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Summary Advanced
Radiation
Breakdown of perturbative nonlinear opics So u rce S -

Harmonic generation in gases
* Multiphoton ionization
» Strong field effects P H SY7 6 1
» Above threshold ionization
» High Harmonic Generation
* Non-sequential double ionization

3 step model of High Harmonic Generation
1. Tunneling
2. Acceleration
3. Recombination Lecture 07
4. Cutoff and plateau harmonics
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Perturbative nonlinear optics:

P=e[xVe+x? e+ +.-]

Can we use these perturbative phenomena to generate short-wavelenght
pulses?

* Coherent sources where no lasing transitions are available
» Valuable for spectroscopic studies of matter
» Table-top sources vs large facilities
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Intensity (normalized)
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Expected scaling laws in the perturbative regime:

1,<1012 W/cm?
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Harmonic order

P=e[xVe+xPE+x% € +--]

Intensity scaling:

I, (t) oc I2(t)

Pulse duration scaling:

Possible to generate short pulses!

To observe a high-order process the intensity has to be increased!

_ e
(K me?)?

L= FE
at—8n

Damage threshold of bulk optical materials = 100 GW/cm?: only gases
can withstand higher intensities.

2 =4 x 10" W/em?
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Intensity (normalized)
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Harmonic generation in gases
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At intensities approaching =10'3W/cm?2the perturbative description fails.
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Multiphoton ionization

Atoms can be ionized by a multiphoton process of high order!

1.0

hv

0.0

Potential (a.u.)

Distance (a.u.)

Photoelectrons and positive ions are created for Aw ~ 1 eV K Ip ~ 10 eV

(3]
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Above-threshold ionization

electron detector

e- L
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* Keldysh parameter W
+ vy >1 perturbative MPI KELDYSH parameter y = | —
* Yy <1 non-perturbative ATI 2UP
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lonization saturation and electron “recollisions”

KELDYSH parameter y
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» deviation from perturbative scaling
« saturation due to ground state deplation

* Non-sequential double ionization (Ar)
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Evidence for “electron” re-scattering with to the parent
ions
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Potential (a.u.)

Strong-field physics:

+ At high intensities the electric field is of similar magnitude to the atomic Coulomb field
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Atomic Coulomb field Laser field + atomic Coulomb field

« Other ionization channels appears: the electron has a non-zero
probability of tunneling outside the barrier : “field ionization”
* How can we understand in which regime we are?
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Ponderomotive energy

Classical electron in a periodic E field:

dv
me— = e Egcos wt
dr
,
eEy . 1 5 €2E6 o,
v(t) = SINwt = —meV” = — SIN” wf
Mew 2 2mew*=
T 2 72
1 e’ E
2 dmew

Energy scales: ponderomotive energy and ionization potential of the atom

;: 0.5 o —; 0.5 7
KELDYSH parameter y = YA 8 e
p _051 / ~05
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Intensity (normalized)

HHG spectrum

I,>1013 W /cm?
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|
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Harmonic order

How can we understand the harmonic
generation process in terms of tunneling?
Why there is “plateau” in the efficiency?

2 spacing?

What determines the cut-off?

What is the time structure of the harmonics?

-
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High-harmonic generation: three-step model

Peak intensities 10'* W/cm?2: non-
perturbative nonlinear optics!

Laser field

Coulomb potential

Valence electrons
Elighl:~ valence 1
Field ionization Acceleration in the field

Recombination: emission of
a high energy photon

A

Half-light cycle -> 2.7 fs/ 2 @ 800 nm

-
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by = Wi /(eEp)

.
Cy meWj

STEP 1 : ionization

b V(r) ! Ey,

Iy =

A
V2Wi/me

v V2eEg

Tunneling barrier
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2.8fs i

|E®I/ E.q

Tunneling act as a fast (< half-cycle) shutter.
Tunneling possible only for high field amplitude near the maximum
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STEP 2 — acceleration in the field

A classical description give good physical insights: the coulomb
potential is neglected compared to the laser field

A more rigorous theory (Strong-field approximation) justify this
treatment : center of mass motion of the electron wavepackets
follow classical trajectories

d’x

e e
E = — m—SL(t) — — m_EL COSs (Ct)()t),
. ek, / : / /
x(t) = 5 {[cos (wgt) — cos (wot')] + wg sin (wot )(t — 1)},
Mo

* Ponderomotive energy =
cycle averaged energy of a
free electron in the field

-
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* The recollision time as a function of t' can be * No analitycal solutions: a graphical solution can
determined by the equation x(t)=0 be found in an oscillatory frame (X’=x-xysin(wgt) )

Equivalent form of x(t)=0

-
(3]
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cos (wpt) — cos (wol') =
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“PFL Emitted photon energy:

1
hox(1) =1, + Emvz(t) =1, + 2U,[sin (wopt) — sin (wot’)]z,

Recolliding electron trajectories, x(f)

Electron

emission

probabilit Many possible electron
—#pj' trajectories — a continuum is

produced each half cycle

Long and short trajectories, depending
on the total path in the field

Experimentally one can selected the
radiation coming form the short
trajectories:

ol

o
o

short long
trajectories

ST Return time = 0.5 to 0.95 Cycles
=~0.5 cycles = 1.3 fs@ 800 nm (FWHM
<1fs)

Return energy, W, [in units of U
(N}
o

. . . Ecut ~ Ip + 3-2up

05 06 07 08 09 10 11 12
Return time, {_[cycles]
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=PEL STEP 3: recombination

» This determines the efficiency of the process.

* Due to the diffusion of the wavepacket is very unlikely to
recombine with the parent atom.

* The probability depends on the atomic species: heavier
noble gases have higher probability

-
~
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* Why do we observe harmonics?
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EPEL High order harmonics, attosecond pulse train

a) —>I k& At of attosecond burst

-
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E-field

b)

Intensity

HHG spectra

Frequency

Time domain structure: periodic train burst of
radiation which last less than half-cycle

Broadband XUV pulses with T/2 periodicity
(frequency 2w )

Destructive interference between the
continua emitted every half cycle in the
inversion symmetric medium

Frequency domain : Frequency
comb of odd harmonics.

202
e=&;

Ec:it ~ Ip + 3-2up up — m

Michele Puppin



=PrL

B PHSY761 — Advanced Radiation Sources - 2023

Wavelenght scaling of HHG:

+ Ponderomotive energy increase with the driving wavelength: higher cutoff

UpleVv 7., 1800nm .-, 800nm
H L. 400nm

i 2.2 200nm

~— 50nm

13nm

012 101 1016 1018 1020
I/ Wcm?

The probability of recombination
decreases with the driver
wavelength: short wavelenght are
more efficient

Xg/nm
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Ionization probability
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ADK ionization rate (Ammosov Delone Krainov 1986)

* The rate of ionization, as a function of the field
strenght w(E) must be calculated with QM

» Several analytical approximations exists,
depending on y, (example ADK theory: y,<<1
Multi-photon processes negligible)

2F, 2n#—|m|—1 2r,

Wapk = |Cp

TABLE 4.2 The ADK Parameters

Fo (a.u.) n* * I m |Cpp |2 Gim
He  2.42946 0.74387  —0.25613 0 0 4.25575 1
Ne  1.99547 0.7943 —0.2057 1 0 424355 3
Ar 1.24665 0.92915  —0.07085 1 0 4.11564 3
Kr 1.04375 0.98583 —0.01417 1 0 4.02548 3
Xe 0.84187 1.05906 0.05906 1 0 3.88241 3

1 {w/ch]

Fanl=\ 3555100

2G[n11p T e 3F

N
o
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“PFL lonization fraction:

Ne/ Natom

200  -100 0 100 200 -10
TIME t (fs) TIME t (fs)

* Few-cycle pulses are necessary to

+ For high intensity pulses with many extend the cutoff!
X utoff!

cycles the leading edge ionizes the
medium fully

B PHSY761 — Advanced Radiation Sources - 2023

N
-

Michele Puppin



=PrL

B PHSY761 — Advanced Radiation Sources - 2023

Soft-X-ray spectral intensity ( a.u.)

Ecp:(on%+n:I2

‘unlocked

e
90 100 110 120
Photon energy (eV)

130

CEP effects with few cycle pulses

Fig. 8.4. Measured EUV spectra from neon at 16 000 Pa (160 mbar) pressure. Excitation is
with 5-fs pulses around fiwg = 1.5¢V and at an estimated intensity of I = 7 x 104 W{cm?‘.

N
N

Michele Puppin



=PrL

B PHSY761 — Advanced Radiation Sources - 2023

Intensity (arbitrary units)
1D = N WA th N

—
w

* Increase the field by shortening the pulse
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Coherent EUV in the
«water window»

—

Xuv spectral intensity (arbitrary units)
©

Extending the HHG cutoff
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