Algebre Linéaire Semestre d’automne, CMS, EPFL

Série 12

Exercice 1. Soit n € N. Dans chacun des cas suivants, calculer A™ en fonction de n, ot A est la matrice proposée.

2 0 4 1 1 -1
(@ O wa= (3 ) sl )

Solution:

a. Comme A est diagonale, on a vu au cours que la matrice A™ est obtenue en élevant chacun des coefficients diagonaux a la

= o)

4n p4r—l 4 n
A" = =4n—1 .
Au passage, expliquons comment retrouver ce résultat a l’aide de la formule du binéme de Newton. On écrit la matrice

proposée sous la forme :
0 1
A =4I
2+ (0 0)

——
N

puissance n :

b. D’apres le résultat vu au cours, on a ici :

puis on éleve & la puissance n (la formule du bindme s’applique bien ici car les matrices 415 et N commutent) :

=3 (1)

k=0
La matrice N étant de carré nul, seuls les indices k = 0 et £k = 1 apportent une véritable contribution a la somme. On trouve
alors :

A" = 4", 4+ 4" LN = 401 (3 Z) .

¢. La matrice A proposée ici ne possede aucune valeur propre réelle. Elle est en fait ici déja sous forme réduite. Ecrivons-la alors
sous forme ”polaire” :

A (A <cos(”4”) sin(’g)) |

sin( ")

On a par exemple :
At = —4I,, A3 =161, ...

Exercice 2. On donne deux suites numériques (u,)nen €t (vn)nen vérifiant ug =1, vg =0 et :

Up41 = DUy — JU
Vn € N, n n n
Unt1 = Uy — Up.

Calculer les valeurs exactes de u,, et v, en fonction de n.




Solution: On considére la matrice :

=5 )

ainsi que 'application linéaire f ayant A pour matrice en base canonique :
Y

f:R?2 5 R? (z,y) = (5z — 3y, 3z — y).
Un+41 _ A Un,
Un+1 Un,
() -z () -+0)
Un Vo 0

n fois

Pour tout entier n > 0, on a donc la relation :

qui entraine par récurrence que :

Cherchons maintenant & réduire f (ou A). Pour cela, on commence par calculer son polyndme caractéristique :
Xp(X) = X2 —tr(A)X +det(A) = X? —4X +4= (X —2)%

Par conséquent f posseéde une unique valeur propre, a savoir 2. Comme 'application f n’est pas égale a 2idgz, on sait qu’elle admet

2 1
0 2/°
On cherche alors une base B = u, v de R? vérifiant :

(21 flw) =2u
mB(O 2) = {f(v):u+2v.

On sait par ailleurs que dans ce cas on peut prendre pour v n’importe quel vecteur "non propre” de f. Posons par exemple :

pour forme réduite la matrice :

v =(1,0).

Ce n’est pas un vecteur propre de f car :
fv) = f(1,0) = (5,3)

n’est pas proportionnel a v. On déduit alors u de la deuxieme égalité dans le systeme écrit ci-dessus :
u= f(v) —2v=(53)—2(1,0) = (3,3).

Ainsi définie, la famille B = u, v est bien une base de R? et les relations ci-dessus sont bien vérifiées :

~

—~

=
Il

~
|

=
|

=(3,3)+2(1,0) = u + 2v.

2 1 31
P1AP = U P =
G2 o= o)

est la matrice de passage de la base canonique de R? & B. On en déduit :
n 1 n n—1 _
A" = (P 2 1 Py —p 2 1 p-1_1 3 1\ /2" n2 0 1 _gn-1 3n+2 3n ’
0 2 0 2 3\3 0 0 2n 3 -3 3n 2—3n
Un\ _ gn 1\  [((Bn+2)2"!
vn) 0) 3n2n—1 '

Finalement, on a donc établi les expressions suivantes pour u, et v, :

Au niveau matriciel, on vient d’établir que :

puis :

VneN, wu,=Bn+2)2""" et wv,=3n2""".

Exercice 3. Soit @ € R. On considére une suite numérique (uy,)nen définie par les données initiales ug = a, u; = 1 et :
VneN, Upto = Tupt1 — 12u,.

a. Dans le cas ou a = 0, calculer la valeur exacte de u,, en fonction de n.

b. Déterminer la valeur de o sachant que la suite (5% ),en possede une limite finie, et calculer cette limite.




|

Solution:

considére I'application linéaire :

f:R? 5 R?, (z,y) = (Tx — 12y, x)

et sa matrice :

7 —12
Sy

en base canonique. On a alors :

(Un+2> _ <7un+1 - 12un> — A (Un+1>
Un+1 Un+1 Un

si bien que, par récurrence :

() =) -+ ()

n fois

(X)) =X —tr(A)X +det(A) = X? —7X +12 = (X — 3)(X —4).

Avant de répondre aux deux questions posées, rappelons la stratégie vue au cours pour manier ce genre de suites. On

a. Dans le cas ou o = 0, la discussion qui précede montre que u,, est le coefficient en bas a gauche dans la matrice A™. Pour
trouver ce coefficient, on va chercher a réduire f (ou A). Commencons par calculer son polynéme caractéristique :

Par conséquent f posséde deux valeurs propres, a savoir 3 et 4. On peut donc déja affirmer que f est diagonalisable. Pour

déterminer une base propre, commengons par calculer les matrices :

4 —12 4 3 —12
A—312_<1 _3)_(1>(1 -3) et A—412_(1 _4>_<
On en déduit alors :

Ker(f —3idge) :x =3y et Ker(f —4idge) 12 =4y.

Vect((3,1)) Vect((4,1))

On voit donc que la famille suivante :

B=(3,1),(4,1)

est une base de R? qui est formée de vecteurs propres pour f : c’est une base propre pour f. Par conséquent, on a :

[fls = P~'AP = (3 2) .ol P= G ‘1*)

est la matrice de passage de la base canonique de R? & B. On trouve maintenant :

w3 0N e (3 O\ i (3 4\ /3" 0\ (-1 4\ [4rtl_gntl
A (P<o 4)P ) P(o 4> P (1 1>(0 4n>(1 —3>( 4n — 3n

On a déja dit que u,, se trouve en bas a gauche dans cette matrice :

VneN, wu,=4"-3".

. Revenant au cas général, on peut utiliser la formule pour A™ trouvée au a. et la relation :

(1))

Uy = 4" — 3" + (43" —3-4") = (4o — 1)3" + (1 — 32)4™.

obtenue ci-dessus pour trouver ’expression :

On en déduit alors :
Un

3 = (dor— 1) + (1 = 3a)(3)™

Pour que cette suite possede une limite finie, il faut donc que « soit égal a %, auquel cas la limite recherchée est %

4.30H1 3. gntl
4.3 —3.4n

Exercice 4. On donne deux suites numériques (uy)nen €t (Vp)nen vérifiant :

1 1
Up+1 = ﬁun + E'Un

Vn € N,
U?’L—‘,—l = (\/g = 2)Un + \/gvn-

a. Calculer la valeur exacte de cos({5).

b. Montrer que les suites données sont périodiques.




Solution:

a. Observons par exemple que :
s

3= 73
On a alors, d’apres les formules vues au cours de trigonométrie :
. . - o 1 V2 VB V2 V246
cos({5) = cos(F)cos(§) +sin(§)sin(F) = 5 5 TS 5 =7

Remarque : il y a beaucoup de maniéres de procéder. On pourrait par exemple observer aussi que {5 est la moitié de § et

utiliser les formules de bissection.

b. Notons A la matrice :

et f Papplication linéaire :
iR =R (2,y) = (F5z + 3y, (V3 = 2)x +/3y).

Pour tout entier n > O7 on a donc la relation :
(Un+] ) (Un)
Un+1 Un

() =asa ()= ()
Un v \ Vo Vo

Cherchons maintenant a réduire f (ou A). Comme :

V2 +6
2

qui entraine par récurrence que :

7r
trA = :2005(5) et detA:%W/gf%(\/gf?):l,

on voit que f a pour polynoéme caractéristique :

X? —2cos(%)X +1= (X — cos(55))* + (sin(

Sl
N
=

(V)

L’application linéaire f admet donc pour forme réduite la matrice de rotation :

LT i T
R — CoS 715 sin 75 '
12 sin s cos S

12 12

Au niveau matriciel, il existe une matrice 2 x 2 inversible P telle que :
P 'AP=Rx ouencore A=PRxP !
12 12
Par conséquent, on voit par exemple que :

A = (PRz P Y)Y =PRE P '=PRy, P! =1L,.
12 12 v]
2

(un+24> — An+24 <u0> — A24An <u0> — A" <u0) — <un> .
Un+4-24 Vo Vo Vo Un

VneN, upyoqa=u, et Upyoq=1v,.

On trouve alors :

Autrement dit :

Les suites (un)nen €t (v )nen sont donc bien périodiques (la période de chacune de ces suites étant un diviseur de 24), et ce
indépendamment de leurs valeurs initiales.

Remarque : pour résoudre cet exercice, il n’a pas été nécessaire d’effectuer concretement la réduction de f. Seule la connaissance
de la forme réduite a été utile.

Exercice 5. La figure ci-dessous représente deux points P et (Q reliés entre eux par des chemins & sens unique, dont le nombre

T,
S—

. . 1 3
est donné par les coefficients de la matrice A = ( ) :

Q




a. Compter le nombre de chemins a 2 étapes allant de P a P, de P a ), de Q & P et de Q a Q.
b. Calculer la matrice A% et comparer avec les nombres trouvés en a. Que constatez-vous ?

c. En généralisant, interpréter, pour tout n > 1, les coefficients de la matrice A™ comme nombres de chemins & n étapes
dans le circuit, puis montrer votre résultat. Indication : on pourra raisonner par récurrence.

d. Calculer, en fonction de Ientier n, le nombre de chemins a n étapes joignant P a Q.

Solution:

a. Pour se rendre de P a P en 2 étapes il y a deux options : soit on emprunte deux fois successivement le chemin qui boucle
sur P, soit on se rend au point () en utilisant I'un des 3 chemins possibles, puis 'on revient & P en empruntant I'un des 2
chemins possibles. Au total, on dénombre donc :

Ix1+3x2=7

possibilités. Pour se rendre de P a @ en 2 étapes, on doit d’abord emprunter le chemin qui boucle sur P, puis I'un des 3
chemins qui vont de P & @ (et ce car il n’y a pas de chemin qui boucle sur ). On trouve donc ici :

1x3=3

possibilités. En raisonnant de la méme facon, on constate qu’il y a 2 manieres de passer de @ a P en 2 étapes et 6 manieres

de relier @ a lui-méme en 2 étapes.
1 3\ /1 3 7 3
2 _ _
A _(2 0)(2 0)_(2 6)'

On constate alors que les coefficients dans cette matrice sont exctement ceux que l'on a trouvé en a.

b. Un calcul direct montre que :

c. Pour tout n > 1, introduisons les nombres de chemins a n étapes dans le circuit, selon le schéma suivant :

(an ﬂn> B (nombre de chemins & n étapes allant de P & P nombre de chemins & n étapes allant de P a Q)

Yo  On nombre de chemins a n étapes allant de Q a P nombre de chemins & n étapes allant de Q a @

ay B\ (1 3\ _ az P2\ (T 3\ _ o
(71 51>_<2 0>_A ot (72 52>_<2 6>_A'

En se basant sur ces premieres valeurs, on conjecture que :

st (o)
T On

On a par exemple :

Montrons a présent ce résultat en raisonnant par récurrence, 'initialisation ayant déja été faite. Supposons maintenant que
cette égalité a lieu pour n et cherchons a ’établir pour n+1. Intéressons-nous alors par exemple au coefficient av,41. Observons
que pour relier P a lui-méme en n + 1 étapes il y a deux cas : soit on emprunte 'un des «,, chemins a n étapes qui partent
et arrivent en P et on ajoute comme n + 1-eme étape le chemin qui boucle sur P (une seule possibilité), soit on se rend au
point @ en n étapes (il y a donc 3, possibilités) et on termine en empruntant 'un des 2 chemins qui reviennent sur P depuis
(). En définitive, on a donc la relation :

Qnt1 = ap + 26,.

Passons a I’étude du coefficient 5,1. Cette fois-ci, comme il n’y aucun chemin qui boucle sur ), on voit que pour rejoindre
P a @ en n+ 1 étapes il faut emprunter 'un des «a,, chemins qui conduisent de P a lui-méme en n étapes, puis finir en
empruntant I'un des 3 chemins allant de P a ). Ceci montre la relation :

Bn+1 = 3an.
En raisonnant de méme, on prouve aussi les deux relations :
Y+l =Yn + 20, et Spi1 = 3.
Au niveau matriciel, on obtient alors :

<an+1 ﬁn-{-l) _ <an +2Bn 3an> — <04n ﬁn) <1 3) _ AnJrl.
Yn+1 5n+1 Yn + 25n 3'}% Tn 5n 2 0

—_———— ~——
A™ par hypothese A

Ceci acheve de prouver par récurrence la propriété voulue.



d. D’apres le c., le nombre recherché ici est donc le coefficient en haut & droite dans la matrice A™. Pour trouver ce coefficient,
introduisons ’application linéaire :
[ R =R, (z,y) = (z + 3y, 2x)

de matrice A en base canonique et cherchons a réduire f (ou A). Commengons pour cela par calculer son polynéme ca-
ractéristique :
(X)) = X2 —tr(A)X +det(4) = X? — X — 6= (X +2)(X —3).

Par conséquent f possede deux valeurs propres, a savoir —2 et 3. On peut donc déja affirmer que f est diagonalisable. Pour
déterminer une base propre, commencons par calculer les matrices :

A+21’2(3 ‘;’)(;)(1 1) et A3IQ<_22 33)(1)(—2 3).

Ker(f +2idg2):24+y=0 et Ker(f—3idg2):2z=3y.

Vect((1,—1)) Vect((3,2))

On en déduit alors :

On voit donc que la famille suivante :
B=(1,-1),(3,2)

est une base de R? qui est formée de vecteurs propres pour f : ¢’est une base propre pour f. Par conséquent, on a :

_ -2 0 . 1 3
[f]B—PlAP—<O 3>,ouP—<_1 2>

est la matrice de passage de la base canonique de R? & B. On trouve maintenant :

T e G RS O G [

A D0 ) G T )

Le nombre de chemins & n étapes joignant le sommet de gauche a celui de droite est donc :
§(3"F =3(=2)") = (3" — (-2)").
Voila alors les premieres valeurs de la suite obtenue :

3,3,21,39, 165,399, 1389 . ...

Exercice 6. Dans chacun des cas suivants, déterminer une matrice B € My (R) telle que A = B? :

36 0 34 —15 7T =25
v a=(% 0 b= (3 7o) ca=(3 ).

Indication : pour b. et c. on pourra commencer par réduire A.

Solution:

a. Sil'on pose :

o= %)
7= (6 - (8-

f:R? = R? (z,y) — (34x — 15y, 502 — 21y)

on obtient ici directement :

b. Introduisons ’application linéaire :

de matrice A en base canonique et cherchons & réduire f (ou A). Commencons pour cela par calculer son polynéme ca-
ractéristique :

trA=34—21=13 )
Xp(X) = X2 — 13X 436 = (X —4)(X —9).

det A =34 (—21) +15- 50 = —714 4 750 = 36



Par conséquent f possede deux valeurs propres, a savoir 4 et 9. On peut donc déja affirmer que f est diagonalisable. Pour
déterminer une base propre, commengons par calculer les matrices :

30 —15 15 25 —15 5
A—412_<50 _25)_(25>(2 —-1) et A—912_(50 _3())_(10)(5 -3).

On en déduit alors :
Ker(f —4idgz): 2z =y et Ker(f —9idgz) : bz = 3y.

Vect((1,2)) Vect((3,5))

On voit donc que la famille suivante :
B=(1,2),(3,5)

est une base de R? qui est formée de vecteurs propres pour f : c’est une base propre pour f. Par conséquent, on a :

[f]s = P~1AP = <g 8) ol P= @ 2)

est la matrice de passage de la base canonique de R? & B. Posons alors :
o 5f(2 0\ 51 (1 3\ /(2 0\(/-5 3\ (8 =3
B_P(o 3>P _(2 5)(0 3)(2 —1)‘(10 —3)'

2
o (2 0\ 1 (2 0\ i (4 0\,
B _(P<O 3)13 )_P(O 3) P _P(O o) P =A

On a donc bien trouvé une racine carrée de A.

On voit alors que :

. Introduisons lapplication linéaire f ayant A pour matrice en base canonique :
f:R? = R? (z,y) — (Tx — 25y, 22 — Ty)
et cherchons maintenant & réduire f (ou A). Pour cela, on commence par calculer son polynéme caractéristique :
trA=7-7=0 9
Xf (X) =X + 1.
det A=—-49+50=1

L’application f ne possede donc aucune valeur propre réelle. La forme du polyndéme caractéristique que ’on a obtenue montre

0 -1
1 0)°
On cherche alors une base B = u, v de R? vérifiant :

/] (0 —1) fu) =wv
B =
1 0 f(v) = —u.
On sait par ailleurs que dans ce cas on peut prendre pour u n’importe quel élément non nul de R?, comme par exemple (1,0).
On déduit alors v de la premiere égalité ci-dessus :

v=f(u) = f(1,0)=(7,2).
Ainsi définie, la famille B = u, v est bien une base de R? et les relations ci-dessus sont bien vérifiées :

{f(w = f(1,0) = (7,2) = v
f(v) = £f(7,2) = (=1,0) = —u.

que f admet pour forme réduite la matrice :

Au niveau matriciel, on vient d’établir que :

0 -1 17
1 N .
P AP<1 0>,0uP<0 2>

est la matrice de passage de la base canonique de R? & B. Observons & présent que la forme réduite de A que I'on a trouvée
n’est autre que la matrice de rotation Rx . Pour extraire une racine carrée de cette forme réduite, on peut donc naturellement
2

us

penser a la matrice de rotation Rx (le processus géométrique de tourner d'un angle de 7 est le méme que celui de tourner
4

deux fois consécutivement d'un angle de 7). On est donc amené a poser :

cosZT —sin% 1 7\ (/1 -1\ /1 -1 8 —25
B=P 4 4)pl— 2 2) = &2
(sinflr cosZ) 2\0 2 1)\o0 1% 2 \2 -6

R

—_

ISE

On voit alors que :
B% = (PR%P*IF =PR%P ' = PR%P*1 = A.
4

On a donc bien trouvé une racine carrée de A.



