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Amplifiers of ultrashort Pulses

1. Short pulse propagation

Nonlinear optics

1. Perturbative nonlinear optics 

2. Parametric processes, SFG, DFG

Summary
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2RECAP: TIME vs FREQUENCY DOMAIN

Spectral description: 

𝜑 𝜔 is the SPECTRAL PHASE: 

information of time vs frequency
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3RECAP: Linear pulse propagation
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4RECAP 2: CPA
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5

• Limited in producing NEGATIVE GDD, we need to find an instrument with inverted (and matched

GDD) -> 

GRATING COMPRESSOR/STRETCHER
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6WAVE EQUATION:

- homogenous dielectric material

- non magnetic

MAXWELL EQUATIONS in matter:

Susceptibilities
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7

WAVE EQUATION

~
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9LINEAR RESPONSE REGIME:

Account for non-

instantaneous 

response, phase shift 

Frequency-dependent 

susceptibility
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11

Frequency-shifted spectrum

Temporal envelope
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12

Ultrashort pulse propagation in a linear 

dispersive medium
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14

PERTURBATIVE NONLINEAR OPTICS

CPA of femtosecond pulse: 

• Very high peak intensity

• Breakdown of linear response of the material -> Nonlinear optics

Second harmonic generation Parametric amplification
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15

Nonlinear effects some examples

Example 1: distortion in an electronic amplifier driven by a sin wave: the clipping results in harmonics of the 

driver  

Example 1: nuclear vibrations anharmonicity

Due to the deviations from a 

perfect parabolic potential 

(harmonic oscillator), a system 

driven at a certain ω, will oscillates 

also at other frequencies!
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16

Nonlinear optical effects

Under a strong electric field, the polarization of a medium is no longer proportional to the fied:

Assuming a small deviation one can attempt to write a power series expansion for P:

𝜒(𝑞)

effects
ℇ 𝑡 ∝ cos(𝜔𝑡) ℘ 𝑡 ∝ cos𝑞(𝜔𝑡)

Wave equation: P act as a source term:

«Perturbative» non-linear optics:
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17When do nonlinear optical effects appear?

ELECTRONIC nonlinearities physical origin: strong distortion of the valence 

orbitals -> breakdown of anharmonic response

Nonlinear effects typically require laser light to be observed: nonlinear optics became widespread only after 

the ruby laser.  The 𝜒(2) nonlinear response should dominate.

Electric field of solar radiation on the earth surface:

Esun≈ 3 V/m  ( in a 1 nm bandwidth at 500 nm)

(J.Mod.Opt., 1999, VOL. 46, NO. 3, 

367) the magnitude of the response 

of order n is related to the (n-1)th

Order-magnitude 

electric field acting on a valence 

electron: 

Eat = 5 x 1011 V/m

At which E the linear and 

quadratic term become 

comparable? 
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18Problem: vanishing 𝜒(2)

ODD ORDERS cannot be observed in centro-symmetric media: many crystal classes lack 

inversion symmetry and exhibit non-vanishing 𝜒(2) .

Example silica (SiO2): 𝜒
(2) = 0 in glass, 𝜒(2) ≠ 0 in quartz single crystals

Given these estimates, the 𝜒(2) response should dominate:  



P
H

S
Y

7
6
1
 –

A
d
v
a
n
c
e
d
 R

a
d
ia

ti
o
n
 S

o
u
rc

e
s
 -

2
0
2
3

M
ic

h
e
le

 P
u
p
p
in

19The first nonlinear optics experiment with a ruby laser:

See APS Landmarks: Ruby Red Laser light become ultraviolet https://physics.aps.org/articles/v7/112#

Can you see the spot?
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Ruby laser
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20Second harmonic generation now:

• Non-linear crystals: materials with very high 𝜒(2) (example BBO, 

LBO ..)

• Higher intensities are routinely produced (GW pulses readily 

available in fs lasers) 

• Phase matching: for the beam to grow over macroscopic

distances, microscopic dipoles must radiate in phase and 

interfere constructively over the crystal length (Lcoh > Lcrystal)

• Can reach high efficiencies (> 50% is not atypical, in some cases close to unity)
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21

𝜒(2) effects couple two interacting waves:

• Driving field:

• Resulting polarization:
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22

For every component P(ω), there is also P(-ω), however P(-ω)=P(ω)* 

Sum Frequency Generation

Difference Frequency Generation

Optical rectification

The polarization can also be expressed in 

terms of its frequency components

Three wave mixing :  in 𝜒(2) processes three waves interact thanks to the nonlinear 

susceptibility
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23

Parametric processes

• A nonlinear optical process which leave the quantum state unchanged is called

parametric process

• No energy is deposited in the material! Photon energy conservation is always satisfied

• Energy level diagrams with «virtual states»: example SFG

Two photons of energy ħω1 and ħω2 are absorbed via virtual states, the end state decays

emitting a photon of energy ħω3 = ħω1+ ħω2
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24

SFG and DFG 

• Sum Frequency generation (SFG): 

• Difference frequency generation (DFG): 

• Here a virtual state, excited by 

the highest energy photon decay 

by emitting two photons, 

• Beam ω2 is amplified in the 

process

• Two photons are destroyed 

and a photon at the sum 

energy is created

OPTICAL PARAMETRIC 

AMPLIFICATION (OPA)
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25Chirped pulse amplification and OPA: OPCPA

• Needs high power sub-picosecond Ytterbium lasers (kWs average 
power, and  GW pulse power at 100s of KHz). 

Promising technology for the next generation of femtosecond lasers:

1st generation: Dye laser   -> Short pulse

2nd generation: Ti:Sapphire -> Shorter pulses, high pulse power

3nd generation: Ytterbium-based OPCPAs -> Shorter pulses, higher 

pulse power, higher average power, frequency tunability

Improved Average 

Power scalability

Bandwidth
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26Nonlinear non-parametric processes:

• Saturable 

absorption/amplification:

• Two-photon absorption:
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27

• One or more step of a diagram corresponds to one of the system resonances

• Strong «resonant enhancement» of nonlinear effects, but also absorption of the 

beam with population transfer might occur

• Resonant enhancement of nonlinear processes:
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28Classical electrodynamics treatment of non-resonant 𝜒(2) effects

• Perfectly monochromatic, plane-waves.

• Perfectly lossless medium

• For every frequency component one must solve a wave equation: 

• The various equation are coupled through PNL 
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29Wave equation for Sum Frequency Generation (SFG)

• Let’s write the amplitude for A3 (the field generated at the sum-frequency field) 
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30

• Slowly Varying Amplitude Approximation:

The amplitude does not change considerably over distances

comparable with the light wavelength

In absence of non-linear polarization it would be a constant -> 

Nonlinear effects are typically small..

• The second derivative term is dropped
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31

Undepleted wave limit:

• In the case of low efficiencies, the deplections of the initial two beams (1 and 2) can be neglected, the 

equations for A3 is decoupled and can be integrated.

• One obtains:

• In the case of Δk=0 the SFG beam intensity grows quadratically along the medium!

• Solution valid until the beam does not grow significantly, afterwards the approximation fails and the 

coupling needs to be accounted: back-conversion from 3 to 1 and 2 can be observed!
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32Phase matching

• The quadratic growth occurs if the wavevector 

mismatch is approximately zero:

• Coherence length: 𝜋/Δk



P
H

S
Y

7
6
1
 –

A
d
v
a
n
c
e
d
 R

a
d
ia

ti
o
n
 S

o
u
rc

e
s
 -

2
0
2
3

M
ic

h
e
le

 P
u
p
p
in

33

Perfect phase-matching seems a very special condition:

Refractive index wavelength dependence
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34Critical phase matching in uniaxial crystals

• The refractive index of waves is determined entirely by the angle between k and the optical axis. 

• ordinary-wave E ortogonal to the optical axis.

• Positive uniaxial (no> ne ) , negative uniaxial (ne> no )

• This relation can be used to achieve phase matching!

• Type I: the signal and idler waves have the same polarization, orthogonal to the pump oo->e or ee->o

• Type II: oe->o or oe->e

WAVE PROPAGATION AND WAVE EQUATION IN NON-ISOTROPIC MEDIUM HAS TO BE CONSIDERED
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35𝝌(𝟐) Nonlinear optical effects in 3d

• To include all possible polarizations generated by three interacting 

waves 6 tensor ( x 2 counting the negative ω ) have to be 

determined: each one has 33=27 components:

• In practice often the problem is simplified:

• symmetry selection rules

• NON-RESONANT ELECTRONIC PROCESSES:

• the three interacting waves are very far from the lowest resonance in the crystal 

(𝜒(2) independent of ω)

324
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36Voigt notation

• The dij are tabulated for most crystals • Example polarization 

for SFG:
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37The effective nonlinear coefficient

• Typically the geometry is very well defined! The polarization of the interacting waves is linear, and 

well known relative to the crystal orientation (phase matching): the net effect is summarized in an 

effective nonlinear coefficient (with a smart choice of x,y,z ..) 

• Depending on the crystal symmetry class (there are 32 x classes ) several elements are 

redundant or identically zero! Example class 3m (BBO, .. ) 



C
H

3
6
0
 -

A
to

m
s
 a

n
d
 r

a
d
ia

ti
o
n
 -

2
0
2
0

M
ic

h
e
le

 P
u
p
p
in

38Properties of nonlinear optical materials, 
resources :

Sutherland - Handbook of nonlinear optics

Free software: SNLO

http://www.as-photonics.com/products/snlo

Nonlinear optics is nowadays well-established: you don’t 

need to calculate everything yourself.
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39

Quasi-phase matching:

Example: SEM picture of a periodically poled 

lithium niobate (PPLN) cystal showing the 

periodically inverted non-linear optical coefficient

Temperature phase matching: 

AKA Noncritical phase matching (or 90° phase matching)

The crystal is held in oven at well defined T: the refractive index change with T , n(T) is different for different 

crystal axis, and phase matching can be achieved. 
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