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Exercice 1. Soit n ∈ N. Dans chacun des cas suivants, calculer An en fonction de n, où A est la matrice proposée.

a. A =

(
2 0

0 −3

)
b. A =

(
4 1

0 4

)
c. A =

(
1 −1

1 1

)
.

Solution:

a. Comme A est diagonale, on a vu au cours que la matrice An est obtenue en élevant chacun des coefficients diagonaux à la

puissance n :

An =

(
2n 0

0 (−3)n

)
.

b. D’après le résultat vu au cours, on a ici :

An =

(
4n n4n−1

0 4n

)
= 4n−1

(
4 n

0 4

)
.

Au passage, expliquons comment retrouver ce résultat à l’aide de la formule du binôme de Newton. On écrit la matrice

proposée sous la forme :

A = 4I2 +

(
0 1

0 0

)
︸ ︷︷ ︸

N

puis on élève à la puissance n (la formule du binôme s’applique bien ici car les matrices 4I2 et N commutent) :

An =

n∑
k=0

(
n

k

)
4n−kNk.

La matrice N étant de carré nul, seuls les indices k = 0 et k = 1 apportent une véritable contribution à la somme. On trouve

alors :

An = 4nI2 + n4n−1N = 4n−1

(
4 n

0 4

)
.

c. La matrice A proposée ici ne possède aucune valeur propre réelle. Elle est en fait ici déjà sous forme réduite. Ecrivons-la alors

sous forme ”polaire” :

A =
√
2

(
cos(π4 ) − sin(π4 )

sin(π4 ) cos(π4 )

)
︸ ︷︷ ︸

Rπ
4

c’est-à-dire comme multiple scalaire d’une matrice de rotation. On trouve ensuite :

An = (
√
2)n

(
cos(nπ4 ) − sin(nπ4 )

sin(nπ4 ) cos(nπ4 )

)
︸ ︷︷ ︸

Rnπ
4

.

On a par exemple :

A4 = −4I2, A
8 = 16I2 . . .

Exercice 2. On donne deux suites numériques (un)n∈N et (vn)n∈N vérifiant u0 = 1, v0 = 0 et :

∀n ∈ N,

{
un+1 = 5un − 3vn

vn+1 = 3un − vn.

Calculer les valeurs exactes de un et vn en fonction de n.



Solution: On considère la matrice :

A =

(
5 −3

3 −1

)
ainsi que l’application linéaire f ayant A pour matrice en base canonique :

f : R2 → R2, (x, y) → (5x− 3y, 3x− y).

Pour tout entier n ⩾ 0, on a donc la relation : (
un+1

vn+1

)
= A

(
un

vn

)
qui entraine par récurrence que : (

un

vn

)
= A · · · A︸ ︷︷ ︸

n fois

(
u0

v0

)
= An

(
1

0

)
.

Cherchons maintenant à réduire f (ou A). Pour cela, on commence par calculer son polynôme caractéristique :

χf (X) = X2 − tr(A)X + det(A) = X2 − 4X + 4 = (X − 2)2.

Par conséquent f possède une unique valeur propre, à savoir 2. Comme l’application f n’est pas égale à 2 idR2 , on sait qu’elle admet

pour forme réduite la matrice : (
2 1

0 2

)
.

On cherche alors une base B = u, v de R2 vérifiant :

[f ]B =

(
2 1

0 2

)
⇔

{
f(u) = 2u

f(v) = u+ 2v.

On sait par ailleurs que dans ce cas on peut prendre pour v n’importe quel vecteur ”non propre” de f . Posons par exemple :

v = (1, 0).

Ce n’est pas un vecteur propre de f car :

f(v) = f(1, 0) = (5, 3)

n’est pas proportionnel à v. On déduit alors u de la deuxième égalité dans le système écrit ci-dessus :

u = f(v)− 2v = (5, 3)− 2(1, 0) = (3, 3).

Ainsi définie, la famille B = u, v est bien une base de R2 et les relations ci-dessus sont bien vérifiées :{
f(u) = f(3, 3) = (6, 6) = 2(3, 3) = 2u

f(v) = f(1, 0) = (5, 3) = (3, 3) + 2(1, 0) = u+ 2v.

Au niveau matriciel, on vient d’établir que :

P−1AP =

(
2 1

0 2

)
, où P =

(
3 1

3 0

)
est la matrice de passage de la base canonique de R2 à B. On en déduit :

An = (P

(
2 1

0 2

)
P−1)n = P

(
2 1

0 2

)n

P−1 =
1

3

(
3 1

3 0

)(
2n n2n−1

0 2n

)(
0 1

3 −3

)
= 2n−1

(
3n+ 2 −3n

3n 2− 3n

)
,

puis : (
un

vn

)
= An

(
1

0

)
=

(
(3n+ 2)2n−1

3n2n−1

)
.

Finalement, on a donc établi les expressions suivantes pour un et vn :

∀n ∈ N, un = (3n+ 2)2n−1 et vn = 3n2n−1.

Exercice 3. Soit α ∈ R. On considère une suite numérique (un)n∈N définie par les données initiales u0 = α, u1 = 1 et :

∀n ∈ N, un+2 = 7un+1 − 12un.

a. Dans le cas où α = 0, calculer la valeur exacte de un en fonction de n.

b. Déterminer la valeur de α sachant que la suite (un

3n )n∈N possède une limite finie, et calculer cette limite.



Solution: Avant de répondre aux deux questions posées, rappelons la stratégie vue au cours pour manier ce genre de suites. On

considére l’application linéaire :

f : R2 → R2, (x, y) → (7x− 12y, x)

et sa matrice :

A =

(
7 −12

1 0

)
en base canonique. On a alors : (

un+2

un+1

)
=

(
7un+1 − 12un

un+1

)
= A

(
un+1

un

)
si bien que, par récurrence : (

un+1

un

)
= A · · · A︸ ︷︷ ︸

n fois

(
u1

u0

)
= An

(
1

α

)
.

a. Dans le cas où α = 0, la discussion qui précède montre que un est le coefficient en bas à gauche dans la matrice An. Pour

trouver ce coefficient, on va chercher à réduire f (ou A). Commençons par calculer son polynôme caractéristique :

χf (X) = X2 − tr(A)X + det(A) = X2 − 7X + 12 = (X − 3)(X − 4).

Par conséquent f possède deux valeurs propres, à savoir 3 et 4. On peut donc déjà affirmer que f est diagonalisable. Pour

déterminer une base propre, commençons par calculer les matrices :

A− 3I2 =

(
4 −12

1 −3

)
=

(
4

1

)(
1 −3

)
et A− 4I2 =

(
3 −12

1 −4

)
=

(
3

1

)(
1 −4

)
.

On en déduit alors :

Ker(f − 3 idR2) : x = 3y︸ ︷︷ ︸
Vect((3,1))

et Ker(f − 4 idR2) : x = 4y︸ ︷︷ ︸
Vect((4,1))

.

On voit donc que la famille suivante :

B = (3, 1), (4, 1)

est une base de R2 qui est formée de vecteurs propres pour f : c’est une base propre pour f . Par conséquent, on a :

[f ]B = P−1AP =

(
3 0

0 4

)
, où P =

(
3 4

1 1

)
est la matrice de passage de la base canonique de R2 à B. On trouve maintenant :

An = (P

(
3 0

0 4

)
P−1)n = P

(
3 0

0 4

)n

P−1 =

(
3 4

1 1

)(
3n 0

0 4n

)(
−1 4

1 −3

)
=

(
4n+1 − 3n+1 4 · 3n+1 − 3 · 4n+1

4n − 3n 4 · 3n − 3 · 4n

)
.

On a déjà dit que un se trouve en bas à gauche dans cette matrice :

∀n ∈ N, un = 4n − 3n.

b. Revenant au cas général, on peut utiliser la formule pour An trouvée au a. et la relation :(
un+1

un

)
= An

(
1

α

)
obtenue ci-dessus pour trouver l’expression :

un = 4n − 3n + α(4 · 3n − 3 · 4n) = (4α− 1)3n + (1− 3α)4n.

On en déduit alors :
un

3n
= (4α− 1) + (1− 3α)( 43 )

n.

Pour que cette suite possède une limite finie, il faut donc que α soit égal à 1
3 , auquel cas la limite recherchée est 1

3 .

Exercice 4. On donne deux suites numériques (un)n∈N et (vn)n∈N vérifiant :

∀n ∈ N,

un+1 = 1√
2
un + 1

2vn

vn+1 = (
√
3− 2)un +

√
3
2vn.

a. Calculer la valeur exacte de cos( π
12 ).

b. Montrer que les suites données sont périodiques.



Solution:

a. Observons par exemple que :
π
12 = π

3 − π
4 .

On a alors, d’après les formules vues au cours de trigonométrie :

cos( π
12 ) = cos(π3 ) cos(

π
4 ) + sin(π3 ) sin(

π
4 ) =

1

2
·
√
2

2
+

√
3

2
·
√
2

2
=

√
2 +

√
6

4
.

Remarque : il y a beaucoup de manières de procéder. On pourrait par exemple observer aussi que π
12 est la moitié de π

6 et

utiliser les formules de bissection.

b. Notons A la matrice :

A =

( 1√
2

1
2√

3− 2
√

3
2

)
et f l’application linéaire :

f : R2 → R2, (x, y) → ( 1√
2
x+ 1

2y, (
√
3− 2)x+

√
3
2y).

Pour tout entier n ⩾ 0, on a donc la relation : (
un+1

vn+1

)
= A

(
un

vn

)
qui entraine par récurrence que : (

un

vn

)
= A · · · A︸ ︷︷ ︸

n fois

(
u0

v0

)
= An

(
u0

v0

)
.

Cherchons maintenant à réduire f (ou A). Comme :

trA =

√
2 +

√
6

2
= 2 cos(

π

12
) et detA = 1√

2
·
√

3
2 − 1

2 (
√
3− 2) = 1,

on voit que f a pour polynôme caractéristique :

X2 − 2 cos( π
12 )X + 1 = (X − cos( π

12 ))
2 + (sin( π

12 ))
2.

L’application linéaire f admet donc pour forme réduite la matrice de rotation :

R π
12

=

(
cos π

12 − sin π
12

sin π
12 cos π

12

)
.

Au niveau matriciel, il existe une matrice 2× 2 inversible P telle que :

P−1AP = R π
12

ou encore A = PR π
12
P−1.

Par conséquent, on voit par exemple que :

A24 = (PR π
12
P−1)24 = PR24

π
12
P−1 = P R2π︸︷︷︸

I2

P−1 = I2.

On trouve alors : (
un+24

vn+24

)
= An+24

(
u0

v0

)
= A24An

(
u0

v0

)
= An

(
u0

v0

)
=

(
un

vn

)
.

Autrement dit :

∀n ∈ N, un+24 = un et vn+24 = vn.

Les suites (un)n∈N et (vn)n∈N sont donc bien périodiques (la période de chacune de ces suites étant un diviseur de 24), et ce

indépendamment de leurs valeurs initiales.

Remarque : pour résoudre cet exercice, il n’a pas été nécessaire d’effectuer concrètement la réduction de f . Seule la connaissance

de la forme réduite a été utile.

Exercice 5. La figure ci-dessous représente deux points P et Q reliés entre eux par des chemins à sens unique, dont le nombre

est donné par les coefficients de la matrice A =

(
1 3

2 0

)
:

P

Q• •



a. Compter le nombre de chemins à 2 étapes allant de P à P , de P à Q, de Q à P et de Q à Q.

b. Calculer la matrice A2 et comparer avec les nombres trouvés en a. Que constatez-vous ?

c. En généralisant, interpréter, pour tout n ⩾ 1, les coefficients de la matrice An comme nombres de chemins à n étapes

dans le circuit, puis montrer votre résultat. Indication : on pourra raisonner par récurrence.

d. Calculer, en fonction de l’entier n, le nombre de chemins à n étapes joignant P à Q.

Solution:

a. Pour se rendre de P à P en 2 étapes il y a deux options : soit on emprunte deux fois successivement le chemin qui boucle

sur P , soit on se rend au point Q en utilisant l’un des 3 chemins possibles, puis l’on revient à P en empruntant l’un des 2

chemins possibles. Au total, on dénombre donc :

1× 1 + 3× 2 = 7

possibilités. Pour se rendre de P à Q en 2 étapes, on doit d’abord emprunter le chemin qui boucle sur P , puis l’un des 3

chemins qui vont de P à Q (et ce car il n’y a pas de chemin qui boucle sur Q). On trouve donc ici :

1× 3 = 3

possibilités. En raisonnant de la même façon, on constate qu’il y a 2 manières de passer de Q à P en 2 étapes et 6 manières

de relier Q à lui-même en 2 étapes.

b. Un calcul direct montre que :

A2 =

(
1 3

2 0

)(
1 3

2 0

)
=

(
7 3

2 6

)
.

On constate alors que les coefficients dans cette matrice sont exctement ceux que l’on a trouvé en a.

c. Pour tout n ⩾ 1, introduisons les nombres de chemins à n étapes dans le circuit, selon le schéma suivant :(
αn βn

γn δn

)
=

(
nombre de chemins à n étapes allant de P à P nombre de chemins à n étapes allant de P à Q

nombre de chemins à n étapes allant de Q à P nombre de chemins à n étapes allant de Q à Q

)
On a par exemple : (

α1 β1

γ1 δ1

)
=

(
1 3

2 0

)
= A et

(
α2 β2

γ2 δ2

)
=

(
7 3

2 6

)
= A2.

En se basant sur ces premières valeurs, on conjecture que :

∀n ⩾ 1,

(
αn βn

γn δn

)
= An.

Montrons à présent ce résultat en raisonnant par récurrence, l’initialisation ayant déjà été faite. Supposons maintenant que

cette égalité a lieu pour n et cherchons à l’établir pour n+1. Intéressons-nous alors par exemple au coefficient αn+1. Observons

que pour relier P à lui-même en n+ 1 étapes il y a deux cas : soit on emprunte l’un des αn chemins à n étapes qui partent

et arrivent en P et on ajoute comme n + 1-ème étape le chemin qui boucle sur P (une seule possibilité), soit on se rend au

point Q en n étapes (il y a donc βn possibilités) et on termine en empruntant l’un des 2 chemins qui reviennent sur P depuis

Q. En définitive, on a donc la relation :

αn+1 = αn + 2βn.

Passons à l’étude du coefficient βn+1. Cette fois-ci, comme il n’y aucun chemin qui boucle sur Q, on voit que pour rejoindre

P à Q en n + 1 étapes il faut emprunter l’un des αn chemins qui conduisent de P à lui-même en n étapes, puis finir en

empruntant l’un des 3 chemins allant de P à Q. Ceci montre la relation :

βn+1 = 3αn.

En raisonnant de même, on prouve aussi les deux relations :

γn+1 = γn + 2δn et δn+1 = 3γn.

Au niveau matriciel, on obtient alors :(
αn+1 βn+1

γn+1 δn+1

)
=

(
αn + 2βn 3αn

γn + 2δn 3γn

)
=

(
αn βn

γn δn

)
︸ ︷︷ ︸

An par hypothèse

(
1 3

2 0

)
︸ ︷︷ ︸

A

= An+1.

Ceci achève de prouver par récurrence la propriété voulue.



d. D’après le c., le nombre recherché ici est donc le coefficient en haut à droite dans la matrice An. Pour trouver ce coefficient,

introduisons l’application linéaire :

f : R2 → R2, (x, y) → (x+ 3y, 2x)

de matrice A en base canonique et cherchons à réduire f (ou A). Commençons pour cela par calculer son polynôme ca-

ractéristique :

χf (X) = X2 − tr(A)X + det(A) = X2 −X − 6 = (X + 2)(X − 3).

Par conséquent f possède deux valeurs propres, à savoir −2 et 3. On peut donc déjà affirmer que f est diagonalisable. Pour

déterminer une base propre, commençons par calculer les matrices :

A+ 2I2 =

(
3 3

2 2

)
=

(
3

2

)(
1 1

)
et A− 3I2 =

(
−2 3

2 −3

)
=

(
1

1

)(
−2 3

)
.

On en déduit alors :

Ker(f + 2 idR2) : x+ y = 0︸ ︷︷ ︸
Vect((1,−1))

et Ker(f − 3 idR2) : 2x = 3y︸ ︷︷ ︸
Vect((3,2))

.

On voit donc que la famille suivante :

B = (1,−1), (3, 2)

est une base de R2 qui est formée de vecteurs propres pour f : c’est une base propre pour f . Par conséquent, on a :

[f ]B = P−1AP =

(
−2 0

0 3

)
, où P =

(
1 3

−1 2

)
est la matrice de passage de la base canonique de R2 à B. On trouve maintenant :

An = (P

(
−2 0

0 3

)
P−1)n = P

(
−2 0

0 4

)n

P−1 = 1
5

(
1 3

−1 2

)(
(−2)n 0

0 3n

)(
2 −3

1 1

)
= · · ·

· · · = 1
5

(
1 3

−1 2

)(
2(−2)n −3(−2)n

3n 3n

)
= 1

5

(
3n+1 + 2(−2)n 3n+1 − 3(−2)n

2(3n − (−2)n) 2 · 3n + 3(−2)n

)
.

Le nombre de chemins à n étapes joignant le sommet de gauche à celui de droite est donc :

1
5 (3

n+1 − 3(−2)n) = 3
5 (3

n − (−2)n).

Voilà alors les premières valeurs de la suite obtenue :

3, 3, 21, 39, 165, 399, 1389 . . .

Exercice 6. Dans chacun des cas suivants, déterminer une matrice B ∈ M2(R) telle que A = B2 :

a. A =

(
36 0

0 49

)
b. A =

(
34 −15

50 −21

)
c. A =

(
7 −25

2 −7

)
.

Indication : pour b. et c. on pourra commencer par réduire A.

Solution:

a. Si l’on pose :

B =

(
6 0

0 7

)
on obtient ici directement :

B2 =

(
6 0

0 7

)(
6 0

0 7

)
=

(
36 0

0 49

)
= A.

b. Introduisons l’application linéaire :

f : R2 → R2, (x, y) → (34x− 15y, 50x− 21y)

de matrice A en base canonique et cherchons à réduire f (ou A). Commençons pour cela par calculer son polynôme ca-

ractéristique :{
trA = 34− 21 = 13

detA = 34 · (−21) + 15 · 50 = −714 + 750 = 36
⇒ χf (X) = X2 − 13X + 36 = (X − 4)(X − 9).



Par conséquent f possède deux valeurs propres, à savoir 4 et 9. On peut donc déjà affirmer que f est diagonalisable. Pour

déterminer une base propre, commençons par calculer les matrices :

A− 4I2 =

(
30 −15

50 −25

)
=

(
15

25

)(
2 −1

)
et A− 9I2 =

(
25 −15

50 −30

)
=

(
5

10

)(
5 −3

)
.

On en déduit alors :

Ker(f − 4 idR2) : 2x = y︸ ︷︷ ︸
Vect((1,2))

et Ker(f − 9 idR2) : 5x = 3y︸ ︷︷ ︸
Vect((3,5))

.

On voit donc que la famille suivante :

B = (1, 2), (3, 5)

est une base de R2 qui est formée de vecteurs propres pour f : c’est une base propre pour f . Par conséquent, on a :

[f ]B = P−1AP =

(
4 0

0 9

)
, où P =

(
1 3

2 5

)
est la matrice de passage de la base canonique de R2 à B. Posons alors :

B = P

(
2 0

0 3

)
P−1 =

(
1 3

2 5

)(
2 0

0 3

)(
−5 3

2 −1

)
=

(
8 −3

10 −3

)
.

On voit alors que :

B2 = (P

(
2 0

0 3

)
P−1)2 = P

(
2 0

0 3

)2

P−1 = P

(
4 0

0 9

)
P−1 = A.

On a donc bien trouvé une racine carrée de A.

c. Introduisons l’application linéaire f ayant A pour matrice en base canonique :

f : R2 → R2, (x, y) → (7x− 25y, 2x− 7y)

et cherchons maintenant à réduire f (ou A). Pour cela, on commence par calculer son polynôme caractéristique :{
trA = 7− 7 = 0

detA = −49 + 50 = 1
⇒ χf (X) = X2 + 1.

L’application f ne possède donc aucune valeur propre réelle. La forme du polynôme caractéristique que l’on a obtenue montre

que f admet pour forme réduite la matrice : (
0 −1

1 0

)
.

On cherche alors une base B = u, v de R2 vérifiant :

[f ]B =

(
0 −1

1 0

)
⇔

{
f(u) = v

f(v) = −u.

On sait par ailleurs que dans ce cas on peut prendre pour u n’importe quel élément non nul de R2, comme par exemple (1, 0).

On déduit alors v de la première égalité ci-dessus :

v = f(u) = f(1, 0) = (7, 2).

Ainsi définie, la famille B = u, v est bien une base de R2 et les relations ci-dessus sont bien vérifiées :{
f(u) = f(1, 0) = (7, 2) = v

f(v) = f(7, 2) = (−1, 0) = −u.

Au niveau matriciel, on vient d’établir que :

P−1AP =

(
0 −1

1 0

)
, où P =

(
1 7

0 2

)
est la matrice de passage de la base canonique de R2 à B. Observons à présent que la forme réduite de A que l’on a trouvée

n’est autre que la matrice de rotation Rπ
2
. Pour extraire une racine carrée de cette forme réduite, on peut donc naturellement

penser à la matrice de rotation Rπ
4
(le processus géométrique de tourner d’un angle de π

2 est le même que celui de tourner

deux fois consécutivement d’un angle de π
4 ). On est donc amené à poser :

B = P

(
cos π

4 − sin π
4

sin π
4 cos π

4

)
︸ ︷︷ ︸

Rπ
4

P−1 =
√
2
2

(
1 7

0 2

)(
1 −1

1 1

)(
1 − 7

2

0 1
2

)
=

√
2
2

(
8 −25

2 −6

)

On voit alors que :

B2 = (PRπ
4
P−1)2 = PR2

π
4
P−1 = PRπ

2
P−1 = A.

On a donc bien trouvé une racine carrée de A.


