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Exercice 1. Déterminer une forme réduite de l’application linéaire f : R2 → R2 donnée.

a. f : (x, y) → (14x+ 25y,−x+ 4y) b. f : (x, y) → (2x+ 5y,−2x) c. f : (x, y) → (30x+ 901y,−x− 30y).

On ne demande pas d’effectuer la réduction explicitement.

Solution:

a. La matrice de f dans la base canonique est : (
14 25

−1 4

)
,

qui a trace 18 et déterminant 81. Le polynôme caractéristique de f vaut par conséquent :

χf (X) = X2 − 18X + 81 = (X − 9)2.

Comme f n’est pas égale à 9 idR2 , on sait alors qu’elle admet pour forme réduite la matrice :(
9 1

0 9

)
.

b. La matrice de f dans la base canonique est : (
2 5

−2 0

)
,

dont la trace vaut 2 et le déterminant 10. Le polynôme caractéristique de f vaut par conséquent :

χf (X) = X2 − 2X + 10 = (X − 1)2 + 32.

L’application linéaire f n’admet aucune valeur propre réelle. Une forme réduite de f est la matrice :(
1 −3

3 1

)
.

c. La matrice de f dans la base canonique est : (
30 901

−1 −30

)
de trace nulle et de déterminant 1. Le polynôme caractéristique de f vaut par conséquent :

χf (X) = X2 + 1 = (X − 0)2 + 12.

Une forme réduite de f est donc la matrice : (
0 −1

1 0

)
.

Exercice 2. On donne l’application linéaire :

f : R2 → R2, (x, y) → (7x+ 5y,−5x− 3y).

a. Calculer le polynôme caractéristique de f et en déduire les valeurs propres (éventuelles).

b. Donner une forme réduite de f .

c. Déterminer une base de R2 dans laquelle f est représentée par cette forme réduite.



Solution:

a. La matrice de f dans la base canonique est :

A =

(
7 5

−5 −3

)
.

On trouve alors que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 4X + 4 = (X − 2)2.

Par conséquent f possède une unique valeur propre, à savoir 2.

b. Comme l’application f n’est pas égale à 2 idR2 , on sait qu’elle admet pour forme réduite la matrice :(
2 1

0 2

)
.

c. On cherche donc une base B = v1, v2 de R2 vérifiant :

[f ]B =

(
2 1

0 2

)
⇔

{
f(v1) = 2v1

f(v2) = v1 + 2v2.

On sait par ailleurs que dans ce cas on peut prendre pour v2 n’importe quel vecteur ”non propre” de f . Posons alors par

exemple :

v2 = (1, 0).

Ce n’est pas un vecteur propre de f car :

f(v2) = f(1, 0) = (7,−5)

n’est pas proportionnel à v2. On déduit alors v1 de la deuxième égalité dans le système écrit ci-dessus :

v1 = f(v2)− 2v2 = (7,−5)− 2(1, 0) = (5,−5).

Ainsi définie, la famille B = v1, v2 est bien une base de R2 et les relations ci-dessus sont bien vérifiées :{
f(v1) = f(5,−5) = (10,−10) = 2(5,−5) = 2v1

f(v2) = (7,−5) = (5,−5) + 2(1, 0) = v1 + 2v2.

Exercice 3. On donne l’application linéaire :

f : R2 → R2, (x, y) → (2x+ 17y,−x+ 4y).

a. Calculer le polynôme caractéristique de f . En déduire une forme réduite de f .

b. Déterminer une base de R2 dans laquelle f est représentée par cette forme réduite.

Solution:

a. La matrice de f dans la base canonique est :

A =

(
2 17

−1 4

)
.

On trouve alors que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 6X + 25 = (X − 3)2 + 42.

Par conséquent f ne possède aucune valeur propre (réelle) et d’après la forme du polynôme caractéristique que l’on vient

d’identifier, on sait qu’elle a pour forme réduite la matrice :(
3 −4

4 3

)
.

b. On cherche donc une base B = v1, v2 de R2 vérifiant :

[f ]B =

(
3 −4

4 3

)
⇔

{
f(v1) = 3v1 + 4v2

f(v2) = −4v1 + 3v2.



On sait par ailleurs que dans ce cas on peut prendre pour v1 n’importe quel élément non nul de R2. Posons alors par exemple :

v1 = (1, 0).

On déduit alors v2 de la première égalité dans le système écrit ci-dessus :

v2 = 1
4 (f(v1)− 3v1) =

1
4 ((2,−1)− 3(1, 0)) = (− 1

4 ,−
1
4 ).

Ainsi définie, la famille B = v1, v2 est bien une base de R2 et les relations ci-dessus sont bien vérifiées :{
f(v1) = (2,−1) = 3(1, 0) + 4(− 1

4 ,−
1
4 ) = 3v1 + 4v2

f(v2) = (− 19
4 ,− 3

4 ) = −4(1, 0) + 3(− 1
4 ,−

1
4 ) = −4v1 + 3v2.

Exercice 4. Déterminer un exemple d’application linéaire :

f : R2 → R2

qui n’est pas diagonalisable et telle que f(1, 2) = (3, 6). Indication : quelle est la forme réduite de f ?

Solution: Supposons donnée une application f solution du problème posé et notons A sa matrice en base canonique. De l’égalité :

f(1, 2) = (3, 6) = 3(1, 2)

on déduit que 3 est valeur propre de f et que (1, 2) est un vecteur propre associé. Comme f n’est pas diagonalisable, on voit que

l’unique sous-espace propre de f est une droite vectorielle :

Ker(f − 3 idR3) : y = 2x︸ ︷︷ ︸
Vect((1,2))

.

Par ailleurs, f admet la matrice : (
3 1

0 3

)
pour forme réduite. Autrement dit, il existe une base de R2 :

B = (α, β)︸ ︷︷ ︸
v1

, (γ, δ)︸ ︷︷ ︸
v2

telle que :

[f ]B =

(
3 1

0 3

)
⇔

{
f(v1) = 3v1

f(v2) = v1 + 3v2.

Comme v1 est un vecteur propre de f on voit que :

β = 2α ⇔ v1 = (α, 2α).

Au niveau matriciel, on a donc montré l’égalité :

P−1AP =

(
3 1

0 3

)
⇔ A = P

(
3 1

0 3

)
P−1

où P est la matrice de changement de base de la base canonique de R2 à la base B :

P =

(
α γ

2α δ

)
.

Pour déterminer une application f solution du problème (c’est tout ce qui est demandé ici), choisissons par exemple :

α = 1, γ = 0, δ = 1.

On obtient alors :

A =

(
1 0

2 1

)(
3 1

0 3

)(
1 0

2 1

)−1

=

(
3 1

6 5

)(
1 0

−2 1

)
=

(
1 1

−4 5

)
,

ou encore :

f : R2 → R2, (x, y) → (x+ y,−4x+ 5y).

Vérifions que l’application que l’on vient d’obtenir convient. Tout d’abord, on a bien :

f(1, 2) = (1 + 2,−4 + 10) = (3, 6).

Par ailleurs, on trouve que :

χf (X) = X2 − 6X + 9 = (X − 3)2

si bien que 3 est la seule valeur propre de f . Comme f n’est pas égale à 3 idR2 on voit qu’elle n’est pas diagonalisable.



Exercice 5. En discutant selon la valeur des réels α, β, γ, déterminer une forme réduite de l’application linéaire :

f : R2 → R2, (x, y) → (αx+ βy, γx+ αy).

On ne demande pas de produire une base de R2 dans laquelle f est représentée par cette forme réduite.

Solution: La matrice de f dans la base canonique est :

A =

(
α β

γ α

)
.

On trouve donc que :

tr(A) = 2α et det(A) = α2 − βγ

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 2αX + α2 − βγ = (X − α)2 − βγ.

Pour décrire la réduction de f on voit donc que l’on doit discuter selon le signe du produit βγ (le discriminant vaut ici 4βγ).

Supposons d’abord que βγ > 0. On a alors la factorisation :

χf (X) = (X − α−
√
βγ)(X − α+

√
βγ).

f possède dans ce cas deux valeurs propres distinctes. Elle est diagonalisable et admet pour forme réduite la matrice diagonale :(
α+

√
βγ 0

0 α−
√
βγ

)
.

Supposons à présent que βγ = 0. Dans ce cas, on trouve que :

χf (X) = (X − α)2

si bien que f possède pour unique valeur propre α. Elle est donc diagonalisable si et seulement si elle est égale à α idR2 , ou autrement

dit, si et seulement si β = γ = 0. Dans ce cas, elle admet pour forme réduite la matrice :

αI2 =

(
α 0

0 α

)
.

Si l’un des réels β ou γ est nul et que l’autre est non nul, alors f n’est pas diagonalisable et admet pour forme réduite la matrice :(
α 1

0 α

)
.

Enfin, supposons que βγ < 0, si bien que f ne possède aucune valeur propre réelle. En écrivant son polynôme caractéristique sous

la forme :

χf (X) = (X − α)2 − βγ = (X − α)2 + (
√
−βγ)2

on voit que f admet alors pour forme réduite la matrice :(
α −

√
−βγ√

−βγ α

)
.

Exercice 6. Donner un contre-exemple à chacun des énoncés suivants. Pour toutes matrices A,B ∈ M2(R) ...

a. ... si A et B sont diagonalisables alors AB l’est aussi.

b. ... si AB est diagonalisable alors A ou B l’est aussi.

c. ... si A et B sont diagonalisables alors A+B l’est aussi.

Indication : commencer par écrire une liste de matrices diagonalisables et une liste de matrices non-diagonalisables.



Solution: Pour produire des contre-exemples à ces énoncés, il faut avoir en tête des exemples de matrices diagonalisables, comme :(
1 0

0 0

)
,

(
0 1

0 1

)
,

(
2 −4
1
2 −1

)
︸ ︷︷ ︸

matrices de projection

,

(
1 0

0 −1

)
,

(
0 1

1 0

)
,

(
2 −1

3 −2

)
︸ ︷︷ ︸

matrices de symétrie

,

(
1 −1

0 2

)
,

(
3 0

2 5

)
,

(
2 1

3 0

)
︸ ︷︷ ︸

2 valeurs propres distinctes

· · ·

et aussi des exemples de matrices non diagonalisables, comme :(
0 −1

1 0

)
, 1√

2

(
1 −1

1 1

)
, 1
5

(
3 −4

4 3

)
︸ ︷︷ ︸

matrices de rotation

,

(
0 1

0 0

)
,

(
3 1

0 3

)
,

(
1 −4

1 5

)
︸ ︷︷ ︸

une seule valeur propre, non proportionnelle à I2

· · ·

A partir de là on peut tenter notre chance, c’est-à-dire piocher dans ces listes et tester par un calcul direct si l’énoncé est vérifié ou

non. On peut aussi essayer d’exploiter une idée géométrique.

a. Prenons par exemple :

A =

(
1 0

0 −1

)
et B =

(
0 1

1 0

)
.

La matrice A est diagonale (et donc a fortiori diagonalisable). La matrice B est aussi diagonalisable, car elle admet deux

valeurs propres distinctes −1 et 1 (c’est une matrice de symétrie). Calculons alors le produit :

AB =

(
1 0

0 −1

)(
0 1

1 0

)
=

(
0 1

−1 0

)
.

Cette matrice est de trace 0 et de déterminant 1. Son polynôme caractéristique vaut donc :

χAB(X) = X2 + 1,

qui n’admet aucune racine. Elle n’est donc pas diagonalisable (c’est la matrice de rotation d’angle −π
2 ). On a donc trouvé un

contre-exemple à l’énoncé proposé, puisque A et B sont diagonalisables, mais pas leur produit AB.

Remarque : l’idée géométrique derrière ce contre-exemple est que la composée de deux réflexions (qui sont des applications

diagonalisables) est une rotation (qui n’est généralement pas diagonalisable).

b. Prenons par exemple :

A =

(
1 1

0 1

)
et B = A−1 =

(
1 −1

0 1

)
.

Les matrices A et B ne sont pas diagonalisables (elles ont toutes les deux pour unique valeur propre 1 et ne sont pas égales

à I2). Par ailleurs, leur produit :

AB = I2 =

(
1 0

0 1

)
est une matrice diagonale (et donc a fortiori diagonalisable). On a donc trouvé un contre-exemple à l’énoncé proposé, puisque

AB est diagonalisable mais ni A ni B ne l’est.

c. Prenons par exemple :

A =

(
1 0

0 0

)
et B =

(
0 1

0 1

)
.

Les matrices A et B sont diagonalisables car ce sont des matrices de projection : en effet, elles sont de rang 1 et de trace 1.

Par ailleurs, leur somme :

A+B =

(
1 1

0 1

)
n’est pas diagonalisable, comme on l’a déjà dit au b. On a donc trouvé un contre-exemple à l’énoncé proposé, puisque A et

B sont diagonalisables, mais pas leur somme A+B.

Exercice 7. Etant donné α ∈ R, on considère les applications linéaires f et g : R2 → R2 suivantes :

f : (x, y) → ((5− 5α)x+ (3− 5α)y, (4α− 3)x+ (3α− 1)y) et g : (x, y) → ((2− 3α)x+ αy,−5αx+ (2 + α)y).

Pour quelle(s) valeur(s) de α ces applications ont-elles la même forme réduite ? Justifier votre réponse.



Solution: Les matrices de f et g dans la base canonique sont :

A =

(
5− 5α 3− 5α

4α− 3 3α− 1

)
et B =

(
2− 3α α

−5α 2 + α

)
.

Si les applications linéaires f et g ont la même forme réduite, alors les matrices A et B ont la même trace et le même déterminant.

Un calcul direct montre qu’elles ont en fait toujours la même trace :

tr(A) = (5− 5α) + (3α− 1) = 4− 2α et tr(B) = (2− 3α) + (2 + α) = 4− 2α.

Afin d’essayer de localiser α, on est donc amené à calculer les déterminants de A et B. On trouve :

det(A) = (5− 5α)(3α− 1) + (5α− 3)(4α− 3) = (−15α2 + 20α− 5) + (20α2 − 27α+ 9) = 5α2 − 7α+ 4

d’une part et :

det(B) = (2− 3α)(2 + α) + 5α2 = (−3α2 − 4α+ 4) + 5α2 = 2α2 − 4α+ 4

d’autre part. En égalisant les expressions trouvées, on obtient :

5α2 − 7α+ 4 = 2α2 − 4α+ 4 ⇔ 3α2 − 3α = 0 ⇔ α = 0 ou 1.

Par conséquent, f et g ne peuvent avoir la même forme réduite que si α = 0 ou α = 1. Il reste maintenant à examiner ces deux cas.

Tout d’abord, supposons que α = 0. Les matrices :

A =

(
5 3

−3 −1

)
et B =

(
2 0

0 2

)
partagent le même polynôme caractéristique :

χf (X) = χg(X) = X2 − 4X + 4 = (X − 2)2.

Cependant, comme f n’est pas égale à 2 idR2 , elle a pour forme réduite :(
2 1

0 2

)
,

tandis que g a pour forme réduite : (
2 0

0 2

)
.

Par conséquent, la valeur α = 0 ne conduit pas à une solution. Supposons finalement que α = 1. Les matrices :

A =

(
0 −2

1 2

)
et B =

(
−1 1

−5 3

)
partagent à nouveau le même polynôme caractéristique :

χf (X) = χg(X) = X2 − 2X + 2 = (X − 1)2 + 12.

Les applications linéaires f et g admettent donc la même forme réduite dans ce cas, à savoir :(
1 −1

1 1

)
.

En conclusion, les applications linéaires f et g ont la même forme réduite si et seulement si α = 1.


