cPiL

m Michele Puppin

Summary

Amplifiers of ultrashort Pulses
1. Short pulse propagation
Nonlinear optics

1. Perturbative nonlinear optics
2. Parametric processes, SFG, DFG

Lecture 06

Advanced
Radiation
sSources -
PHSY761

15 October
2024



PF

B PHSY761 — Advanced Radiation Sources - 2023

L

RECAP: TIME vs FREQUENCY DOMAIN

E(t) =3 V1) expli[wt — p(D)]} + c.c.

E(w) = f &(t) exp(—iwt) dt
Mj FOURIER TRANGORM

Spectral description:

&(w) = V' S(w) exp[—ip(w)]

COHPLEX
ANPLITUDE

¢(w) is the SPECTRAL PHASE:
information of time vs frequency
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RECAP: Linear pulse propagation
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RECAP 2: CPA

Initial short pulse A pair of gratings disperses

the spectrum and stretches

the pulse by a factor
-

Short-pulse oscillator

The pulse is now long l
and low power, safe
for amplification

B =

l High energy pulse after amplification n

Power amplifiers

- J L

Resulting high-energy,
ultrashort pulse

A second pair of gratings
reverses the dispersion of the
first pair, and recompresses the pulse.
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GRATING COMPRESSOR/STRETCHER

Limited in producing NEGATIVE GDD, we need to find an instrument with inverted (and matched

PrL
GDD) ->
—3/2
d2¢ WLy P
) = — = [1 — (E — sin Ei)
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stretched pulse
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MAXWELL EQUATIONS in matter:
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LINEAR RESPONSE REGIME:
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E(t) = % / E(w)e“ dw
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Frequency-shifted spectrum
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z=0 Dispersive medium
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PERTURBATIVE NONLINEAR OPTICS

CPA of femtosecond pulse:

* Very high peak intensity
« Breakdown of linear response of the material -> Nonlinear optics

' e

Second harmonic generation Parametric amplification

=
~
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Nonlinear effects some examples

Example 1: distortion in an electronic amplifier driven by a sin wave: the clipping results in harmonics of the

driver

Field (a.u.)

Example 1:

10"

— Amplified 2

—— Distorted -~ 10 "1

= 10

5

g 10"

“ 10®

: . . . ! T
10 -5 0 5 10

nuclear vibrations anharmonicity

Energy

l

A Not parabolic at all
for large perturbations

Approximately parabolic
for small perturbations

— Amplified
—— Distorted

Internuclear separation

Due to the deviations from a
perfect parabolic potential
(harmonic oscillator), a system
driven at a certain w, will oscillates
also at other frequencies!

=
[$,]
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Nonlinear optical effects

Under a strong electric field, the polarization of a medium is no longer proportional to the fied:

?

~E

Assuming a small deviation one can attempt to write a power series expansion for P:
1 2) 2 3) @3

Wave equation: P act as a source term:

3’6 19%€ 2P

"3 3 A Moo
3z>  ¢f or? 912
«Perturbative» non-linear optics:
1D q
effects €(t) o« cos(wt) > () x cos(wt)
cos* 14 = 22“1_2 -{008{21‘1 —1DA + <2n1— ! ) cos(2n—3)4 + --- + <2::11) cosﬂ}

=
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When do nonlinear optical effects appear?
ELECTRONIC nonlinearities physical origin: strong distortion of the valence
orbitals -> breakdown of anharmonic response
At which E the linear and Order-magnitude o e
quadratic term become electric field acting on a valence — ?
comparable? electron: .~ L =
Jﬁlfa Q," \
(e (z) 2 \
&X E -~ £, X E .Bolrﬂ‘ rodivg
L g o kO O4) E,.=5x 101V/m
(w)
X 4 WEARTEIC. (J.Mod.Opt., 1999, VOL. 46, NO. 3,
K{M:l > — Ewdte 367) the magnitude of the response
Ear of order n is related to the (n-1)t

Electric field of solar radiation on the earth surface:

E.,»=3 V/m (ina1nm bandwidth at 500 nm)

Nonlinear effects typically require laser light to be observed: nonlinear optics became widespread only after
the ruby laser. The y® nonlinear response should dominate.

=
~
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Problem: vanishing y(®

Given these estimates, the y(® response should dominate:

Utx) A

— parabola parabola —.

=3
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- Ple) = s
= xX° Ez(b) o f

ODD ORDERS cannot be observed in centro-symmetric media: many crystal classes lack

inversion symmetry and exhibit non-vanishing y® .

Example silica (SiO,): x® = 0 in glass, y*) # 0 in quartz single crystals
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The first nonlinear optics experiment with a ruby laser:

Ruby laser

ae|d

oiydesborloyd

VoLuME 7, NUMBER 4 PHYSICAL REVIEW LETTERS Aucust 15, 1961

| ®

34 35 37 as 55
Im\|nllhu||||nIu:ﬁ\||I|\|\|'||||lumnlumnlnﬁf,i Pl el |||fﬂI.'MIJrIli\llHlleﬁﬂllllﬁmmlrl.fﬁiImll?ﬁllllm

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The
wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced hy the
second harmonic. The image of the primary beam at 6943 A is very large due to halation,

Can you see the spot?

See APS Landmarks: Ruby Red Laser light become ultraviolet https://physics.aps.org/articles/v7/112#

=
©
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Second harmonic generation now:

Non-linear crystals: materials with very high y(?) (example BBO,
LBO ..)

Higher intensities are routinely produced (GW pulses readily
available in fs lasers)

Phase matching: for the beam to grow over macroscopic
distances, microscopic dipoles must radiate in phase and
interfere constructively over the crystal length (Lon > Lerysta)

/‘PHPng NRCHIVG CONDTTION
Ae(: 2"6(-17]{ - e(gﬂ — O

/ \u

FUNDAMENTH SH WAVEVESTR
Beant

WAVE JECTON

Far from phase-matching

Six coherence lengths

Can reach high efficiencies (> 50% is not atypical, in some cases close to unity)

Closer to phase-matching

Two coherence lengths

N
o
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x@ effects couple two interacting waves:

Driving field: E(I) _ Ele_fa,l; + Ege_mzt +c.c.
Resulting polarization: ]5(2)(1‘) = )((Z)E'(),‘)2
- 2 . o —_ . o ___‘_ -\r\
( )(l‘) — X(2)[E2 —2iw;t + E%e 2icwat _+_2E1Ezeh!(w1_-*-w2_)f ~

. {,/‘ —
_— Dc TERM
HIgh Fheovency AC. J
COMESPONDND A ST

ELgcOic TIELD

H2E Ejei @ ] 4 2x PIE ET + E2E3].

N
[y
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5 (2) . — i@yt The polarization can also be expressed in
P (t) - Z P(wﬂ)e terms of its frequency components
n
_ @2
PQw) = x*"Ey (SHG), SECOUD HAQNONIC — GENeMTIO

PQwy) = x?E3 (SHG),
P(w; + wp) = 2X(2}E1E2 (SFG), Sum Frequency Generation
P(wy — wy) = 2x (2)E1 E:’; (DFG), Difference Frequency Generation

P(0) = 2x (2)(El ET + EZE;) (OR). Optical rectification
For every component P(w), there is also P(-w), however P(-w)=P(w)*

Three wave mixing : in y® processes three waves interact thanks to the nonlinear
susceptibility

-_o_ol_;, \Yll Cx = 0o, +Co,

N
N
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Parametric processes

* Anonlinear optical process which leave the quantum state unchanged is called

parametric process

* No energy is deposited in the materiall Photon energy conservation is always satisfied

» Energy level diagrams with «virtual states»: example SFG

Two photons of energy hw, and hw, are absorbed via virtual states, the end state decays

emitting a photon of energy hw; = hw,;+ hw,

LIFETINE At < 'F/

(a) by ______ _

@, porow @,
—_— 0 =0+ 18
2) 3 1 2 desvnored
@ X —_— - -t - -
— 2 5 A

_ VIRIVAL SYATE
l Proton 18
CRefTED

@,

N
w
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SFG and DFG

e Sum Frequency generation (SFG):

(a) ® - __ _
A
@ @y
—_— 5 Ct)3 = (J'.)l + m2
) Z( ) —_— il Tl w,
—2 5 \
@)
Y
» Difference frequency generation (DFG):
(a) ®» __
— @, =0, -0, :
o @ o| __Y__
: > >
— > o
[N 3
A

Two photons are destroyed
and a photon at the sum
energy is created

Here a virtual state, excited by
the highest energy photon decay
by emitting two photons,

Beam w, is amplified in the
process

OPTICAL PARAMETRIC
AMPLIFICATION (OPA)

N
N

Michele Puppin



=PrL

B PHSY761 — Advanced Radiation Sources - 2023

Chirped pulse amplification and OPA: OPCPA

E ) a) LASER b) OPA

F Y A
5, \A hv Improved Average
s Power scalability

Wﬂ hv hv. " iﬂ hv W
P -y | hv. m \ Bandwidth
o e ‘

-
le
I1

hv, =hv, + 3, hv, = hv, +hv,
Oqp=0,+9,
10°
3FST
Promising technology for the next generation of femtosecond lasers: i i R«
1st generation: Dye laser -> Short pulse 10 a8

2nd generation: Ti:Sapphire -> Shorter pulses, high pulse power
3nd generation: Ytterbium-based OPCPAs -> Shorter pulses, higher
pulse power, higher average power, frequency tunability

10° ®345
1FST o4 2FST
2

o6

peak power (TW)

=1 <

average power (W)

* Needs high power sub-picosecond Ytterbium lasers (kWs average
power, and GW pulse power at 100s of KHz).

102 10" 10° 10" 102 10° 10¢

N
[$)]
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Nonlinear non-parametric processes:

a0
o =
1+ 1/1,

Saturable
absorption/amplification:

Two-photon absorption:

Ficure 1.2.10 Two-photon absorption.

N
[}
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Resonant enhancement of nonlinear processes:

(EXA nPLe THWD
(a) . NosT BFRcNT () MRRHONIC geny

One or more step of a diagram corresponds to one of the system resonances
Strong «resonant enhancement» of nonlinear effects, but also absorption of the
beam with population transfer might occur

N
By}
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Classical electrodynamics treatment of non-resonant y® effects

wl———>

Oy ——>

L —>

FiGURE 2.2.1 Sum-frequency generation.

Perfectly monochromatic, plane-waves.
Perfectly lossless medium
For every frequency component one must solve a wave equation:

cevhes
E, LT

2 ; (1) ) / £ AND
~V7E,(r) — =€ (wy) -E,(r) = 713,1 (r) E;

The various equation are coupled through PNt

N
[ec]
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Wave equation for Sum Frequency Generation (SFG)

Ei(z,1) = Ee " +cc., i=1,2,
SPATAUY  oscicarie
. < (evey {'. yoo
E; = A,-e’k‘z, i=1,2,
)

Py(z. 1) = Pye ' 4 c.c.,

Py =4d.gE Ey

F— 2

@ —__*
1

d:_;x@’) > 0, =0 +0,

O ——>

«~— L —>

FiGure 2.2.1 Sum-frequency generation.

Let’s write the amplitude for A, (the field generated at the sum-frequency field)

d’As; dAs

—167 dgffw§

A, Azef(k1+k2—k3)z_

2ik
dz? + ks dz

2

N
[(e}
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«  Slowly Varying Amplitude Approximation:

The amplitude does not change considerably over distances
comparable with the light wavelength

In absence of non-linear polarization it would be a constant ->
Nonlinear effects are typically small..

d2A3
dz?

dAj
< (k3 —
3 dz

dAs _ 8ridwed | i
dz k3C2

dA 87Tldeffa)1
— = ———A;
dz k]C

* —iAkz
Ase

dA;  8midesw)

* —iAkz
dZ - kzti‘z ABAIE |

E(2)

L
JUUY

* The second derivative term is dropped

SIGN
DiFrencues !

Ak =k +ky — k3
PHASE N1 Shktey

w
o
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Undepleted wave limit:

In the case of low efficiencies, the deplections of the initial two beams (1 and 2) can be neglected, the
equations for A is decoupled and can be integrated.
One obtains:

‘Codaneed' x> prodbact OF WTBNSTTIES [
N

I = 5S127%d% 0 I,

L’sinc’(AkL/2)
n1n2n3k3c

In the case of Ak=0 the SFG beam intensity grows quadratically along the medium!

Solution valid until the beam does not grow significantly, afterwards the approximation fails and the
coupling needs to be accounted: back-conversion from 3 to 1 and 2 can be observed!

w
ey
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Phase matching

The quadratic growth occurs if the wavevector
mismatch is approximately zero:

Ak=k1+k2—k3 =0

Coherence length: m/Ak

Far from phase-matching

Six coherence lengths

sinc? (Ak L/2)

1 | 1 ! 1 | |

3 0 in
akLj2

Closer to phase-matching

Two coherence lengths

w
N
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Perfect phase-matching seems a very special condition:

@ __,_Z.w () "ZDJ'A(UJO) =0

SAHE
pHIsz L. N (209) = (w)

NOAMAL NispensioN
v (A

Ww)

N S
n(ed |\, A“’
Tyeically

W(zw ) > (W)

Refractive index wavelength dependence

w
w
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Critical phase matching in uniaxial crystals

O e | n,
a.g Lg/k J— © n(g)
O™ -

- -
—— -

The refractive index of waves is determined entirely by the angle between k and the optical axis.
ordinary-wave E ortogonal to the optical axis.
Positive uniaxial (n,> n, ) , negative uniaxial (ng> n, )

1 cos26 sin%0

= +
n?(0)  ng ng

» This relation can be used to achieve phase matching!
» Type |: the signal and idler waves have the same polarization, orthogonal to the pump oo->e or ee->0
* Type ll: oe->0 or oe->e

WAVE PROPAGATION AND WAVE EQUATION IN NON-ISOTROPIC MEDIUM HAS TO BE CONSIDERED

w
i
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X,,k(wl w3, —wy), X,Jk(wl, —wy, w3), X,,k(wz,w3, —-w1),

2)
Xijk (@2, —w1, w3), X;‘jk(w:%wlst)s and X (w3, w2, @1)

x¥@ Nonlinear optical effects in 3d

5K CMRTESIAN coordinATES fEn. FIEQL. DRIVING

FER,
Pi(wn + om) = ) _ Y Xiit (@n + @, On, 0m) Ej (@) Ex (@)

;—J;“—' Jk (nm)
SuMnMPN PERTFORNED

— gy -
THel. OF Pz, PR ENED (o, £ b,

To include all possible polarizations generated by three interacting
waves 6 tensor ( X 2 counting the negative w ) have to be
determined: each one has 33=27 components:

(2

In practice often the problem is simplified:
* symmetry selection rules
* NON-RESONANT ELECTRONIC PROCESSES:
» the three interacting waves are very far from the lowest resonance in the crystal
(x® independent of w)

w
o

Michele Puppin



B CH360 - Atoms and radiation - 2020

Voigt notation

d 1. (2 jk: 11 22 33 23,32 31,13 12,21
ijk = 2 Xijk L1 2 3 4 5 6
« The d; are tabulated for most crystals « Example polarization
for SFG:
dy diy diz dia dis dig P (w3) dyy dix diz dis dis dig
dii=|dn dn dy du dys d Prln) | =4 o dn dysdha s
P, (w3) dyy dyp; d3z dy dis dig
dy1 dyp diz di dis di _ _
E (w1) E;(an)
Ey(@)E, (@)

E (w))E; (@)
Ey(w)E (@) + E(w)E,(w2)
Ey(w)E (w2) + E(w1)Ey(w2)
| Ex(@)Ey(@2) + Ey(01) Ex(@) |

w
[}
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The effective nonlinear coefficient

Depending on the crystal symmetry class (there are 32 x classes ) several elements are
redundant or identically zero! Example class 3m (BBO, ..)

0 0 0 (ds
dip = | |—dx dn!| 0 @ 0
ds 31) dsz 0 0

{ —dy

0
0

Typically the geometry is very well defined! The polarization of the interacting waves is linear, and
well known relative to the crystal orientation (phase matching): the net effect is summarized in an
effective nonlinear coefficient (with a smart choice of x,y,z ..)

ONLY SoHE wHFONEJJ_ CAH

THASE N ATCHING !

FORRRZATION OWLY

Moue ceiipm
Difecnous

dz diy dis dis
dy dyy dys d
dyz di diys dig

ACHIEVE

E.(0)*

E

E
2E,
2EA®)E,(w)

2E, Y w)J

—>
=) /x /
/L/ E}//‘f
f(

6?—%

P(w3) = 4degE(w1) E(wy)

deff = d31 sin@ — dzz cos & sin 3¢

w
J
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Properties of nonlinear optical materials,

resources .

Nonlinear optics is nowadays well-established: you don’t
need to calculate everything yourself.

Sutherland - Handbook of nonlinear optics

Free software: SNLO
http://www.as-photonics.com/products/snlo

Handbook of
Nonlinear
Optics

Second Edition, Revised and Expanded
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Temperature phase matching:

AKA Noncritical phase matching (or 90° phase matching)

The crystal is held in oven at well defined T: the refractive index change with T , n(T) is different for different
crystal axis, and phase matching can be achieved.

Quasi-phase matching:

d<z>"°7r|ﬂﬂ'r|r|ﬂﬂ'

~yY

L U uuL

Example: SEM picture of a periodically poled
lithium niobate (PPLN) cystal showing the
periodically inverted non-linear optical coefficient
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