Control and operations of tokamaks
Exercise 5 - Kinetic control
Solutions

Lecturer: F. Felici
Instructors: R. Coosemans, S. Dubbioso, P. Molina, F. Pastore, JP. Svantner
EPFL - SPC

February 2023

1 Simulating the plasma 0D energy balance

clear
close all

Define constants and wrap in struct

p-I_p = 15; Y plasma current [MA]

% Define time span, input signal and initial condition
t_span = [0 200]; % time span [s]

P_aux = [10E6*ones(1,800) 25E6*ones(1,800) 50E6*ones(1,801)];
% apply 20 MW input power

time = linspace(t_span(l),t_span(end),size(P_aux,2));

% time grid for input power

T_0 = 1E3; % initial temperature [eV]

% Simulate thermal energy balance and compute power density sources and pressure
[*,T] = ode45(@(t,T) thermal_energy_balance(t,T,time,P_aux,p),time,T_0);
S = sources(T,P_aux’,p);

Plot temperature evolution

fig = figure;

subplot(2,2,1)

plot(time,T)

grid on; xlabel(’Time [s]’); ylabel(’Temperature [eV]’);
subplot(2,2,3)

plot(time,S.pressure)

grid on; xlabel(’Time [s]’); ylabel(’Pressure’);

subplot (2,2, [2 41)

hold on

plot(time,S.S_aux,’b’)

plot(time,S.S_ohm, ’k’)

plot(time,S.S_alpha,’m’)

plot(time,S.S_rad,’g’)

plot(time,S.S_cond,’r’)

legend (’S_{aux}’,’S_{ohm}’,’S_{alphal}’,’S_{rad}’,’S_{cond}’, ’Location’, ’Northwest’)
grid on; xlabel(’Time [s]’); ylabel(’Power density [W/m~3]’);

4

5000 410
> — s
2, 4000 /f aux
@ 35} S
\5 ohm
F 2000 i — Sapha
@ 3 L s
o
E 2000 _/ — &
e Eosl cond -

1000 2

0 50 100 150 200 %
Time [s] g 2t ‘|'
4
15 =10 E |
R

210 f IR N

7 fam W

w0

&

e 5 05k

0 ‘ - ‘ 0 | | | |
0 50 100 150 200 0 50 100 150 200
Time [s] Time [s]

Functions used

This is the function thermal_energy_balance.m

type thermal_energy_balance

function dT_eVdt

g_e = 1.60217657E-19; % electron charge [coulomb] or Boltzmann constant [J/eV]

P_aux = interpl(time,P_in,t); % Interpolate the input signal (time,u) at time t
S = sources(abs(T),P_aux,p);

dT_eVdt = 1/(3*p.n*q_e)*(S.S_alpha+S.S_ohm+S.S_aux-S.S_rad-S.S_cond);

end

thermal_energy_balance(t,T,time,P_in,p)

This is the function sources.m
type sources

function S = sources(T,P_aux,p)

a = [-21.38, -25.20, -7.101e-2 1.938e-4 4.925e-6 -3.984e-8];

alp = 0.2935;

E_alpha = 4.5E6; % [eV]

g_e = 1.60217657E-19; % electron charge [coulomb] or Boltzmann constant [J/eV]
V = (2xpi*p.R_0)*(pi*p.kappa*p.a”2); % plasma volume [m~3]

epsilon = p.a/p.R_0;

sigmav = le-6%exp(a(l)./((T/1000)."alp) + a(2) + a(3)*(T/1000) + ...
a(4)*(T/1000) .72 + a(5)*(T/1000) .73 + a(6).*(T/1000).74);

P_alpha = V * p.f_DT/(1+p.f_DT) "2%q_exE_alpha*p.n"2*sigmav;
P_ohm = (5.6E4/(1-1.31*epsilon”0.5+0.46%epsilon))*. ..
((p.R_O*p.I_p."2)./(p.a"2%p.kappa*(T/1000).~(3/2)));

tau_e = 0.145%p.I_p~(0.93)%...
p.R_0"(1.39)*. ..
p.a~(0.568)*. ..
p.kappa”(0.78)*. ..
(p.n/1E20)°(0.41)*. ..
p.B_0"(0.15)*. ..
p.-A"(0.19)*. ..
((P_aux+P_alpha+P_ohm)/1E6) .~ (-0.69);
pressure = 2%p.n*q_e*T;
hh
S.S_aux = P_aux/V;
S.S_ohm = P_ohm/V;
S.S_alpha = P_alpha/V;
S.S_rad = 5.35E3x*p.Z_eff*(p.n/1E20) "2*sqrt (T/1000) ;
S.S_cond = 3/2%pressure./tau_e;
S.tau_e = tau_e;
S.pressure = pressure;
S.P_neutron = 4*P_alpha;
end

2 Control of plasma j

clear
close all

Define constants and wrap in struct

p.n = 1E20; % density [#/m"3]
p-R_0 = 8;

p.a=2;

p.kappa = 2;

p.-B_.O0 = 7;

p-A = 2;

p.Z_eff = 1.5;

p.£_DT = 0;

p-I_p = 15; % plasma current [MA]

Draw plot of 9T'/0t vs T

T_plot = linspace(le3,10e3,1001);

dTdt = thermal_energy_balance(0,T_plot, [0 1], [25E6 25E6],p);

figure;

plot(T_plot,dTdt); grid on

title(’P_{aux} = 25 MW’)

xlabel (’Temperature [eV]’); ylabel(’time derivative of temperature [eV/s]’)

aux
600 T

P_ =25MW

200 [7

-200 8

-400 f 1

time derivative of temperature [eV/s]

-600 8

-800 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Temperature [eV]

% Define the operating point

P_0 = 2BE6; % [W]

0 = 2763; % [eV] read out from steady-state solution at P_aux = 25MW
= _O;

— |l

T_
T
P_aux P_0O;

Apply linearization to write the equation in the following form:

96T 1,08 oS

— = — (=0T + =——0P) = K70T + KpdP,,z. 1

Ot~ Ben 0T gy, 0T T K0T Kpd P M)
Note that we write 6T in eV and §P,,; in W. This linearisation is performed
in the main script by calling

% Define the linearized system
[G,KT,KP]=linearise_model(T_0,P_0,p);

This calls the function linearise_model.m. In this function, the linearisation
for the Ohmic power and the auxiliary power are to be completed by the stu-
dents. Next to calculating the linearisation itself, the linearised equation is also
converted into the linearised model of the system G(s) as

T _ K
5Pauz i _S_KT'

G(s) = (2)

The construction of this transfer function is also to be added to the script by
the students. The completed scripts is shown later under ” Functions used”.

Next, we check the temperature linearisation by calculating the slope

Kl @OT /ot ~ (5T/5t);i :;(ri:’:/at)Tl

_ —1
o7 = —0.171s. (3)

It is understood that T_; and T} are temperatures just smaller and just larger
than the operating point temperature Ty = 2763eV. This value matches nicely
the value of K for this operating point. (Something similar could presumably
be done for Kp as well, but I haven’t done this yet...)

Design linear controller

Even though the controller will serve to control the full nonlinear system, we
design it based on the linearised system. Zero steady state error is basically
ensured automatically by the integrator. For measurement (output) noise rejec-
tion, we look at the magnitude of the transfer function S = 1-&-% The plateau
at high frequency is there no matter the exact tuning of the parameters. The
transition to this 0dB region is determined by the Ti parameter. To evalu-
ate the disturbance (input noise) rejection, we consider the transfer function
DR = H% In order to get 10dB disturbance rejection at 1Hz, Ti and/or
k need to be sufficiently high. At these values required for noise rejection, the
closed loop bandwith (magnitude of closed loop transfer function CL) is ensured
automatically.

Disclaimer: the controller proposed here fulfills the requirements, but it is not
per se completely optimal. Note that we reached the control specification with

just a PI controller, i.e. we did not need the derivative part to reach these.

% Design linear controller

close all

s = tf(Cs’);

k=3500;

Ti=10;

C=k*(1+s*Ti)/s; % PI feedback block

% compute some transfer functions

0L = GxC;

S = 1/(1+0L);

DR = G/(1+0L); % disturbance rejection
CL=feedback(0OL,tf(1)); % CL feedback system
figure

subplot (411)

bode (0L, {1E-2,1E2}); grid on

title(’Open loop Bode diagram’)

subplot (412)

bode(S,{1E-2,1E2}); grid on

title(’Sensitivity Bode diagram’)

subplot (413)

bode (DR,{1E-2,1E2}); grid on
title(’Disturbance rejection Bode diagram’)
subplot (414)

bode (CL,{1E-2,1E2}); grid on

title(’Closed loop Bode diagram’)
display([’dcgain equals ’ num2str(dcgain(CL))]1)

Open loop Bode diagram

A
-80F T]
_85 = 4
90 | ‘ |

1072 107 10° 10! 102
Frequency (rad/s)

PhaseNtpgitude (dB)

Sensitivity Bode diagram

L1

107" 10° 10° 102
Frequency (rad/s)

Phase YRg)itude (dB)
OO

S
o

% Disturbance rejection Bode diagram
[0} -100 / T T |
5-120F 1
;@1 40k
-géi ‘ ‘ |]
& 10?2 10" 10° 10’ 102
Frequency (rad/s)
@ Closed loop Bode diagram
g 20 t i !
S
§-40 L L
s 0
il | | |]
T 1072 107 10° 10" 102

Frequency (rad/s)

Simulate linear controller on nonlinear plant model

% Convert controller to state space form for simulation
[num,den] = tfdata(C);

[A_c,B_c,C_c,D_c] = tf2ss(cell2mat (num),cell2mat(den));
C_ss.A = A_c; C_ss.B=B_c; C_ss.C =C_c; C_ss.D = D_c;
C_ss.T_O0 = T_0; C_ss.P_0 = P_O;

t_span = [0 30]; % time span [s]

time = linspace(t_span(1l),t_span(end),500); % time grid for input power

T_init = 0.5%T_0;

[7,x] = ode45(@(t,x) CL_thermal_energy_balance(t,x,time,C_ss,p),time, [T_init 0 0]);
T =x(:,1);

x(:,2);
C_ss.T_0 - T; % control error: setpoint is T_O

e

Plot temperature and controller state

fig = figure;

subplot (211)

hold on

plot(time,T/1E3);

plot([time(1) time(end)],[T_O T_0]/1E3,’b--’); grid on
grid on

xlabel(°Time [s]’); ylabel(’Temperature [keV]’)
subplot (212)

plot(time,e); grid on

xlabel(’Time [s]’); ylabel(’Control error [eV]’)
set(fig, ’PaperPositionMode’,’auto’);

S
> e
X,
025
2
8 2
[
Q
QE) 15 | | | | | |
=0 5 10 15 20 25 30
Time [s]
>
o,
5 1000 :
5]
5 500 8
5
o Ok I 1 L L
o
0 5 10 15 20 25 30
— Time [s
= [s]
=
260 1
o
o
3
340 8
r_‘, L L L 1
§§ 0 5 10 15 20 25 30
Time [s]

Functions used

This is the function linearise_model.m

type linearise model

function [G,KT,KP,H,S]=linearise_model(TO,PO,p)
%% linearise sources
S=sources(T0,PO,p);

Salpha=S.S_alpha(end) ;

Sohm=S.S_ohm(end) ;

Saux=S.S_aux(end) ;

Srad=S.S_rad(end);

Scond=S.S_cond(end) ;

SH=Salpha+Sohm+Saux; % total heating power

% redefine some constants

g_e = 1.60217657E-19;

a = [-21.38, -25.20, -7.101e-2 1.938e-4 4.925e-6 -3.984e-8];

alp = 0.2935;

Sexp = -alp*a(1)./((T0/1000)."alp) + a(3)*(T0/1000) + ...
2xa(4)*(T0/1000) .72 + 3*a(5)*(T0/1000) .73 + 4xa(6).*(T0/1000).74;

V = (2*pi*p.R_0)*(pi*p.kappa*p.a”2);

% construct KT

KTohm=-3/2*Sohm/ (3*p.n*q_e*T0) ;

KTrad=-Srad/2/ (3*p.n*q_exT0) ;
KTcond=(-1+3/2%0.69*Sohm/SH-0.69*Sexp*Salpha/SH) *Scond/ (3*p.n*q_e*T0) ;
KTalpha=Sexp*Salpha/ (3*p.n*q_exT0) ;

KT=KTohm+KTrad+KTcond+KTalpha;

% contruct KP

KPaux=1/(3*p.n*q_ex*V) ;
KPcond=-0.69*Scond/SH/ (3*p.n*q_e*V) ;
KP=KPaux+KPcond;

%% construct transfer functions

s = tf(s?);
G=KP/(s-KT); Y% delta(Paux) to delta(T) transfer function

H=4*V*Sexp*Salpha/TO0; % delta(T) to delta(neutron power) transfer function
end

This is the function CL_thermal_energy_balance.m

type CL_thermal_energy_balance

function dxdt = CL_thermal_energy_balance(t,x,time,C_ss,p)

g_e = 1.60217657E-19; % electron charge [coulomb] or Boltzmann constant [J/eV]
V = 2xpixp.kappa*p.R_O*p.a"2; 7% plasma volume [m~3]

T = x(1); % plant state

z = x(2:end); % controller state

%% Linear controller

e = C_ss.T_O - T; % control error: setpoint is T_O
dzdt = C_ss.Axz + C_ss.Bxe;

dP_aux = C_ss.C*xz + C_ss.Dxe;

S_aux = (dP_aux+C_ss.P_0)/V;

%% Nonlinear plant
S = sources(abs(T),dP_aux+C_ss.P_0,p);
dT_eVdt = 1/(3*p.n*q_e)*(S.S_alpha+S.S_ohm+S_aux-S.S_rad-S.S_cond) ;

%% Total system time derivative

dxdt = [dT_eVdt; dzdt];
end

10

3 Burn control

clear
close all

Define constants and wrap in struct

p.n = 1E20; % density [#/m"3]
p-R_0 = 8;

p.-a = 2;

p.kappa = 2;

p-B_O =7;

p-A = 2;

p.-Z_eff = 1.5;

p.-£_DT = 1;

p-I_p = 15; 7 plasma current [MA]

Apply input power ramp for this case with a nonzero DT-fraction

% Define time span, input signal and initial condition

t_span = [0 200]; % time span [s]

P_aux = [10E6*ones(1,800) 25E6%*ones(1,800) 50E6*ones(1,801)]; % apply 20 MW input power
time = linspace(t_span(l),t_span(end),size(P_aux,2)); % time grid for input power

T_O0 = 1E3; ¥ initial temperature [eV]

% Simulate thermal energy balance and compute power density sources and pressure
[7,T] = ode45(@(t,T) thermal_energy_balance(t,T,time,P_aux,p),time,T_0);
S = sources(T,P_aux’,p);

% Plot temperature evolution

fig = figure;

subplot(2,2,1)

plot(time,T)

grid on; xlabel(’Time [s]’); ylabel(’Temperature [eV]’);
subplot(2,2,3)

plot(time,S.pressure)

grid on; xlabel(’Time [s]’); ylabel(’Pressure’);
subplot(2,2,[2 4])

hold on

plot(time,S.S_aux,’b’)

plot(time,S.S_ohm, ’k’)

plot(time,S.S_alpha,’m’)

plot(time,S.S_rad,’g’)

plot(time,S.S_cond,’r’)

legend (’S_{aux}’,’S_{ohm}’,’S_{alpha}’,’S_{rad}’,’S_{cond}’,’Location’,’Northwest’)
grid on; xlabel(’Time [s]’); ylabel(’Power density [W/m~3]’);
set(fig, ’PaperPositionMode’,’auto’);

print -depsc exercise_5_1_simulation

11

4.
15000 5
S
2, 4+
£ 10000
=2
®© 3.5
3
£ 5000
2 o 8
0 =
0 100 200 300 _‘?2-5 [
Time [s] 2
(]
x10° o 2r
6 9]
g
o 15¢
o4
<
a2
0.5
0 0)
0 100 200 300 0 100 200 300
Time [s] Time [s]

Draw plot of T/0t vs T

It is observed that the middle equilibrium point is unstable. At this point, a
slight increase of the temperature will lead to a positive dT'/dt, causing the
temperature to increase further etc.

T_plot = linspace(le3,20e3,1001);

dTdt = thermal_energy_balance(0,T_plot, [0 1], [25E6 25E6],p);

fig = figure;

plot(T_plot,dTdt); grid on

title(’P_{aux} = 25 MW’)

xlabel (’Temperature [eV]’); ylabel(’time derivative of temperature [eV/s]’)
set(fig, ’PaperPositionMode’, ’auto’);

print -depsc exercise_6_3_phase_plot

12

P__=25MW
aux
600 \

400

200

-200

-400 f

-600

-800

-1000 -

time derivative of temperature [eV/s]

-1200

1400 | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Temperature [eV] x10%

Linearize around each stationary point using the function linearise_model.m the
we elaborated before. We can again check the match between these results and
the result we would get from finite differences on the previous plot.

Since we now want to control the reactor using a reference signal for the neutron
power and in response to a measurement of the neutron power, we derive the
transfer function from the auxiliary power to the neutron power:

O ()= (oL
5Paum 8= oT 3 5Paux

(s) = H(s)G(s). (4)

Here we defined the additional transfer function H(s). For our linearised sys-
tem, this turns out to be just a constant which is also already filled out in the
completed version of the file linearise_model.m. Furthermore, we calculate the
set point P_neutron of the neutron power corresponding to each of the operating
points.

clear T_O
P_0 = 25E6; % [W]

% These are the equilibrium temperatures, from low to high
T_0{1} = 3038; % [eV] read out from phase plot (P_aux = 25MW)
T_0{2} = 6800; % [eV] read out from phase plot (P_aux = 25MW)
T_0{3} = 1.335E4; % [eV] read out from phase plot (P_aux = 25MW)

% Linearize the output relation at each stationary point

for i = 1:length(T_0)
[G{i},A{i},B{i},H{i},S]=1linearise_model(T_0{i},P_0,p);
P_neutron{i} = 4*S.S_alpha*V;

end

% check with phase plot results (P_aux = 25MW)
% A{1} = -0.09; % stable

13

% A{2}
% A{3}

0.067; % unstable
-0.08; % stable

The linearised system we are thus designing a controller for is H(s)G(s). As can
be seen from the pole-zero map, the second operating point is indeed open loop
unstable (pole in the RHP).

figure

subplot (121)

bode (H{1}*G{1},H{2}*G{2},H{3}*G{3},{1E-2,1E2}); grid on
legend(’1°,°27,°3?)

subplot (122)

pzmap (H{1}*G{1} ,H{2}*G{2} ,H{3}*G{3})
legend(’1°,°2°,°3%)

Bode Diagram Pole-Zero Map
1

n
=)

N

»

3 08t

o
\
|

©

0.6

n
o

0.4r

Magnitude (dB)

EN
o

0.2

-60
oF X x

-0.2F

o
Imaginary Axis (seconds'1)

-0.4

yd -0.6F
- /
135 08k

-180 -1 : '
102 10° 102 -0.2 -0.1 0 0.1

Frequency (rad/s) Real Axis (seconds’1)

Design linear controllers in the vicinity of each stationary point

All the comments made about the controller design for the beta-control still
hold identically for the burning plasma case considered here. In addition, we
can remark that the unstable second operating point is stabilised by closing the
control loop, at the condition that the gain is sufficiently high. This can be seen
in the Nyquist plot below (1 counter-clockwise encirclement of (-1,0) required
to stabilise the unstable pole of the open loop system).

Disclaimer: the controllers proposed here fulfill the requirements, but are not
per se completely optimal again. We again observe that a PI controller suffices
to attain the requirements.

close all
clear S

s = tf(’s’);

C{1}=0.12%(1+s*10)/s;

C{2}=0.03*(1+s*10)/s; % note that stability has to be ensured here
C{3}=0.02*(1+s*10)/s;

14

for i = 1:3
0L{i} = H{i}xG{i}*C{i};
s{i} = 1/(1+0L{i});
DR{i} = H{i}*G{i}/S{i}; ¥ disturbance rejection
CL{i}=feedback(OL{i},tf(1));

end

figure

subplot (411)

bode (0L{1},0L{2},0L{3},{1E-2,1E2}); grid on

title(’Open loop Bode diagram’)

subplot (412)

bode (8{1},5{2},5{3},{1E-2,1E2}); grid on

title(’Sensitivity Bode diagram’)

subplot (413)

bode (DR{1},DR{2},DR{3},{1E-2,1E2}); grid on

title(’Disturbance rejection Bode diagram’)

subplot (414)

bode (CL{1},CL{2},CL{3},{1E-2,1E2}); grid on

title(’Closed loop Bode diagram’)

legend(’1°,°27,°3?)

figure

nyquist (0L{1},0L{23},0L{3});

legend(’1°,°27,°3?)

display([’dcgain operating point 1 equals ’ num2str(dcgain(CL{1}))])

display([’dcgain operating point 2 equals ’ num2str(dcgain(CL{2}))])

display([’dcgain operating point 3 equals ’ num2str(dcgain(CL{3}))])

15

Open loop Bode diagram

Phase idediude (dB)

‘
1072 107 10° 10° 102
Frequency (rad/s)

Sensitivity Bode diagram
g E———le e : j
0
0
0 —

Phaselw,tggiitude (dB)

1072 107 10° 10° 102
Frequency (rad/s)

) Disturbance rejection Bode diagram
% 50 T T T
=2 0
%»50 I I I
gwot’// i i j
[
& -360
g -2 ‘71 ‘0 ‘ 1 2
o 10 10 10 10 10
Frequency (rad/s)
i%, Closed loop Bode diagram
0] f T T T
ER e 1 j
e | | | 2
E Oﬁ\\\ ‘ i sq
©-45
(2]
e 90— - 0 p 5
10 10 10 10 10

Frequency (rad/s)

16

Nyquist Diagram
T T T T ‘ T

15 2[4

10 1

Imaginary Axis
o
\f

\X!’
|
‘
|
|
[:
1
\i
\:/
\:

-7 -6 -5 -4 -3 -2 -1 0 1
Real Axis

Simulate closed-loop system with three controllers close to each stationary
point. Note that we now use a different function to simulate the closed
loop system response since the control signal and the response are now the
neutron power instead of the temperature (CL_neutral_power.m instead of
CL_thermal_energy_balance before).

clear T e z
for i = 1:3
[num,den] = tfdata(C{il});
[A_c,B_c,C_c,D_c] = tf2ss(cell2mat (num),cell2mat(den));
C_ss.A =A_c; C_ss.B=B_c; C_ss.C=C_c; C_ss.D =D_c;
C_ss.P_0 = P_0; C_ss.P_neutron = P_neutron{i};

%% Simulate linear controller on nonlinear plant model
t_span = [0 20]; 7% time span [s]
time = linspace(t_span(1l),t_span(end),500); % time grid for input power
T_init = 0.5*T_0{i};
[7,x] = ode45(@(t,x) CL_neutral_power(t,x,time,C_ss,p),
time, [T_init zeros(1l,size(A_c,1))]1);

T{i} = x(:,1);
z{i} = x(:,2:end);
Salpha = sources(abs(T{i}),0,p); % reconstruct neutron power

e{i} = C_ss.P_neutron - 4*Salpha.S_alpha*V; % control error: setpoint is P_neutral;
dP_aux{i} = (C_ss.C*x(:,2:end)’)’ + C_ss.Dx(e{il});
P_aux{i} = dP_aux{i}+C_ss.P_0;

end

Plot closed-loop performance

fig=figure;
subplot (311)

17

hold on

plot(time,T{1}); grid on

plot(time,T{2});

plot(time,T{3});

xlabel(°Time [s]’); ylabel(’Temperature [eV]’)
title(strcat(’Closed-loop trajectories for equilibrium point index’,num2str(i)));
subplot (312)

hold on

plot(time,e{1}); grid on

plot(time,e{2});

plot(time,e{3});

xlabel(’Time [s]’); ylabel(’Control error [W]’)
subplot(313)

hold on

plot(time,P_aux{1}/1E6);

plot(time,P_aux{2}/1E6);

plot(time,P_aux{3}/1E6);

legend(’1°,°27,°3?)

grid on; xlabel(’Time [s]’); ylabel(’Total aux power [MW]’)
set(fig, ’PaperPositionMode’,’auto’);

Closed-loop trajectories for equilibrium point index3

>

2,

g

510000 F

o

Q

Q

GE) 0 Il Il Il Il Il Il Il Il Il I}

= 0 2 4 6 8 10 12 14 16 18 20
Time [s]

n
o

Control error [W]
>
:

N
0 1 1 1 1 B F—— —
0 2 4 6 8 10 12 14 16 18 20
— Time [s]
s
=
9] 1
§2oof >
> 3
>
©
s 0 | I I i i i —
s 0 2 4 6 8 10 12 14 16 18 20
[)
Time [s]

Functions used

This is the function CL_neutral_power.m
type CL_neutral_power

function dxdt = CL_neutral_power(t,x,time,C_ss,p)
g_e = 1.60217657E-19; % electron charge [coulomb]
V = 2xpi~2#*p.kappa*p.R_O*p.a”2; % plasma volume [m~3]

18

T
z

x(1); % plant state
x(2:end); % controller state

% Compute neutral power assumed to be plant output in the current state
Salpha = sources(abs(T),0,p);
P_neutron=4*Salpha.S_alphax*V;

%% Linear controller

e = C_ss.P_neutron - P_neutron; % control error: setpoint is P_neutron_0
dzdt = C_ss.Axz + C_ss.Bxe;

dP_aux = C_ss.C*xz + C_ss.Dxe;

S_aux = (dP_aux+C_ss.P_0)/V;

%% Nonlinear plant
S = sources(abs(T),dP_aux+C_ss.P_0,p);
dT_eVdt = 1/(3*p.n*q_e)*(S.S_alpha+S.S_ohm+S_aux-S.S_rad-S.S_cond) ;

%% Total system time derivative

dxdt = [dT_eVdt; dzdt];
end

19

