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PROPERTIES OF OTHER NUCLEI BEYOND 1H

2

Low
natural abundance

■ Metabolite levels

■ Physiological parameters 

■ Kinetics in metabolic pathways

■ Endogenous tracer (31P MRS)

■ Exogenous tracers (nuclei with low 
natural abundance)
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31P MRS
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-15-10-505

 Energy metabolites
 ATP (adenosine triphosphate)
 PCr (phosphocreatine)
 Pi (inorganic phosphate)

pHext

pHint

NADH
NAD+PC

GPCPE
GPE

[Mg2+]

 Membrane synthesis/degradation
 PME (phosphomonoester, PE+PC) 
 PDE (phosphodiester, GPC+GPE)

 Intracellular and extracellular pH
 [Mg2+]

γ-ATP

α-ATP

β-ATP

PPMPi ex

Pi int

PCr

 Nicotinamide adenine dinucleotide   
(NAD+/NADH)

Zhu et al., PNAS, (2015)
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LOCALIZATION FOR 31P MRS

4Dorst et al., MRM, 2021

Comparison of four 31P single‐voxel MRS sequences in the human brain at 9.4 T

Relaxation times of 31P metabolites at 7T

T2 of 1H 
metabolites:
60-200ms
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31P MRS
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 Membrane synthesis/degradation
 PME (phosphomonoester, PE+PC) 
 PDE (phosphodiester, GPC+GPE)

 Intracellular and extracellular pH
 [Mg2+]
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α-ATP

β-ATP

PPMPi ex

Pi int

PCr

 Nicotinamide adenine dinucleotide   
(NAD+/NADH)

Zhu et al., PNAS, (2015)

 ATP metabolism
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WHY MEASURE ATP METABOLISM
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Zhu et al., Frontiers in Aging Neuroscience  (2018)

Du et al., JAMA Psychiatry (2014)



PCr

Pi
ATP

ATP
Pi

PCr
RF

RF

RF

Creatine 
Kinase

ATP Synthase

Saturation transfer

7
Du et al., MRM, (2007).

ATP metabolism by 31P magnetization transfer

Saturation: equalize the population of energy state
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DYNAMIC X-NUCLEI MRS: METABOLIC FLUX
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probe labeling time 
course

mathematic modelling
(metabolic fluxes)

neuron TCA flux (VTCAn)
glial TCA flux (VTCAg)
Glu-Gln cycling flux (VNT) 

Glucose

Pyruvate

Acetyl CoA

TCA cycle

Lactate

Mitochondria

Blood vesselGlucose

Glutamate

Glutamine

infusion labeled 
substrate 

(e.g.13C , 2H)

Acetate Lactate
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2H MRS – DYNAMIC METABOLIC STUDY
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Lijing Xin

Lu et al., JCBFM (2017)

CMR glc
VTCA
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2H MRS – SIMPLE AND ROBUST
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■ Short T1 (100-400ms): fast averaging, sensitivity 
gain 

■ Short T2 (30-60ms): broad resonances 

– Gln+Glu, problem for Glu-Gln cycling flux 

– Insensitive to B0 inhomogeneity

■ Low natural abundance: no water and fat 
suppression required

De Feyter et al., JMR (2021)

1H 1H

13C2H
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3D 2H MRSI
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3D FID-MRSI data set: 20 × 20 × 20 mm3 nominal spatial resolution, TR = 333ms, 29min, 
acquired between 65 and 90 min after oral [6,6′-2H2]glucose administration.

De Feyter et al, Sci. Adv. (2018).
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2H MRS APPLICATION IN BRAIN TUMOR
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Lijing Xin

De Feyter et al, Sci. Adv. (2018).
Unterlass JE, Curtin NJ.(2019)



© CIBM | Center for Biomedical Imaging 

13C MRS – DYNAMIC METABOLIC STUDY 
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• Abundant metabolic information

• Complexity in acquisition 

13C MRS 2H MRS 

Duarte & Gruetter J Neurochem (2013).

CMR Glc
VTCA
CMRLAC
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13C MRS – DIFFERENT SUBTRATES

14last 18 min of a 2-hour [1-13C] glucose, [3-13C] lactate or [2-13C] acetate infusion



© CIBM | Center for Biomedical Imaging 

SENSITIVITY ENHANCEMENT
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 Decoupling

 NOE: Nuclear Overhauser Enhancement
 Polarization transfer ( x 4)

 Heteronuclear editing (Indirect detection 1H-[13C], x 16 )

 Hyperpolarization (DNP, x 10000) 

Low  γ 13C

1H
high γ

γ (1H) ∼ 4 γ (13C)

Low  γ13C

e- high γ, 105  larger
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DECOUPLING
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■ Why decoupling?      simplify spectra and enhance SNR

undecoupled

decoupled

Deelchand, et al , Magn Reson Med, 55,2006.
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HOW TO DO DECOUPLING?
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RF

13C 1H

13C

JCH

1H

JCH

RF(13C)

RF(1H)

90o ACQ

Decoupling

Harris, R.K (1986), Nuclear Magnetic 
Resonance Spectroscopy
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DECOUPLING SCHEMES
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■ Continuous wave (narrow band, on resonance decoupling)

■ Increase decoupling bandwidth 

– ‘spin-flip’ decoupling

Freeman et al , NMR Biomed,10, (1997)

RF(13C)

RF(1H)

90o ACQ

Decoupling

Δ𝑓𝑓= 7500HzΔ𝑓𝑓=1200Hz
7T
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DECOUPLING SCHEMES

23

■ Composite pulses 

– MLEV (Modulated Low-power Evolution): 90o(x) 180o (y) 90o (x)

– WALTZ: 90o (x) 180o (-x) 270o (x) = 1�23

Levitt et al., J. Magn. Reson. 33, 1979.
Shaka et al , J Magn Reson, 52,1983.

a. WALTZ
b. MLEV
c. 180o (x)

resonance offset
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DECOUPLING: BW VS SPECIFIC ABSORPTION RATE
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■ Efficient decoupling: the desired decoupling 
bandwidth with the lowest possible RF power

SAR 
deposition

(B2)

Decoupling 
performance

(BW)

IEC (International Electrotechnical Commission): 
3.2 W/kg (head) or 10 W/kg (body, over any 10g)

De graaf , Magn Reson Med, 53,2005.
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Nuclear overhauser enhancement (NOE)
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Li et al., MRM, 75:954–961, 2016

Sailasuta et al., J Magn Reson. 195: 219–225. 2008 

NOE

GluC5 GlnC5
GluC1

GluC1

■ Albert Overhauser (1953)

■ spin polarization transfer through dipolar cross-relaxation

■ equilibrium magnetization of a given nucleus changes via RF irradiation of neighboring 
nuclei (induced by relaxation mechanism) 

RFRF

Dipole- dipole 
interaction 

through space

Dipole- dipole 
interaction 

through space

Glutamate
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NOE FOR TWO-SPIN SYSTEM: I (13C), S(1H)
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B0

α

β

one-spin

 Relaxation is caused by random fluctuating magnetic fields due to the thermal motion of the 
molecules 

 The fluctuating field induces transitions between the spin energy states

Transition probability W: probabilities/time that spins will change energy states (transition)
• W1: single quantum transition (flip of only one spin)
• W0: zero quantum transition (simultaneous flip of both spins in the opposite direction)
• W2: double quantum transition (simultaneous flip of both spins in the same direction)

RF irradiation on 1H →
changes equilibrium 
magnetization (population 
difference) of 13C

αβ

αα

ββ

βα

W1

W1

W1

W1

W2
W0

two-spinRF

RF
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SUMMARY FOR NOE
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■ An RF irradiation → saturation for one spin

■ Mechanism: relaxation 

■ The enhancement depends on the contribution 
of  relaxation mechanisms and molecules (e.g. 
the distance between spins)

– W2: positive enhancement , W0: negative enhancement

■ Experimental determination for NOE factor in 
vivo and in vitro

– 31P-1H: 1.4-1.8

– 13C-1H: 1.3-2.9

αβ

αα

ββ

βα

W1

W1

W1

W1

RF

RF

W2
W0
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POLARIZATION TRANSFER (INEPT AND DEPT)
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x/y

■ INEPT: Insensitive Nuclei Enhanced by Polarization 
Transfer

■ DEPT: Distortionless Enhancement by Polarization 
Transfer

■ Polarization is transferred from a high γ nucleus to a low 
γ nucleus through J-coupling

■ Enhancement by a factor of 4 (γ1H/γ13C)

INEPT

Refocused 
INEPT

DEPT
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INEPT

33

33

P.J. Hore, J.A.Jones, and S.Wimperis. NMR: The Toolkit. OUP Oxford, 2000

x/y

INEPT

Refocused 
INEPT

DEPT

a=4b (γ1H=4γ13C)

CH
Decoupling

Enhancement 
lost

a 2IzSy +b Sy

bSz

aIz
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refocused INEPT AND DEPT

34P.J. Hore, J.A.Jones, and S.Wimperis. NMR: The Toolkit. OUP Oxford, 2000

Refocused 
INEPT

DEPT
β 45o 90o 135o

CH Sxsinβ 0.707 1 0.707

CH2 2Sxsinβcosβ 1 0 -1

CH3 3Sxsinβcos2β 1.061 0 1.061

a=4b (γ1H=4γ13C)

∆ 1/4J 1/2J 3/4J

CH Sxsin(πJ∆) 0.707 1 0.707

CH2 2Sxsin(πJ∆)cos(πJ∆) 1 0 -1

CH3 3Sxsin(πJ∆)cos2(πJ∆) 1.061 0 1.061
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PT+1H LOCALIZATION
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Δ𝑓𝑓= 7500Hz

 1H localization with PT: long T2 metabolites
• Localization with 1H magnetization:  CSDE 

Henry et al., ., Magn Reson Med , 50:684–692 (2003)

CSDE (%): 
Δ𝑥𝑥
𝑥𝑥

=
Δ𝑓𝑓
𝐵𝐵𝐵𝐵

Δ𝑓𝑓=1200Hz
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Heteronuclear editing (Indirect detection)

36

JCH

JCH JCH
 Detect 1H resonances bound to 13C

 Higher sensitivity x 16 (γ1H=4γ13C)

 Direct measurement of fractional enrichment [FE=13C/(13C+12C)]

 Heteronuclear editing: J-difference editing

 limitation: narrow spectral resolution in 1H 
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J-DIFFERENCE EDITING
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13C 13C

12C

JCH

180 (13C ) off

180 (13C ) on

difference

difference
+

decoupling
JCH=120-140Hz
TE=7-8ms

Proton-Observed Carbon-Edited Spectroscopy (POCE)
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COMPARISON OF DIRECT AND INDIRECT 13C MRS

38Xin  et al. Magn Reson Med 64,2010. Durate et al., J. Neurochem.126,2013.

High sensitivity (high temporal and spatial 
resolution)

total metabolite concentrations (13C+12C)

Limited spectral resolution-> limited metabolic 
info

High spectral resolution-> large metabolic info

Low sensitivity (limited temporal and spatial 
resolution)

Additional measurement for metabolite 
concentration
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HYPERPOLARIZED 13C MRS
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13C

e-

microwaves 

room temp,
65 h (232,128 transients)

Ardenkjær-Larsen et al., PNAS (2003)

hyperpolarized 13C urea 

Dissolution DNP

Carver et al., Phys. Rev. (1953) 

 loss of the polarization back to thermal equilibrium
 short measurement window limited by T1
 a compound with long T1 is favorable for DNP experiments

Mishkovsky et al., Sci. Rep.  (2017) Courtesy of M. Mishkovsky
FAST process: minimize loss of polarization

polarization transfers between electrons and 
nuclei can occur spontaneously through 
electron-nuclear cross-relaxation and/or spin-
state mixing among electrons and nuclei.
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HP 13C MRS APPLICATION IN PROSTATE CANCER

40Nelson et al, Science Translational Medicine, (2013)

HP 13C could detect affected areas that 
are negative in MRI images and 1H MRSI.

Hyperpolarized [1-13C]Pyruvate

prostate cancer: 1H MRSI 
reduced citrate and 
elevated choline/citrate
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SUMMARY

41

■ Multinuclear MRS (1H, 2H, 13C, 31P, 17O etc): a valuable tool to study brain metabolism
– metabolite levels
– chemical reaction rates 
– kinetics in metabolic pathway (e.g. CMR glc, TCA cycle and neurotransmitter cycling fluxes)

■ Challenges in clinical implementation
– low sensitivity, limited spatial resolution
– long scanning time
– stringent RF deposition regulations 
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