∩B. On observe alors que x appartient à A et à B, et donc aussi aussi à {E(A)∪B. On peut donc bien conclure

que x appartient à A ∩ ({E(A) ∪B). Ceci achève de montrer l’inclusion ” ⊃ ” et donc l’égalité recherchée.

Passons à la deuxième preuve. Dans celle-ci, on va utiliser les règles du calcul ensembliste, et en particulier la règle de

distributivité de l’intersection sur la réunion, qui permet d’écrire :

A ∩ ({E(A) ∪B) = (A ∩ {E(A))︸ ︷︷ ︸
∅

∪(A ∩B) = A ∩B.

La preuve est ici plus rapide que celle par double inclusion, car on ne raisonne pas au niveau des éléments de E, mais plus

”globalement”.


