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Exercice 1. Pour chacune des affirmations suivantes, dire en justifiant si elle est vraie ou fausse, sachant que :

f : R2 → R2, (x, y) → (x+ y, 2x).

a. 0 est valeur propre de f b. (1, 1) est vecteur propre de f c. f est diagonalisable.

Solution: Notons :

A =

(
1 1

2 0

)
la matrice de f dans la base canonique.

a. C’est faux. Pour le voir, calculons par exemple le polynôme caractéristique de f :

χf (X) = det(A−XI2) =

∣∣∣∣1−X 1

2 −X

∣∣∣∣ = X2 −X − 2.

On voit donc que 0 n’est pas racine, ou, autrement dit, que 0 n’est pas valeur propre de f . Une autre manière de raisonner

est de constater simplement que la matrice :

A− 0I2 = A

est inversible (ses deux colonnes ne sont pas proportionnelles). Or un réel ω est valeur propre de f si et seulement si la matrice

A− ωI2 est non inversible.

b. C’est vrai. En effet, on a :

f(1, 1) = (1 + 1, 2 · 1) = (2, 2) = 2(1, 1).

On peut donc bien conclure que (1, 1) est vecteur propre pour f , de valeur propre 2.

c. C’est vrai. D’après le résultat trouvé au b., on sait déjà que 2 est valeur propre. Le polynôme caractéristique de f se fatorise

donc par X − 2. En procédant à la factorisation on trouve :

χf (X) = X2 −X − 2 = (X − 2)(X + 1).

Il y a donc deux valeurs propres distinctes (à savoir 2 et −1) : on peut conclure que f est diagonalisable.

Exercice 2. L’application linéaire f : R2 → R2 donnée est-elle diagonalisable ? Justifier votre réponse.

a. f : (x, y) → (−3x, 2y) b. f : (x, y) → (3x− y, x+ 5y) c. f : (x, y) → (2x− y, 5x− 2y).

On ne demande pas de déterminer une base propre.

Solution:

a. La matrice de f dans la base canonique vaut :

A =

(
−3 0

0 2

)
(et est donc diagonale). On peut en conclure que f est diagonalisable. La base canonique est une base propre pour f .

b. La matrice de f dans la base canonique vaut ici :

A =

(
3 −1

1 5

)
.

Calculons alors le polynôme caractéristique de f :

χf (X) = X2 − tr(A)X + det(A) = X2 − 8X + 16 = (X − 4)2.

L’application linéaire f possède une unique valeur propre, à savoir 4. Comme elle n’est pas égale à 4 idR2 on voit qu’elle n’est

donc pas diagonalisable.



c. La matrice de f dans la base canonique vaut ici :

A =

(
2 −1

5 −2

)
.

Calculons alors le polynôme caractéristique de f :

χf (X) = X2 − tr(A)X + det(A) = X2 + 1.

On voit que f ne possède aucune valeur propre : elle n’est donc pas diagonalisable.

Exercice 3. On donne l’application linéaire :

f : R2 → R2, (x, y) → (3x− 2y,−x+ 2y).

a. Calculer le polynôme caractéristique de f et en déduire ses valeurs propres.

b. f est-elle diagonalisable ? Si oui, donner une base propre pour f .

c. Représenter sur un croquis les sous-espaces propres de f ainsi qu’un point (x, y) et son image f(x, y) par f .

Solution:

a. La matrice de f en base canonique est :

A =

(
3 −2

−1 2

)
.

On a donc :

tr(A) = 3 + 2 = 5 et det(A) = 6− 2 = 4,

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 5X + 4 = (X − 1)(X − 4).

Par conséquent f possède deux valeurs propres, à savoir 1 et 4.

b. D’après le a. on peut déjà affirmer que f est diagonalisable. Pour déterminer une base propre, commençons par calculer les

matrices :

A− I2 =

(
2 −2

−1 1

)
=

(
2

−1

)(
1 −1

)
et A− 4I2 =

(
−1 −2

−1 −2

)
=

(
−1

−1

)(
1 2

)
.

On en déduit alors :

Ker(f − idR2) : x = y︸ ︷︷ ︸
Vect((1,1))

et Ker(f − 4 idR2) : x+ 2y = 0︸ ︷︷ ︸
Vect((2,−1))

.

On voit donc que la famille suivante :

B = (1, 1), (2,−1)

est une base de R2 qui est formée de vecteurs propres pour f : c’est donc une base propre pour f . On a alors :{
f(1, 1) = (3− 2,−1 + 2) = (1, 1)

f(2,−1) = (6 + 2,−2− 2) = (8,−4) = 4(2,−1)

si bien que :

[f ]B =

(
1 0

0 4

)
.

Remarque : pour la détermination des vecteurs propres, rappelons qu’il n’est pas nécessaire de calculer les deux matrices :

A− I2 =

(
2 −2

−1 1

)
=

(
2

−1

)(
1 −1

)
et A− 4I2 =

(
−1 −2

−1 −2

)
=

(
−1

−1

)(
1 2

)
mais que l’une seule d’entre elles suffit. Par exemple, dans la décomposition colonne-ligne de A − I2, la colonne fournit

directement la base (2,−1) de Ker(f − 4 idR2) et la ligne donne l’équation x− y = 0 de Ker(f − idR2) .

c. Voici une figure représentant les éléments demandés :



Une fois (x, y) décomposé selon les deux axes colorés, on ”passe” à f(x, y) de la façon suivante : la ”coordonnée orange” est préservée

(elle est multipliée par 1) et la ”coordonnée bleue” est quant à elle multipliée par 4.

Exercice 4. En discutant selon la valeur du réel α, dire si l’application linéaire :

f : R2 → R2, (x, y) → ((1 + α)x+ αy,−αx+ (1− α)y)

est diagonalisable. Justifier votre réponse.

Solution: La matrice de f dans la base canonique est :

A =

(
1 + α α

−α 1− α

)
.

On trouve donc que :

tr(A) = (1 + α) + (1− α) = 2 et det(A) = (1 + α)(1− α)− α(−α) = 1

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 2X + 1 = (X − 1)2.

On en déduit que f ne possède qu’une seule valeur propre, à savoir 1. Elle est donc diagonalisable si et seulement si elle est égale

à l’application identité, autrement dit si et seulement si A = I2, ce qui ne se produit que pour α = 0.

Exercice 5. En discutant selon la valeur des réels α et β, déterminer si l’application linéaire :

f : R2 → R2, (x, y) → (αy, βx)

est diagonalisable et, le cas échéant, donner une base propre pour f .

Solution: La matrice de f dans la base canonique est :

A =

(
0 α

β 0

)
.

On trouve donc que :

tr(A) = 0 et det(A) = −αβ

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − αβ.

Discutons alors selon le signe du produit αβ. Si :

αβ < 0,



on voit que f ne possède aucune valeur propre, et qu’elle n’est donc pas diagonalisable. Supposons maintenant que :

αβ = 0,

c’est-à-dire que l’un des deux réels (au moins) est nul. Dans ce cas, f possède comme unique valeur propre 0, et elle est donc

diagonalisable si et seulement si c’est l’application nulle, autrement dit si et seulement si α = β = 0. Dans ce cas, toute base de R2

est une base propre pour f . Enfin, plaçons-nous dans le cas où :

αβ > 0.

Dans ce cas, f possède deux valeurs propres distinctes, à savoir :√
αβ︸ ︷︷ ︸
ω

et −
√
αβ︸ ︷︷ ︸

−ω

.

Calculons alors la matrice A− ωI2 et décomposons-la sous forme d’un produit colonne-ligne :

A− ωI2 =

(
−ω α

β −ω

)
=

(
α

−ω

)(
−ω

α 1
)

(car α ̸= 0 et ω2

α = β).

De cette décomposition on peut déduire directement que :

Ker(f − ω idR2) : −ω
αx+ y = 0︸ ︷︷ ︸

Vect((α,ω))

et Ker(f + ω idR2) = Vect((α,−ω)).

On voit donc que la base B = (α, ω), (α,−ω) de R2 est propre pour f . Dans cette base, on a :

[f ]B =

(
ω 0

0 −ω

)
=

(
α α

ω −ω

)−1 (
0 α

β 0

)(
α α

ω −ω

)
⇔

{
f(α, ω) = (αω, βα) = (αω, ω2) = ω(α, ω)

f(α,−ω) = (−αω, βα) = (−αω, ω2) = −ω(α,−ω).

Exercice 6. On donne une application linéaire dont la matrice est symétrique :

f : R2 → R2, (x, y) → (αx+ βy, βx+ γy).

a. Montrer que f est diagonalisable.

b. On suppose que f ̸= α idR2 . Montrer que si l’on visualise R2 à l’aide d’un repère orthonormé du plan alors f possède

comme sous-espaces propres 2 droites vectorielles orthogonales. Indication : discuter selon que β = 0 ou β ̸= 0.

Solution:

a. La matrice de f dans la base canonique est :

A =

(
α β

β γ

)
.

On trouve donc que :

tr(A) = α+ γ et det(A) = αγ − β2

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − (α+ γ)X + αγ − β2.

Le discriminant de ce trinôme du second degré vaut :

∆ = (α+ γ)2 − 4(αγ − β2) = α2 − 2αγ + γ2 + 4β2 = (α− γ)2 + 4β2.

Si α = γ et β = 0, alors ce discriminant est nul. Dans ce cas la matrice A est égale à αI2 et est donc diagonale. Par conséquent

f est bien diagonalisable. Sinon le discriminant ∆ est strictement positif, ce qui implique que f est aussi diagonalisable.

b. Si f ̸= α idR2 , alors on a vu en a. que le discriminant du polynôme caractéristique est strictement positif, ce qui implique que

f possède deux valeurs propres distinctes ω et ξ. On sait alors d’après le cours que les sous-espaces propres :

Ker(f − ω idR2) et Ker(f − ξ idR2)



de f sont des droites vectorielles. Il nous reste donc à montrer qu’elles sont orthogonales, lorsqu’on visualise R2 via un repère

orthonormé du plan. Si β = 0, alors la matrice de f dans la base canonique est diagonale : les sous-espaces propres de f

se visualisent comme les axes de coordonnées, qui sont par hypothèse orthogonaux. Supposons dorénavant que β ̸= 0 et

observons la matrice :

A− ωI2 =

(
α− ω β

β γ − ω

)
.

On sait par avance qu’elle est de rang 1. A cause de la présence de β en haut à droite, on peut remarquer que la première

ligne de A− ωI2 est non nulle, et donne donc une équation du sous-espace propre pour la valeur propre ω :

Ker(f − ω idR2) : (α− ω)x+ βy = 0.

Par ailleurs, à cause de la présence de β en bas à gauche, on peut remarquer que la première colonne de A − ωI2 est non

nulle, et donne donc une base du sous-espace propre :

Ker(f − ξ idR2) = Vect((α− ω, β)).

Le résultat recherché provient donc simplement du fait que, si le repère employé est orthonormé, la droite d’équation

cartésienne ax + by = 0 forme un angle droit avec la droite passant par (0, 0) et (a, b) (qui est donc dirigée par le vec-

teur de ( ab )).

Exercice 7. On donne une matrice A ∈ M2(R). Montrer l’égalité suivante :

A2 − tr(A)A+ det(A)I2 = 0.

Ce résultat porte le nom de théorème de Cayley-Hamilton.

Solution: Notons :

A =

(
α β

γ δ

)
.

On a donc :

det(A) = αδ − βγ, tr(A) = α+ δ et A2 =

(
α2 + βγ (α+ δ)β

(α+ δ)γ δ2 + βγ

)
.

si bien que :

A2 − tr(A)A+ det(A)I2 =

(
α2 + βγ − (α+ δ)α+ (αδ − βγ) · 1 (α+ δ)β − (α+ δ)β + (αδ − βγ) · 0
(α+ δ)γ − (α+ δ)γ + (αδ − βγ) · 0 (δ2 + βγ)− (α+ δ)δ + (αδ − βγ) · 1

)
=

(
0 0

0 0

)
.


