Algebre Linéaire Semestre d’automne, CMS, EPFL

Série 2

Exercice 1. On considere I’énoncé suivant : ”Le carré d’un entier naturel différent de 1 est aussi différent de 1”.

a. Exprimer cet énoncé a l'aide de symboles mathématiques (dont le symbole d’implication). Est-il vrai ou faux ?
b. Ecrire la négation de I’énoncé, avec des symboles d’abord, puis en toutes lettres.

c. Mémes questions a. et b. mais avec I’énoncé suivant :

”Si un produit de deux réels est positif ou nul, alors I'un de ces réels est positif ou nul”.

Solution:

a. L’énoncé proposé ici peut s’exprimer de la maniere suivante :
VneN,n#1=n%#1.

Il est vrai (le carré de 0 vaut 0 et le carré d’une entier naturel supérieur ou égal a 2 est supérieur ou égal & 4). Observons au
passage que ’énoncé analogue avec les réels, qui s’écrit :

VeeR, 2 #1=a22#1

et se lit "Le carré d'un réel différent de 1 est aussi différent de 17 est, quant & lui, faux (prendre x = —1). Le référentiel dans
lequel on place I’énoncé (c¢’est-a-dire Pensemble apparaissant au début) est donc trés important.

b. La négation de ’énoncé proposé s’exprime par :
IJneN,n#letn?=1

et se lit ”On peut trouver un entier naturel différent de 1 dont le carré vaut 1.

c. Voici le nouvel énoncé traduit avec des symboles :
VeeR, VyeR, zy 2 0= (z > 0o0uy > 0).
Cet énoncé est faux (prendre par exemple z = y = —1). Sa négation s’écrit :
JreR, JyeR, zy>0et (z<0ety<0)

et se lit 71l existe deux nombres réels strictement négatifs dont le produit est positif ou nul”.

Exercice 2. On considere 1’énoncé suivant : "Vz € R, 22 + 420 +3=0=2 = —17.
a. Ecrire cet énoncé en toutes lettres. Est-il vrai ou faux ?
b. Ecrire ’énoncé réciproque, a I’aide de symboles d’abord, puis en toutes lettres. Est-il vrai ou faux ?

c. Mémes questions a. et b. mais avec I’énoncé suivant : "Vx e R,Vy e R, (z >0ouy >0)=x+y > 0.

Solution:

a. Traduisons I’énoncé mot-a-mot : ”Si un réel = vérifie 'égalité 22 + 4 + 3 = 0 alors il est égal & —1” (attention : I’énoncé
n’affirme en aucun cas que —1 est effectivement solution). Voici d’autres traductions possibles : ”—1 est la seule solution
réelle potentielle de (ou le seul candidat-solution &) I’équation z2 + 4z + 3 = 07, ou encore ”Tout réel différent de —1 n’est
pas solution de I'équation 22 + 42 + 3 = 0” (ce dernier énoncé correspondant en fait plutot a la contraposée). La résolution
effective de ’équation de degré 2 proposée ici montre que —1 et —3 en sont les deux solutions réelles. Par conséquent, il existe
une solution différente de —1, si bien que 1’énoncé proposé est faux.

b. L’énoncé réciproque :

VeeR z=-1=22+42+3=0

se lit simplement ”Si un réel o est égal & —1, alors il est solution de ’équation 22 4 42 + 3 = 07, ou encore ” —1 est solution
de I'équation 22 + 4z + 3 = 07. Il est vrai.



c. L’énoncé peut se traduire ici par ”Sous ’hypothese que I'un des deux réels = ou y est strictement positif, on peut affirmer que
la somme x + y est strictement positive”, ou encore ”La somme de deux réels est strictement positive des que I'un des deux

réels est strictement positif”. Ce résultat est faux. Par exemple, la somme de 1 et —2 (qui vaut 1 — 2 = —1) est strictement
négative, et pourtant 'un des deux réels que I'on additionne (& savoir 1) est strictement positif (si bien que si 'on choisit
x =1et y=—2, 'hypothese est vérifiée mais pas la conclusion). La réciproque s’écrit :

VeeRVyeRz+y>0= (z>00uy>0)

et se lit ”Si la somme de deux réels est strictement positive, alors 'un (au moins) de ces réels est strictement positif”. Elle
est donc vraie (si deux réels sont négatifs ou nuls, alors leur somme est négative ou nulle).

Exercice 3. On s’intéresse aux propriétés suivantes portant sur un entier naturel z € N :
P:JyeN, =3y Q:3z€eN, 2?2 =32

a. Déterminer parmi les entiers x compris entre 0 et 6 ceux qui vérifient P et ceux qui vérifient Q. Qu’observez-vous ?

b. Montrer I’énoncé "V € N, (z vérifie P) = (z vérifie Q)” apres 'avoir traduit en toutes lettres.

c. Ecrire I’énoncé réciproque de celui introduit au b. puis montrer qu’il est vrai, en raisonnant par contraposée.

Solution:

a. La propriété P dit juste que 'entier x est divisible par 3. Entre 0 et 6 on trouve donc qu’elle est vérifiée par 0,3 et 6. La
propriété Q, quant & elle, signifie que I’entier 22 est divisible par 3. Ecrivons alors la liste des 22, pour x entre 0 et 6 :

0°=0,12=1,22=4=3+1,32=9,42=16=3-5+1,5=25=3-8+ 1, 6 = 36.
On a aussi fait figurer le reste dans la division euclidienne par 3, ce qui permet de voir que les entiers naturels entre 0 et 6

qui vérifient Q sont les mémes que ceux vérifiant P, a savoir 0,3 et 6.

b. La propriété & montrer se traduit par : "Pour tout entier naturel z, si x est un multiple de 3 alors x2? ’est aussi”, ou encore
”Le carré d’'un multiple de 3 est aussi multiple de 3”. Pour montrer ceci, donnons-nous un entier naturel x multiple de 3. On
peut donc écrire x = 3y pour un certain entier naturel y. Il vient alors :

2? = (3y)* = 9y® = 3 (3y°).

On peut donc conclure que I'entier 22 est bien multiple de 3.
c. L’énoncé réciproque s’écrit :
Vr € N, (z vérifie Q) = (x vérifie P)
et se lit "Pour tout entier naturel x, si 2 est multiple de 3 alors = est aussi multiple de 3”. La contraposée de cet énoncé
réciproque s’écrit donc :
Vz € N, (x vérifie non P) = (x vérifie non Q)
et se lit ”Si un entier naturel n’est pas multiple de 3, alors son carré non plus”. Pour montrer que ceci est bien vérifié,

donnons-nous un entier naturel z non multiple de 3. Il peut donc s’écrire sous la forme 3y + 1 ou 3y + 2, ou y est un entier
naturel (selon que le reste dans la division euclidienne de 2 par 3 vaut 1 ou 2). On a alors :

2 =By+1)2= 9% +6y +1oua?=(3y+2)? =9y +12y +3+1.
~—— ——
multiple de 3 multiple de 3
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On en déduit bien que x* n’est pas multiple de 3 (on a méme montré que son reste dans la division par 3 est égal a 1).

Remarque : d’apres les résultats montrés en b. et c., on peut maintenant affirmer que les propriétés P et Q sont équivalentes.
Les sous-ensembles de N définis par ces propriétés caractéristiques, a savoir :

{z €N, x vérifie P} et {z €N, x vérifie Q}

sont égaux (il s’agit du sous-ensemble formé des multiples de 3).

Exercice 4. On donne un ensemble E et on souhaite montrer que ’énoncé suivant est vrai :
VA, B, C sous-ensemble de E, (ACBNC) < (ACBet ACC).

a. Montrer I'implication ”=-" en revenant aux définitions de 'inclusion et de l'intersection de sous-ensembles.

b. De la méme maniére, montrer 'implication réciproque ”<".




c. L’énoncé suivant est-il vrai ou faux ? Justifier par une démonstration ou un contre-exemple :

VA, B, C sous-ensemble de £, (ACBUC) < (ACBouAdcO).

Solution:

a. Pour montrer I'implication =", on travaille sous ’hypothése que A est inclus dans le sous-ensemble BN C (c’est-a-dire que
P’on se place dans le cas ou cette inclusion a lieu). Par définition de l'inclusion, cela signifie alors que tout élément = de A est
élément de BNC. Par définition de 'intersection, cela implique ensuite que = appartient a la fois & B et & C. On a donc établi
que, d’une part, tout élément de A appartient a B, c’est-a-dire que A est inclus dans B et, d’autre part, que tout élément de
A appartient a C, c’est-a-dire que A est inclus dans C. On s’arréte ici, car on vient d’obtenir la conclusion souhaitée.

b. Pour montrer I'implication ”<", on travaille cette fois sous I’hypothese que A est a la fois inclus dans B et dans C. Par
définition de 'inclusion, cela signifie alors que tout élément = de A est élément de B et aussi élément de C. Par définition de
Iintersection, cela implique ensuite que = appartient & BN C. On a donc établi que tout élément de A appartient a BN C),
ce qui constitue la conclusion souhaitée.

c. L’énoncé proposé est (généralement) faux car 'implication ”=" pose probléme ('implication ”<" est quant & elle vraie, comme
on peut le montrer par un raisonnement analogue a ceux effectués ci-dessus). En effet, de maniere informelle, ’hypotheése que
A C BUC signifie simplement que A est réunion d’un "bout” de B et d'un "bout” de C, tandis que la conclusion (A C B
ou A C C) signifie que A est tout entier contenu dans B ou tout entier contenu dans C', ce qui semble a priori beaucoup
trop demander. Pour construire un contre-exemple, donnons-nous (si c’est possible), deux éléments distincts « et 5 de E et
posons :

Az{O‘?ﬁ}a B:{Oé} et O:{ﬁ}

On voit alors que ’hypothése est ici remplie (A est en fait égal & B U C') mais pas la conclusion (A n’est contenu ni dans B,
ni dans C). On a donc bien maintenant prouvé que, dans le cas ol E posséde au moins deux éléments distincts (ce qui est
le cas de la plupart des ensembles!), 'implication ”=" n’est pas vérifiée. Observons finalement que si E posseéde 0 élément
(c’est-a-dire est ’ensemble vide) ou exactement 1 élément ’énoncé proposé est vrai (les possibilités pour les sous-ensembles
A, B et C sont alors tres réduites!).

Exercice 5. On donne un ensemble E et on souhaite montrer que I’énoncé suivant est vrai :
VA, B,C sous-ensemble de E, AU(BNC)=(AUB)N(AUCQC).

a. Dans le cas particulier ou A = C, identifier les sous-ensembles de part et d’autre de ’égalité et constater qu’ils coincident.

b. Prouver le résultat voulu dans le cas général . Indication : raisonner par double inclusion.

Solution:

a. Plagons-nous donc dans le cas particulier ou A = C'. Dans ce cas, le membre de gauche de 1’égalité que ’on cherche & montrer
est en fait :
AUu(BNC)=AU(ANB)=A4

la derniere égalité ayant lieu car A N B est inclus dans A, si bien qu’adjoindre les éléments de AN B a ceux de A n’a en fait
aucun effet. Regardons a présent le membre de droite :

(AUB)N(AUA)=(AUB)NA=A4A,

la derniere égalité ayant lieu car A est inclus dans A U B, si bien que les éléments de E qui sont a la fois dans AU B et dans
A sont exactement ceux de A. On peut donc bien constater ici I’égalité entre le membre de gauche et celui de droite, les deux
étant en fait égaux a A.

b. Montrons tout d’abord ” C ”. Pour cela, considérons un élément x du sous-ensemble A U (B N C). On peut donc distinguer
deux cas, selon que x appartient & A ou que x appartient BN C (au moins 'un des deux cas se produit, car x appartient a la
réunion). Dans le premier cas, x appartient aux deux sous-ensembles AU B et AU C (car il appartient a A), et donc a leur
intersection. Dans le deuxiéme cas = appartient a B et a C, si bien qu'’il appartient également & AU B et AU C et donc a
leur intersection. Dans les deux cas, on voit bien que z appartient & (AU B) N (AU C), ce qui montre la premiére inclusion.

Montrons a présent ”D”, c’est-a-dire 'inclusion dans ’autre sens. Pour cela, considérons un élément x du sous-ensemble
(AUB)N(AUCQC). On a donc que = appartient & AU B et & AU C. Discutons alors selon que 2 appartient & A ou & Cg(A)
(exactement I'un de ces deux cas se produit). Dans le premier cas, on a directement que z appartient & AU (B N C) (car
x appartient & A). Dans le deuxiéme cas, observons que x n’appartient pas & A et appartient & A U B. Par conséquent, x
appartient & B. De la méme fagon, on voit que x appartient a C. On voit finalement que x appartient a B N C, et donc a
AU (BNC). Ceci montre la deuxieme inclusion voulue et achéve de prouver I’égalité des deux sous-ensembles.



Remarque : le résultat prouvé dans cet exercice porte le nom de ”distributivité de la réunion sur 'intersection”.

Exercice 6. On donne un ensemble E ainsi que deux sous-ensembles A et B.
a. Faire un schéma représentant F, A et B.

b. Placer le sous-ensemble (AN B)U(Cg(A)N B) sur votre schéma. Qu’observez-vous ? Montrer formellement votre résultat.

c. Méme question b. mais avec le sous-ensemble AN (Cx(A) U B).

Solution:
a. La donnée de A et B définit quatre ”secteurs” dans E (certains étant éventuellement vides), que 'on peut représenter

schématiquement de la maniére suivante :

Al Tp(4)

ANB Ce(A)NB

Cx(B)

b. Les deux sous-ensembles dont on fait la réunion sont ici tous deux des ”secteurs” représentés ci-dessus. Faisons alors apparaitre

en rouge la réunion :

ANB Cz(4A)NB

ANCp(B) | Cp(4)NCx(B)

B
On a donc 'impression que le sous-ensemble proposé n’est autre que B, autrement dit, que :
(ANB)U (Cg(A)NB) =B.

On va donner deux preuves de ce résultat. Dans la premiere, on raisonne par double inclusion. Considérons dans un premier
temps un élément x du sous-ensemble proposé. Dans ce cas, x appartient & (au moins) I'un des deux sous-ensembles A N B
et Cg(A4) N B. Comme ces deux sous-ensembles sont contenus dans B, on voit que 2 appartient & B. Ceci montre l'inclusion
7 C 7. Pour montrer ’autre inclusion, donnons-nous un x dans B. On observe alors que, soit = appartient a A, et dans ce cas
x appartient & AN B, soit il n’appartient pas & A, et dans ce cas il est élément de Cg(A) N B. Dans tous les cas, il appartient
a la réunion (AN B) U (Cg(A) N B). Ceci achéve de montrer I'inclusion ” O 7 et donc 1’égalité recherchée.

Passons a la deuxieme preuve. Dans celle-ci, on va utiliser les regles du calcul ensembliste, et en particulier la regle de

distributivité de Iintersection sur la réunion, afin de chercher a simplifier 'expression donnée. On obtient :
(ANB)U(Cr(A)NB)=(AUlg(A)NB=ENB=B.

La preuve est ici plus rapide que celle par double inclusion, car on ne raisonne pas au niveau des éléments de F, mais plus

”globalement”.

c. Représentons sur notre schéma les sous-ensembles A et Cz(A) U B respectivement :

ANB Ce(4A)NB ANB Ce(A)NB

ANCp(B) | Cp(4)NCx(B) ANCy(B) | Cp(4)NCx(B)

A Cx(A)UB



En intersectant les deux sous-ensembles obtenus, on obtient alors la figure suivante :

ANB Ce(A)NB

ANB

On a donc 'impression que le sous-ensemble proposé n’est autre que A N B, autrement dit, que :
AN (Ceg(A)UB)=ANB.

On va donner a nouveau deux preuves de ce résultat. Dans la premiere, on raisonne par double inclusion. Considérons dans
un premier temps un élément = du sous-ensemble proposé AN (Cg(A)U B). Dans ce cas, = appartient & A. Il appartient aussi
a Cg(A) U B, et, du fait qu’il n’appartient pas & Cg(A) (puisqu'il appartient & A), on voit donc qu'il appartient & B. Par
conséquent, il appartient & A et B, donc & AN B. Ceci montre 'inclusion ” C ”. Pour montrer ’autre inclusion, donnons-nous
un 2 dans AN B. On observe alors que x appartient & A et & B, et donc aussi aussi & (g (A) U B. On peut donc bien conclure
et donc 1’égalité recherchée.
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que z appartient & AN (Cz(A) U B). Ceci achéve de montrer I'inclusion ” D

Passons a la deuxieme preuve. Dans celle-ci, on va utiliser les regles du calcul ensembliste, et en particulier la regle de
distributivité de l'intersection sur la réunion, qui permet d’écrire :

AN (Ce(A)UB)=(ANCr(A)UANB)=ANB.
]
La preuve est ici plus rapide que celle par double inclusion, car on ne raisonne pas au niveau des éléments de F, mais plus

”globalement” .



