
Control and operations of tokamaks

Exercise 5 - Kinetic control

Solutions

Lecturer: F. Felici

Instructors: R. Coosemans, S. Dubbioso, P. Molina, F. Pastore, JP. Svantner

EPFL - SPC

February 2023

1 Simulating the plasma 0D energy balance

clear

close all

Define constants and wrap in struct

p.n = 1E20; % density [#/m^3]

p.R_0 = 8;

p.a = 2;

p.kappa = 2;

p.B_0 = 7;

p.A = 2;

p.Z_eff = 1.5;

p.f_DT = 0;

p.I_p = 15; % plasma current [MA]

% Define time span, input signal and initial condition

t_span = [0 200]; % time span [s]

P_aux = [10E6*ones(1,800) 25E6*ones(1,800) 50E6*ones(1,801)];

% apply 20 MW input power

time = linspace(t_span(1),t_span(end),size(P_aux,2));

% time grid for input power

T_0 = 1E3; % initial temperature [eV]

% Simulate thermal energy balance and compute power density sources and pressure

[~,T] = ode45(@(t,T) thermal_energy_balance(t,T,time,P_aux,p),time,T_0);

S = sources(T,P_aux’,p);

1



Plot temperature evolution

fig = figure;

subplot(2,2,1)

plot(time,T)

grid on; xlabel(’Time [s]’); ylabel(’Temperature [eV]’);

subplot(2,2,3)

plot(time,S.pressure)

grid on; xlabel(’Time [s]’); ylabel(’Pressure’);

subplot(2,2,[2 4])

hold on

plot(time,S.S_aux,’b’)

plot(time,S.S_ohm,’k’)

plot(time,S.S_alpha,’m’)

plot(time,S.S_rad,’g’)

plot(time,S.S_cond,’r’)

legend(’S_{aux}’,’S_{ohm}’,’S_{alpha}’,’S_{rad}’,’S_{cond}’,’Location’,’Northwest’)

grid on; xlabel(’Time [s]’); ylabel(’Power density [W/m^3]’);

Functions used

This is the function thermal energy balance.m

type thermal_energy_balance

function dT_eVdt = thermal_energy_balance(t,T,time,P_in,p)

q_e = 1.60217657E-19; % electron charge [coulomb] or Boltzmann constant [J/eV]

P_aux = interp1(time,P_in,t); % Interpolate the input signal (time,u) at time t

S = sources(abs(T),P_aux,p);

dT_eVdt = 1/(3*p.n*q_e)*(S.S_alpha+S.S_ohm+S.S_aux-S.S_rad-S.S_cond);

end

2



This is the function sources.m

type sources

function S = sources(T,P_aux,p)

a = [-21.38, -25.20, -7.101e-2 1.938e-4 4.925e-6 -3.984e-8];

alp = 0.2935;

E_alpha = 4.5E6; % [eV]

q_e = 1.60217657E-19; % electron charge [coulomb] or Boltzmann constant [J/eV]

V = (2*pi*p.R_0)*(pi*p.kappa*p.a^2); % plasma volume [m^3]

epsilon = p.a/p.R_0;

sigmav = 1e-6*exp(a(1)./((T/1000).^alp) + a(2) + a(3)*(T/1000) + ...

a(4)*(T/1000).^2 + a(5)*(T/1000).^3 + a(6).*(T/1000).^4);

P_alpha = V * p.f_DT/(1+p.f_DT)^2*q_e*E_alpha*p.n^2*sigmav;

P_ohm = (5.6E4/(1-1.31*epsilon^0.5+0.46*epsilon))*...

((p.R_0*p.I_p.^2)./(p.a^2*p.kappa*(T/1000).^(3/2)));

tau_e = 0.145*p.I_p^(0.93)*...

p.R_0^(1.39)*...

p.a^(0.58)*...

p.kappa^(0.78)*...

(p.n/1E20)^(0.41)*...

p.B_0^(0.15)*...

p.A^(0.19)*...

((P_aux+P_alpha+P_ohm)/1E6).^(-0.69);

pressure = 2*p.n*q_e*T;

%%

S.S_aux = P_aux/V;

S.S_ohm = P_ohm/V;

S.S_alpha = P_alpha/V;

S.S_rad = 5.35E3*p.Z_eff*(p.n/1E20)^2*sqrt(T/1000);

S.S_cond = 3/2*pressure./tau_e;

S.tau_e = tau_e;

S.pressure = pressure;

S.P_neutron = 4*P_alpha;

end

3



2 Control of plasma β

clear

close all

Define constants and wrap in struct

p.n = 1E20; % density [#/m^3]

p.R_0 = 8;

p.a = 2;

p.kappa = 2;

p.B_0 = 7;

p.A = 2;

p.Z_eff = 1.5;

p.f_DT = 0;

p.I_p = 15; % plasma current [MA]

Draw plot of ∂T/∂t vs T

T_plot = linspace(1e3,10e3,1001);

dTdt = thermal_energy_balance(0,T_plot,[0 1],[25E6 25E6],p);

figure;

plot(T_plot,dTdt); grid on

title(’P_{aux} = 25 MW’)

xlabel(’Temperature [eV]’); ylabel(’time derivative of temperature [eV/s]’)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Temperature [eV]

-800

-600

-400

-200

0

200

400

600

ti
m

e
 d

e
ri
v
a
ti
v
e
 o

f 
te

m
p
e
ra

tu
re

 [
e
V

/s
]

P
aux

 = 25 MW

% Define the operating point

P_0 = 25E6; % [W]

T_0 = 2763; % [eV] read out from steady-state solution at P_aux = 25MW

T = T_0;

P_aux = P_0;

4



Apply linearization to write the equation in the following form:

∂δT

∂t
=

1

3en
(
∂S

∂T
δT +

∂S

∂Paux
δP ) = KT δT +KP δPaux. (1)

Note that we write δT in eV and δPaux in W. This linearisation is performed
in the main script by calling

% Define the linearized system

[G,KT,KP]=linearise_model(T_0,P_0,p);

This calls the function linearise model.m. In this function, the linearisation
for the Ohmic power and the auxiliary power are to be completed by the stu-
dents. Next to calculating the linearisation itself, the linearised equation is also
converted into the linearised model of the system G(s) as

G(s) =
δT

δPaux
(s) =

KP

s−KT
. (2)

The construction of this transfer function is also to be added to the script by
the students. The completed scripts is shown later under ”Functions used”.

Next, we check the temperature linearisation by calculating the slope

∂

∂T
(∂T/∂t)T0

≈
(∂T/∂t)T1

− (∂T/∂t)T−1

T1 − T−1
= −0.171s−1. (3)

It is understood that T−1 and T1 are temperatures just smaller and just larger
than the operating point temperature T0 = 2763eV. This value matches nicely
the value of KT for this operating point. (Something similar could presumably
be done for KP as well, but I haven’t done this yet...)

Design linear controller
Even though the controller will serve to control the full nonlinear system, we
design it based on the linearised system. Zero steady state error is basically
ensured automatically by the integrator. For measurement (output) noise rejec-
tion, we look at the magnitude of the transfer function S = 1

1+CG . The plateau
at high frequency is there no matter the exact tuning of the parameters. The
transition to this 0dB region is determined by the Ti parameter. To evalu-
ate the disturbance (input noise) rejection, we consider the transfer function
DR = G

1+CG . In order to get 10dB disturbance rejection at 1Hz, Ti and/or
k need to be sufficiently high. At these values required for noise rejection, the
closed loop bandwith (magnitude of closed loop transfer function CL) is ensured
automatically.
Disclaimer: the controller proposed here fulfills the requirements, but it is not
per se completely optimal. Note that we reached the control specification with
just a PI controller, i.e. we did not need the derivative part to reach these.

5



% Design linear controller

close all

s = tf(’s’);

k=3500;

Ti=10;

C=k*(1+s*Ti)/s; % PI feedback block

% compute some transfer functions

OL = G*C;

S = 1/(1+OL);

DR = G/(1+OL); % disturbance rejection

CL=feedback(OL,tf(1)); % CL feedback system

figure

subplot(411)

bode(OL,{1E-2,1E2}); grid on

title(’Open loop Bode diagram’)

subplot(412)

bode(S,{1E-2,1E2}); grid on

title(’Sensitivity Bode diagram’)

subplot(413)

bode(DR,{1E-2,1E2}); grid on

title(’Disturbance rejection Bode diagram’)

subplot(414)

bode(CL,{1E-2,1E2}); grid on

title(’Closed loop Bode diagram’)

display([’dcgain equals ’ num2str(dcgain(CL))])

6



Open loop Bode diagram

Frequency (rad/s)

-40
-20

0
20

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-90
-85
-80

P
h
a
s
e
 (

d
e
g
)

Sensitivity Bode diagram

Frequency (rad/s)

-30
-20
-10

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

0
30
60
90

P
h
a
s
e
 (

d
e
g
)

Disturbance rejection Bode diagram

Frequency (rad/s)

-140
-120
-100

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-90
-45

0
45
90

P
h
a
s
e
 (

d
e
g
)

Closed loop Bode diagram

Frequency (rad/s)

-40
-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-90
-60
-30

0

P
h
a
s
e
 (

d
e
g
)

Simulate linear controller on nonlinear plant model

% Convert controller to state space form for simulation

[num,den] = tfdata(C);

[A_c,B_c,C_c,D_c] = tf2ss(cell2mat(num),cell2mat(den));

C_ss.A = A_c; C_ss.B = B_c; C_ss.C = C_c; C_ss.D = D_c;

C_ss.T_0 = T_0; C_ss.P_0 = P_0;

t_span = [0 30]; % time span [s]

time = linspace(t_span(1),t_span(end),500); % time grid for input power

T_init = 0.5*T_0;

[~,x] = ode45(@(t,x) CL_thermal_energy_balance(t,x,time,C_ss,p),time,[T_init 0 0]);

T = x(:,1);

7



z = x(:,2);

e = C_ss.T_0 - T; % control error: setpoint is T_0

Plot temperature and controller state

fig = figure;

subplot(211)

hold on

plot(time,T/1E3);

plot([time(1) time(end)],[T_0 T_0]/1E3,’b--’); grid on

grid on

xlabel(’Time [s]’); ylabel(’Temperature [keV]’)

subplot(212)

plot(time,e); grid on

xlabel(’Time [s]’); ylabel(’Control error [eV]’)

set(fig,’PaperPositionMode’,’auto’);

0 5 10 15 20 25 30

Time [s]

1.5

2

2.5

T
e
m

p
e
ra

tu
re

 [
k
e
V

]

0 5 10 15 20 25 30

Time [s]

0

500

1000

C
o
n
tr

o
l 
e
rr

o
r 

[e
V

]

0 5 10 15 20 25 30

Time [s]

40

60

T
o
ta

l 
a
u
x
 p

o
w

e
r 

[M
W

]

8



Functions used

This is the function linearise model.m

type linearise model

function [G,KT,KP,H,S]=linearise_model(T0,P0,p)

%% linearise sources

S=sources(T0,P0,p);

Salpha=S.S_alpha(end);

Sohm=S.S_ohm(end);

Saux=S.S_aux(end);

Srad=S.S_rad(end);

Scond=S.S_cond(end);

SH=Salpha+Sohm+Saux; % total heating power

% redefine some constants

q_e = 1.60217657E-19;

a = [-21.38, -25.20, -7.101e-2 1.938e-4 4.925e-6 -3.984e-8];

alp = 0.2935;

Sexp = -alp*a(1)./((T0/1000).^alp) + a(3)*(T0/1000) + ...

2*a(4)*(T0/1000).^2 + 3*a(5)*(T0/1000).^3 + 4*a(6).*(T0/1000).^4;

V = (2*pi*p.R_0)*(pi*p.kappa*p.a^2);

% construct KT

KTohm=-3/2*Sohm/(3*p.n*q_e*T0);

KTrad=-Srad/2/(3*p.n*q_e*T0);

KTcond=(-1+3/2*0.69*Sohm/SH-0.69*Sexp*Salpha/SH)*Scond/(3*p.n*q_e*T0);

KTalpha=Sexp*Salpha/(3*p.n*q_e*T0);

KT=KTohm+KTrad+KTcond+KTalpha;

% contruct KP

KPaux=1/(3*p.n*q_e*V);

KPcond=-0.69*Scond/SH/(3*p.n*q_e*V);

KP=KPaux+KPcond;

%% construct transfer functions

s = tf(’s’);

G=KP/(s-KT); % delta(Paux) to delta(T) transfer function

H=4*V*Sexp*Salpha/T0; % delta(T) to delta(neutron power) transfer function

end

This is the function CL thermal energy balance.m

9



type CL_thermal_energy_balance

function dxdt = CL_thermal_energy_balance(t,x,time,C_ss,p)

q_e = 1.60217657E-19; % electron charge [coulomb] or Boltzmann constant [J/eV]

V = 2*pi*p.kappa*p.R_0*p.a^2; % plasma volume [m^3]

T = x(1); % plant state

z = x(2:end); % controller state

%% Linear controller

e = C_ss.T_0 - T; % control error: setpoint is T_0

dzdt = C_ss.A*z + C_ss.B*e;

dP_aux = C_ss.C*z + C_ss.D*e;

S_aux = (dP_aux+C_ss.P_0)/V;

%% Nonlinear plant

S = sources(abs(T),dP_aux+C_ss.P_0,p);

dT_eVdt = 1/(3*p.n*q_e)*(S.S_alpha+S.S_ohm+S_aux-S.S_rad-S.S_cond);

%% Total system time derivative

dxdt = [dT_eVdt; dzdt];

end

10



3 Burn control

clear

close all

Define constants and wrap in struct

p.n = 1E20; % density [#/m^3]

p.R_0 = 8;

p.a = 2;

p.kappa = 2;

p.B_0 = 7;

p.A = 2;

p.Z_eff = 1.5;

p.f_DT = 1;

p.I_p = 15; % plasma current [MA]

Apply input power ramp for this case with a nonzero DT-fraction

% Define time span, input signal and initial condition

t_span = [0 200]; % time span [s]

P_aux = [10E6*ones(1,800) 25E6*ones(1,800) 50E6*ones(1,801)]; % apply 20 MW input power

time = linspace(t_span(1),t_span(end),size(P_aux,2)); % time grid for input power

T_0 = 1E3; % initial temperature [eV]

% Simulate thermal energy balance and compute power density sources and pressure

[~,T] = ode45(@(t,T) thermal_energy_balance(t,T,time,P_aux,p),time,T_0);

S = sources(T,P_aux’,p);

% Plot temperature evolution

fig = figure;

subplot(2,2,1)

plot(time,T)

grid on; xlabel(’Time [s]’); ylabel(’Temperature [eV]’);

subplot(2,2,3)

plot(time,S.pressure)

grid on; xlabel(’Time [s]’); ylabel(’Pressure’);

subplot(2,2,[2 4])

hold on

plot(time,S.S_aux,’b’)

plot(time,S.S_ohm,’k’)

plot(time,S.S_alpha,’m’)

plot(time,S.S_rad,’g’)

plot(time,S.S_cond,’r’)

legend(’S_{aux}’,’S_{ohm}’,’S_{alpha}’,’S_{rad}’,’S_{cond}’,’Location’,’Northwest’)

grid on; xlabel(’Time [s]’); ylabel(’Power density [W/m^3]’);

set(fig,’PaperPositionMode’,’auto’);

print -depsc exercise_5_1_simulation

11



0 100 200 300

Time [s]

0

5000

10000

15000

T
e
m

p
e
ra

tu
re

 [
e
V

]

0 100 200 300

Time [s]

0

2

4

6

P
re

s
s
u
re

105

0 100 200 300

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
o
w

e
r 

d
e
n
s
it
y
 [
W

/m
3
]

105

S
aux

S
ohm

S
alpha

S
rad

S
cond

Draw plot of ∂T/∂t vs T
It is observed that the middle equilibrium point is unstable. At this point, a
slight increase of the temperature will lead to a positive dT/dt, causing the
temperature to increase further etc.

T_plot = linspace(1e3,20e3,1001);

dTdt = thermal_energy_balance(0,T_plot,[0 1],[25E6 25E6],p);

fig = figure;

plot(T_plot,dTdt); grid on

title(’P_{aux} = 25 MW’)

xlabel(’Temperature [eV]’); ylabel(’time derivative of temperature [eV/s]’)

set(fig,’PaperPositionMode’,’auto’);

print -depsc exercise_6_3_phase_plot

12



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Temperature [eV] 10
4

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600
ti
m

e
 d

e
ri
v
a
ti
v
e
 o

f 
te

m
p
e
ra

tu
re

 [
e
V

/s
]

P
aux

 = 25 MW

Linearize around each stationary point using the function linearise model.m the
we elaborated before. We can again check the match between these results and
the result we would get from finite differences on the previous plot.
Since we now want to control the reactor using a reference signal for the neutron
power and in response to a measurement of the neutron power, we derive the
transfer function from the auxiliary power to the neutron power:

δPn

δPaux
(s) =

δPn

δT
(s)

δT

δPaux
(s) = H(s)G(s). (4)

Here we defined the additional transfer function H(s). For our linearised sys-
tem, this turns out to be just a constant which is also already filled out in the
completed version of the file linearise model.m. Furthermore, we calculate the
set point P neutron of the neutron power corresponding to each of the operating
points.

clear T_0

P_0 = 25E6; % [W]

% These are the equilibrium temperatures, from low to high

T_0{1} = 3038; % [eV] read out from phase plot (P_aux = 25MW)

T_0{2} = 6800; % [eV] read out from phase plot (P_aux = 25MW)

T_0{3} = 1.335E4; % [eV] read out from phase plot (P_aux = 25MW)

% Linearize the output relation at each stationary point

for i = 1:length(T_0)

[G{i},A{i},B{i},H{i},S]=linearise_model(T_0{i},P_0,p);

P_neutron{i} = 4*S.S_alpha*V;

end

% check with phase plot results (P_aux = 25MW)

% A{1} = -0.09; % stable

13



% A{2} = 0.067; % unstable

% A{3} = -0.08; % stable

The linearised system we are thus designing a controller for is H(s)G(s). As can
be seen from the pole-zero map, the second operating point is indeed open loop
unstable (pole in the RHP).

figure

subplot(121)

bode(H{1}*G{1},H{2}*G{2},H{3}*G{3},{1E-2,1E2}); grid on

legend(’1’,’2’,’3’)

subplot(122)

pzmap(H{1}*G{1},H{2}*G{2},H{3}*G{3})

legend(’1’,’2’,’3’)

Bode Diagram

Frequency (rad/s)

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
0

10
2

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

1

2

3

Pole-Zero Map

Real Axis (seconds
-1

)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

-0.2 -0.1 0 0.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

Design linear controllers in the vicinity of each stationary point
All the comments made about the controller design for the beta-control still
hold identically for the burning plasma case considered here. In addition, we
can remark that the unstable second operating point is stabilised by closing the
control loop, at the condition that the gain is sufficiently high. This can be seen
in the Nyquist plot below (1 counter-clockwise encirclement of (-1,0) required
to stabilise the unstable pole of the open loop system).
Disclaimer: the controllers proposed here fulfill the requirements, but are not
per se completely optimal again. We again observe that a PI controller suffices
to attain the requirements.

close all

clear S

s = tf(’s’);

C{1}=0.12*(1+s*10)/s;

C{2}=0.03*(1+s*10)/s; % note that stability has to be ensured here

C{3}=0.02*(1+s*10)/s;

14



for i = 1:3

OL{i} = H{i}*G{i}*C{i};

S{i} = 1/(1+OL{i});

DR{i} = H{i}*G{i}/S{i}; % disturbance rejection

CL{i}=feedback(OL{i},tf(1));

end

figure

subplot(411)

bode(OL{1},OL{2},OL{3},{1E-2,1E2}); grid on

title(’Open loop Bode diagram’)

subplot(412)

bode(S{1},S{2},S{3},{1E-2,1E2}); grid on

title(’Sensitivity Bode diagram’)

subplot(413)

bode(DR{1},DR{2},DR{3},{1E-2,1E2}); grid on

title(’Disturbance rejection Bode diagram’)

subplot(414)

bode(CL{1},CL{2},CL{3},{1E-2,1E2}); grid on

title(’Closed loop Bode diagram’)

legend(’1’,’2’,’3’)

figure

nyquist(OL{1},OL{2},OL{3});

legend(’1’,’2’,’3’)

display([’dcgain operating point 1 equals ’ num2str(dcgain(CL{1}))])

display([’dcgain operating point 2 equals ’ num2str(dcgain(CL{2}))])

display([’dcgain operating point 3 equals ’ num2str(dcgain(CL{3}))])

15



Open loop Bode diagram

Frequency (rad/s)

-60-40-200
2040

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-180
-90

P
h
a
s
e
 (

d
e
g
)

Sensitivity Bode diagram

Frequency (rad/s)

-30
-20
-10

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

0
90

180
270

P
h
a
s
e
 (

d
e
g
)

Disturbance rejection Bode diagram

Frequency (rad/s)

-50
0

50

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-360
-180

P
h
a
s
e
 (

d
e
g
)

Closed loop Bode diagram

Frequency (rad/s)

-60
-40
-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

1

2

3

16



Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

-8 -7 -6 -5 -4 -3 -2 -1 0 1

-15

-10

-5

0

5

10

15

1

2

3

Simulate closed-loop system with three controllers close to each stationary
point. Note that we now use a different function to simulate the closed
loop system response since the control signal and the response are now the
neutron power instead of the temperature (CL neutral power.m instead of
CL thermal energy balance before).

clear T e z

for i = 1:3

[num,den] = tfdata(C{i});

[A_c,B_c,C_c,D_c] = tf2ss(cell2mat(num),cell2mat(den));

C_ss.A = A_c; C_ss.B = B_c; C_ss.C = C_c; C_ss.D = D_c;

C_ss.P_0 = P_0; C_ss.P_neutron = P_neutron{i};

%% Simulate linear controller on nonlinear plant model

t_span = [0 20]; % time span [s]

time = linspace(t_span(1),t_span(end),500); % time grid for input power

T_init = 0.5*T_0{i};

[~,x] = ode45(@(t,x) CL_neutral_power(t,x,time,C_ss,p), ...

time,[T_init zeros(1,size(A_c,1))]);

T{i} = x(:,1);

z{i} = x(:,2:end);

Salpha = sources(abs(T{i}),0,p); % reconstruct neutron power

e{i} = C_ss.P_neutron - 4*Salpha.S_alpha*V; % control error: setpoint is P_neutral;

dP_aux{i} = (C_ss.C*x(:,2:end)’)’ + C_ss.D*(e{i});

P_aux{i} = dP_aux{i}+C_ss.P_0;

end

Plot closed-loop performance

fig=figure;

subplot(311)

17



hold on

plot(time,T{1}); grid on

plot(time,T{2});

plot(time,T{3});

xlabel(’Time [s]’); ylabel(’Temperature [eV]’)

title(strcat(’Closed-loop trajectories for equilibrium point index’,num2str(i)));

subplot(312)

hold on

plot(time,e{1}); grid on

plot(time,e{2});

plot(time,e{3});

xlabel(’Time [s]’); ylabel(’Control error [W]’)

subplot(313)

hold on

plot(time,P_aux{1}/1E6);

plot(time,P_aux{2}/1E6);

plot(time,P_aux{3}/1E6);

legend(’1’,’2’,’3’)

grid on; xlabel(’Time [s]’); ylabel(’Total aux power [MW]’)

set(fig,’PaperPositionMode’,’auto’);

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

10000

T
e
m

p
e
ra

tu
re

 [
e
V

] Closed-loop trajectories for equilibrium point index3

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

10

20

C
o
n
tr

o
l 
e
rr

o
r 

[W
] 10

8

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

200

T
o
ta

l 
a
u
x
 p

o
w

e
r 

[M
W

]

1

2

3

Functions used

This is the function CL neutral power.m

type CL_neutral_power

function dxdt = CL_neutral_power(t,x,time,C_ss,p)

q_e = 1.60217657E-19; % electron charge [coulomb]

V = 2*pi^2*p.kappa*p.R_0*p.a^2; % plasma volume [m^3]

18



T = x(1); % plant state

z = x(2:end); % controller state

% Compute neutral power assumed to be plant output in the current state

Salpha = sources(abs(T),0,p);

P_neutron=4*Salpha.S_alpha*V;

%% Linear controller

e = C_ss.P_neutron - P_neutron; % control error: setpoint is P_neutron_0

dzdt = C_ss.A*z + C_ss.B*e;

dP_aux = C_ss.C*z + C_ss.D*e;

S_aux = (dP_aux+C_ss.P_0)/V;

%% Nonlinear plant

S = sources(abs(T),dP_aux+C_ss.P_0,p);

dT_eVdt = 1/(3*p.n*q_e)*(S.S_alpha+S.S_ohm+S_aux-S.S_rad-S.S_cond);

%% Total system time derivative

dxdt = [dT_eVdt; dzdt];

end

19


