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Laser pulse trains Measured with an oscilloscope

5 I/Vmp

< T

ey
Train of equally-spaced pulses: 87 <100 fs
The «repetition rate» is the §
inverse of the temporal pulse kS
separation («duty cycle») /

2 -1 0 1 2 3 Time (ms)

Oscilloscope (ns)
/ Special methods are needed for
Pulse duration: we define it as the FWHM of the intensity shorter pulse

Measure of the energy carried in
time: measured with a slow power
meter

\ 4

Average power: energy averaged over a time T>> 1/v,,,

Measure of the peak power of

——  , thepulse (even very moderate
average powers can have huge
pulse power)

Pulse power: pulse energy / pulse duration

-u fl- CH-360 Atoms and radiation 2018
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Pulsed laser sources we have seen so far:

Typical specifications of laser oscillators  E (v,q,) :

Mode-locked fs Ti:Sapphire lasers (= 10 fs) -> =10 nd (100 MHz)

Q-switched Nd laser (= 10 ns)-> = 100 mJ (Hz - kHz)

These correspond to MW pulses -> Different strategies are
required for higher peak intensities

MW -> GW > TW >  PW
Pertgrbative _ Strong field effects Relgtivisti; _
Nonlinear optics nonlinear optics
FEM INTENS 1 TY A" Wy 2 o' .
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Why so hard to increase the power of a femtosecond oscillator?

» Lack of suitable pump lasers
* High intracavity power and intensity: thermal and
nonlinear effects.

Master Oscillator / Power Amplifier (MOPA)

Pulse repetition rate selection
] PC PBS I Gain-G
ARUTELITTRIODI s T N
A
HH; fULSE KHz T
Tootin p1ener!

,__g Synchronization electronics (ns) ——— Amplifier Pump (ns)
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Transverse mode and temporal reshaping during amplification
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What limits the maximum fluence which can be extracted by an amplifier?

*  Medium losses —, F’wm — 3_{_1_‘_ (< <<g)
« Optical damage ~ oL

) FA“{/{DI/ML I"Eotﬂf‘g<m

Effects arising due to a high gain G,

+ Amplified spontaneous emission (ASE)
» Parasitic lasing

Limitation due to high average power and high intensity

o Thermal effeCtS > Mode distortion
o Nonlinear effects Temporal diStortion

-
-
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* Amplified spontaneous emission (ASE)
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Small signal gain with ASE

Mitigation of ASE:
1.000E +07- o TNL
1,000,000 106 Go= ¢ oy
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Parasitic lasing

Unwanted laser oscillations
Deplete the gain and limit the maximum
More likely for high G

-
(3]
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Thermal effects
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Shape of the amplifying medium:

Michele Puppin

a) Heat ’Laser b) Heat , /{O(. :F:&)w
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Cryogenic cooling:

TABLE 1
SAPPHIRE PROPERTIES AT 300 anD 77 K*
Property At 300 K At 77K

Thermal Conductivity, x 0.33Wem 'K! IOWem™' K™
Dependence of Refractive Index

on Temperature, dn /dT 1.28 x 107°K ™! 0.19 x 10°K™!
Thermal Expansion Coefficient, o 50X 107K™! 0.34 x 10 ¢ K™
Volumetric Heat Capacity, cp 3.1Jem*K™! 0.25Jcm—>K™'

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 21, NO. 4, APRIL 1991

* Improved thermal parameters
» Closed loop cryostats

‘ el Y

Thor-300 Cryogenic Yb:YAG Laser Amplifier System

-
©

Michele Puppin



=PrL Amplifier chains: Given a target total amplification, better to separate the
amplification in several stages

NN N

~5% ~25% ~70%

/\ Lt Filter k/ Filter P! /'

—_— Stage 1 —|—b I Stage 2 + Stage 3 _—
« High G pre-amplifiers ﬁb"o\
« Low G power amplifiers :u>%'r%<lt

« Spatial filters vacuum W
spatial filter

* How to prevent back-amplification? Optical isolator []=—[]

B PHSY761 — Advanced Radiation Sources - 2023

-
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Optical isolators

Polarizer

Faraday effect
Non-reciprocating
optical element

- It input
RecifiocA N 6 beam

Half-waveplate

Optical isolator is realized for a=45° by inserting a polarizer at the input

N
o

Michele Puppin
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Regenerative amplifier

f
EEIIE amplifier
crystal

laser £
diode N ——

Pockels M4 TFP

cell
Af2
! Faraday ~__TFP 5 H
/r rotator T e output 7
l,‘ -

ON-A/4 inpu[-'
OFF : no effecl

Good efficiency, good mode quality.

kHz, mJ pulses at <100 fs ( > 10 GW)
The Q-switch of the pump and the cell have to
be well synchronized (<ns).

[T 5%/

The pulse train is incoupled in a cavity: only one
pulse is selected by the switching of the the
pockels cell

A large number of passes is then achieved, until
the cell is switched back

Approach the saturation intensity, efficiently
depleting the gain medium

1.00V/ 3 -474.0% 200.03/ Auto

N
-

Michele Puppin
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OFF
No polarization rotation

Light does 1 x roundtrip

ON
Voltage V=V, ,
Equivalent to a A/4 plate

I
EE[T,E amplifier
7 crystal

diode T g

= P | 1

Pockels .'-'.__.-f4 TF|:I
cell _“'

e w2

Faraday ~ J/_ TFP
rotator N

|
"

input ™~ ON OFF

_——» output

optics amplifier
= crystal

laser 8 )
diode [ > g

= T | 1

Pockels .'-'.__.-‘4 ] '|'|:|;|
cell - ..L" X

Y

Faraday TFP
rotator ¢ moee——

)
.

——» output

input ™

N
N

Michele Puppin



B PHSY761 — Advanced Radiation Sources - 2023

Out

Filter

Pump

Multi-pass amplifiers

« Complex optical alignment

« Often used as “booster” stage of a reg. amplifier

» Flexibility between successive passes (change the
mode size/apply filters )

Tisapphire g 5w

1 st Stage

Complex optical alignment

N
w

Michele Puppin
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In very high power system (>TW)
regen. and multipass amplifiers are
followed by amplification in low-gain,
high aperture amplification stages

Glass type Q

Silicate + Phosphate

First laser glass
(1961)

i MIF/Beamlet Conti
oniinuous
'NovarMovette (1982} meltin

——Janus (1983 to 1987) (1997) (NIF)

{1973)

Nd-doped glasses

Flash-lamp pumped, very low rep. rate

_
L1

N [22][22] [z2]\o/ PG VAP T

—» Rods

N-cm aperture amplifiers

Spatial filters

Faraday isolators

Mirrors

Ol]l Focus lens, window, debris shield

-2 X[

E Converter crystal array

Example: 1 amplification arm of the NOVA laser (LLNL)

10s kJ, ns pulses

N
£
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Lasers for fusion research
/plasma physics /high energy
physics

1 x oscillator
192 lasers Nd:glass
amplifiers (20 kJ) in parallel

National Ignition Facility (USA)

Laser Megajoule (France)

Pulse duration 20 ns, 4.2 MJ
(1 ym wavelength); (1.8 MJ @

0.34 pm)

The national ignition facility

Laser Bay 1 4 x 2 bundle

Laser Bay 2

Hard to further scale the pulse power!

 Cluster 1

Laser Bay 1

Cluster 2

[TTHT

LT

A decrease of the pulse duration is used to reach the Petawatt level (1015 W):

Required the introduction of CPA — Chirped pulse amplification
VULCAN laser UK 1 PW, = 0.5 ps

LFEX Japan : 2 PW, >1 ps

ELI-NP (EU, planned) Extreme light infrastructure

2 x 10 PW (with <50 fs; Ti:Sapphire amplifiers)

Section A of Laser Bay 1

N
(3]
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L

> :
— 1BP Gaussian Ity=¢e*

Time-bandwidth product

(1) (x=t/1) /T Avy x Ty
24/In2 04413
~ ‘ Hy[?erbolic secant | I(r) = sech?x 1.7627 0.3148
(soliton pulse)

Dye laser gain

Relative laser Rhodamin DCM LD 700
| output power Rhodamin | 590 | LDS 698 LDS 751
| Cumarin 560 Oxazin

540 50
- Cumarin LDS 821
B Cumarin °% % / HING
[0 NN

Stilben M
I X\ IR 140

NN

|/

| a0 A VAR
[ A z VAN AN
AN\ l/\ll

NN N NI

\
N

\9 Ox\‘OO

400

500 600 700 0

’

CrKZnF,  Ni#MgO CO*:KZnF,
|

~H
Cr**BeAl,O, CO*™MgF, .-
Ti:Al,O4

0.5

1
0.6 0.7 0.8 0.9 1.0 2.0 3.0
AJpm

Wavelength /am’

Freq. Bandwith vs time duration

Av
00 THz }
(S
10 THz “og
RN
5 O”o’\plb
1 THz x4 o
00 GHz \Oﬁd 1
\*"%&
10 GHz \
1 GHz 4{90
o, e
100 MHz g, 00’70'
§
10 MHz |
& & & 4 & & 2 Trwam
(@) = - S
Av e
100 THz ,/A—
/ ﬁ
10 THz 7L
s
K ///\-
1 THz //\% o
< Q,
100 GHz ) /A
10 GH Y /
z / )\g
100 MHz
10 MHz
£ £ =) £ g AN
= = (=] = 3
(b) ; — = % —

Below 1 ps, we speak of ultrashort pulses: the spectral bandwidth is necessarily high!
Ti:Sapphire solid state material with the largest known bandwidth (230 nm)

N
~
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1@ effects: the nonlinear index of refraction

53 3) a3
P (1) = X( )E(f) Note: this is one of the many terms of four-wave mixing,
where three photon at frequency w mix to generate the
n (a)’ [) — I’L()(a)) + I”lg(a))]. same frequency (W+w-w->w)

In space: Self-focusing

: | —

The radial variation of intensity translate into .

a radially varying optical path: this acts as a (( ¢

lens! I : z
=

Nonlinear
RS medium

In time: Self-phase modulation and spectral broadening

spectral broadening
w | ()

gt 5P iy
b) ®

N
(]
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B integral

» The peak intensity during amplification increases as the pulse energy grows
* How to quantify the impact of n, ?

L Remember, y® in time = self-phase
B _ .2_]-[ Vl;__ | (%) 12 modulation.
e B-integral is a measure of the overall nonlinear
0 \ phase accumulated. If B is too high, it is almost
impossible to recompress the pulse.
NoN| | NERK
INDEX OF REFACTION Self-focusing might lead to damage of the optics

1. To further improve the laser intensities, the best route is to shorted the pulse duration
2. Self-effects become a fundament limit when amplifying short ( picosecond and femtosecond) pulses

CHIRPED PULSE AMPLIFICATION

N
©
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Chirped pulse amplification

dos  fs —

Initial short pulse g : 3
n 'ﬂ"’—' fol= S A pair of gratings disperses
J P the spectrum and stretches

A / - the pulse by a factor
/ of a thousand

Short-pulse oscillator

The pulse is now long l
and low power, safe
for amplification

I High energy pulse after amplification ﬂ
50fs
—_— L_
—

Power amplifiers

e d L

Resulting high-energy,
ultrashort pulse

A second pair of gratings
reverses the dispersion of the
first pair, and recompresses the pulse.

w
o
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Pulse propagation some concepts:

o K
gy - 4 expliO(E6)) = 4 expi(we - K2)

Phone Jooud d¢ =0 — Lyt -k dt=0

bso/Y tidb
TS e

J —7? 2

Phase velocity of plane
wave in a material

(Ufl‘ = éﬁ =&>_.
dt %.

w
-
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w
N

Il

4 (QB ‘&uca)b ) l
> E(t,0)= kle) e

Michele Puppin

Wavepacket:
o Elg;2) = \dw A ©

ALY

For frequency narrow
pulses (e.g. ps) -> Sull Ao amovuwd e

_&/I

K (w-e90) = P(ern) # (D) ACO
u ) LINEAA ’H"VF?OX Phase vs Group velocity

| 0 FFens
E(t', 2) o~ Q;(\_( b’—/z/?){ 2Xp (|DOI= _e("tu.);) ,.b ST

LA/ SkRE SHAPE
"\7 /

TIHE OFFSET
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/(US Qeo Yy A,
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Broadband frequency pulse propagation:

BAODWIDVU 1S LALEE
XS THE  fulst {0 PREAES
DiFrenanT Po@UIONS  F THE ITndM
Qe
*)\ (K
, |

UAVE  DIFFels))  GLouP  VELOGTIES
U, U

\

ESTIMTE  o5F . APTEN Paop, [

A‘t " C AUJH‘ =

! L

‘o Aco (= GO Detpy

lol%

veLociyy
Dseeasion aé, (14)3 )!

Co=0s
General idea: - expand the phase of the pulse around the central frequency
- calculate the temporal shape by inverse Fourier transformation

w
w
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Femtosecond pulse propagation : Temporal intensity envelope

fleat g-Fe> TME dep. PHASE
| |
E(t) = 3 VI(t) expli [a)\ t— o]} +c.c.
\'ﬂs‘r OSC1LLRTING
CARRIER

(@) 1.0

—~ 0.51

3

S 00-

0

L

-1.0-

-0.51

Time (fs)

Winst (1) = wo — dop/dt

Frequency (1/fs)

Conpedx AMPLITUNE (W0 cAtiish )

E(t) = V1(t)exp[—ip(1)]

Pulse duration:
FWHM I(t)

— 0
0.7+ < |~ Intensity||
0.6- T Vinst 3
0.5- A~ Phase --10 %
‘ o
044 20 3
0.3 \ .
0.2 \ N
—— -30
-20 0 20 40
Time (fs)

@(t) is the TEMPORAL PHASE: information of
frequency vs time

w
H
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TIME vs FREQUENCY DOMAIN

E(t) =3 VI@) expli [t — p(]} + c.c.

E(w) = f €(t) exp(—iwr) dr

—00

R~ FoulieR TRANGFORM

Spectral description:

€ (@) = v/S(w) exp[—ip(w)]

ConPLEX
ANPLITUDE

- 0
(a) 1.0 —~ 071 L7\ [ mtensiy|
5 051 = 067 ™ Vinst 10 3
a Z 0.5 / == Phase :
- 0.0 c \
o o 0.4 / =
2 3 \ --20 ©
& 054 g 0.3- I" \ 2
('S
'1-0- T T T T T 02- L T T T ! N _-30
40 20 0 20 40 -20 0 20 40
Time (fs) Time (fs)

40 — Intensity|[ 30 40 — Intensity|[ 30
—_— T tgmup b i 'L' e tglm.lr.! )
g2/ \.- - - Phase [r20F & 207 - - Phase |20 §
E‘ 0-\ . / ’ [ E- E 0- - - '-» ‘T‘.
8 204N 10 ?l, 8 -204 e 10 g

-40- 40

T T = -I T T T ﬂ T = I- T T T 0
02 03 04 05 06 07 400 800 1200 1600 2000

Frequency (1/s)

¢(w) is the SPECTRAL PHASE:
information of time vs frequency

Wavelength (nm)

w
(3]
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Analytical example : Gaussian pulse with complex 36

parameter _g

E(E) = Qxp [— 't J QXP[" C%I::[ L1o. Gedss i
| OF tIE]. VITH
‘1 - P,{ — PZ fl TINE

Pley= wob + o™ =D $lo) = wo it =6 )

|(I:)=l€ll T, = 20u(2) T é(t)= QKP[‘éa*L (%)2]

CFVHH) ll1( y
[ Tourier |t
C(w) 3{ € (b)] < &xp j Fl _T/ 0 d/wrpul pue.u

= sz Z&Al ) 1 - ”ML‘J/_E 1
AVe * o2 T\%(“(%)) To s =17
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Re{U(1)}

(a) Transform-
Iimited pulse

(b) Up-chirped
pulse

(¢) Down-chirped
pulse

» A non-flat phase is the result of a non-transform limited pulse: by compensating the
phase a shorted pulse could be produced.

Chirped pulses
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» By controlling the phase one can stretch/compress the pulse.
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Ultrashort pulse propagation in a linear dispersive medium

A(z,t)
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Dispersive medium

* linear medium: no nonlinear effects (e.g. gain or
saturable absorption)

« Spectral intensity envelope is unchanged after
propagation

« SVEA: Slowly Varying Envelope Approximation
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TAYLON EXPAUSION
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L Ultrashort pulse propagation in a linear dispersive medium 39
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Ultrashort gaussian pulse propagation in a linear dispersive medium
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Dispersion parameter Definition
Phase velocity vp w/kp
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(first order dispersion)
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A(z,t)
OJ,; Q_A_>f

z=0 Dispersive medium z
* Most material have “normal” dispersion at VIS-
NIR wavelengths A
* To compensate linear propagation temporal o
broadening, we need optical devices with )
opposite (“anomalous”) dispersion. g E
* Multiple materials in an amplifier, multiple passes. T
t —>
Calculate the cumulative GDD (and TOD, and higher - 2w
requency

orders) -> Compensate with a suitable compressor
(e.g. prism compressor, grating compressor.. )
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DIFFRACTION GRATING

grating
normal

L U

d
— a
Periodic array of scatterers with spacing d = 1/A
Angular dispersion: wavelength-
dependent propagation angle.

Pulse front tilt/spatial chirp:
multiple grating configuration
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TREACY COMPRESSOR

stretched pulse ! . S

1 .. E - i rting 2
4 © o N : gold
/ e % 1285 I/mm |
compressed pulse 6 gy T [120045 \\

» 4 gratings are necessary for avoiding pulse front tilt and spatial chirp
« High efficiency is fundamental : transmission n*
« Blazed gratings, near Littrow condition -> diffraction efficiency in the first order can approach 90%

1. Optical path

> 2x contributions
Lg
cos Oy,

o [1+ cos (O, +6) ]
= —L + ¢p(x
¢ C Pe(X) 2. Spatial dependent phase
shift due to diffraction

X = Lg tan Bm 2

Diffraction grating P (X) =T — m=_—x
. A

(e.g., blazed grating)
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Sapphire

n (800 nm) = 1.76019

an 1
— = —0.0268—
X {800 nm pm
52

s = 0.064—
A 800 nm pm=
2n |
— =-0377T—=
927 {200 nm m-

aky,
dw

=587 x 109>
800 nm m

52 fs2
=580 x 107262 =58 "
800 nm m mm

3%k,

P b]
dw=

41 $3 fs3
=421 x 107" — =42.1—
800 nm m mm

@k,
dw?

d?d/dw? [ps?]

A =833 nm

20

40 60 80
Angle of incidence 6, [Deg]

Example: Reg. Ti:Sapphire, 5 mm Crystal, 10 passes -> 58 x 5 x10 = 2.9 x 103 fs?

Grating compressor, 1200 lines/mm, d= 5 cm, 20° incidence -> -0.2 ps?=-0.2 x 106 fs?

« Gratings allow for a very large amount of GVD compared to propagation in materials
* In a compact setup from 10 fs -> 500 ps (would require 50 m of fused silica)

Grating compressor -> Negative dispersion: pulse compression during amplification!

5
ES

Michele Puppin



GRATING STRETCHER
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Oeffner stretcher
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A high power, kHz Ti:Sapphire laser (0.3 TW)

44m), 165f1s Pay
027TW
Quantronix 527 Nd:YLF o ~ &
7/
22m] @ 532nm. 1 kHz 18 W /,}__;:?\{\ //& §
Quantronix 527 Nd:YLF Dﬁv/ S
5 =
22w} @ 532 nm, 1 kHz 21W ? 20W
S Ti:sapphire, 125 K
Ar ion laser, 5.5 W <
5

n o
’- 7 %-. 7/ / ] 2 nd Stage
U I
A Stretcher
= L -
oz - I\
- WD
/_,/{/n 14 fs g
g = |l :
Ti:sapphire laser et late
PP Polarizers Pockles cell P

50 ps

Note: to produce short pulses (<50 fs) the higher order dispersion parameters have to be
carefully compensated

Laboratory scale Ti:Sapphire amplifier : 1 kHz, 10-20 W, 30-50 fs (Cryogenically-cooled)

DIFFERENT TECHNOLOGIES ARE NEEDED TO INCREASE THESE PARAMETERS
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cPrL GAIN NARROWING IN TI:SAPPHIRE

Gain curve

7 / Input
2 Input /.

Output

47 nm FWHM 47 nm FWHM
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FIG. 5. Gain narrowing for the case of (a) an infinitely broad and flat input spectrum, (b) an optimally offset and shaped input spectrum, and (¢) a nonoptimum
mput spectrum.

GAIN NARROWING IN TI:SAPPHIRE LIMITS THE
ACHIEVABLE AMPLIFIED PULSE DURATION
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