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Ex 3.1: Vertical field design

a)

Calculate the vertical field required to balance the radial forces on a TCV plasma of Ip =
400kA with li = 1, βp = 0.5, κ = 1.6, a = 0.25m, R = 0.88m.

To compute the vertical field required to balance the radial forces we start with the plasma
force balance equation ( see equation (5) slide 11 in Magnetic modeling and control of
tokamaks, part III: Plasma position stability and control):

mp
d2R

dt2
= FR,loop + FR,tyre + FR,Lorentz (1)

=
µ0I
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)
+ 2πRIpBz . (2)

If the radial forces are balanced then mp
d2R
dt2

= 0 and we can solve (2) for Bz:
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If we now replace Ip = 400kA with li = 1, βp = 0.5, κ = 1.6, a = 0.25m, R = 0.88m we
get:

Bz = −4π × 10−7 × 4× 105

4π.88

(
log

8× 0.88

0.25
√
1.6

+ βp + 0.5− 3

2

)
≈ −0.1183 T . (3)

b)

Find a combination of E and F coils in TCV that gives the required vertical field. Hint:
Formulate the problem as a least squares problem trying to get the correct Bz over a large
portion of the x grid.

min
Ia

∥Bz(Ia)−Bz,required∥2 + ∥Br(Ia)∥2 ,

where Bz and Br are the fields generated by Ia on the xgrid, given by Bz=G.Bzxa*Ia and
Br=G.Brxa*Ia.

Each E/F coil produces a magnetic field due to the current, Ia,i, flowing through it. The
larger this current the larger the magnetic field. If we set only the current of the coil i to
1, Ia,i = 1A, and all the other currents to 0, Ia,k = 0 for k ̸= i, we can see the magnetic
field produced by each coil given a unit current. In Figure 1, Figure 2 and Figure 3 we
can see for each coil and a unit current the Br,i, Bz,i components and B⃗i, respectively.

The total magnetic field, B⃗, is obtained by a linear combination of the magnetic field
generated by each coil:

B⃗ =
∑
i

B⃗iIa,i ⇒ Br =
∑
i

Br,iIa,i and Bz =
∑
i

Bz,iIa,i . (4)

Where B⃗i = Br,ie⃗r + Bz,ie⃗z and Br,i and Bz,i and the r and z components of the unit
magnetic field generated by each coil. This can be written more compactly as matrix
multiplications:

Br(rk, zk) = (Br Ia)k and Bz(rk, zk) = (Bz Ia)k ,

where Br = G.Brxa and Bz = G.Bzxa.

The idea with the Least-Squares formulation is to find the combination of currents Ia,i such
that the total magnetic field produced has the minimum difference to a target magnetic
field at a set of M points (rk, zk) with k = 1, . . . ,M . Therefore the Least-Squares problem
is:

Find Ia = [Ia,1, . . . Ia,N ], such that:

min
Ia

[
(Br Ia −Br,required)

2 + (Bz Ia −Bz,required)
2] .
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Figure 1: Br component of the magnetic field produced by each E/F coil for a unit current.

3



Figure 2: Bz component of the magnetic field produced by each E/F coil for a unit current.
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Figure 3: Magnetic field, B⃗, produced by each E/F coil for a unit current.

5



This can be made more compact:

Find Ia = [Ia,1, . . . Ia,N ], such that:

min
Ia

(B Ia −Brequired)
2 .

with:

B =

[
Br

Bz

]
and Brequired =

[
Br,required

Bz,required

]
The currents corresponding to the minimum are obtained by setting:

∂J

∂Ia,i
= 0, i = 1, . . . , N ,

with
J = (B Ia −Brequired)

2 = (B Ia −Brequired)
t (B Ia −Brequired) .

This can be expanded, yielding:

J = I t
aB

tBIa − I t
aB

tBrequired −Bt
requiredBIa +Bt

requiredBrequired (5)

= I t
aB

tBIa − 2Bt
requiredBIa +Bt

requiredBrequired . (6)

Now if we take the derivative of this with respect to Ia we obtain:

∂J

∂Ia

= 2BtBIa − 2BtBrequired .

We now can build an algebraic system of equations:

∂J

∂Ia,i
= 0 ⇒ BtBIa − 2BtBrequired = 0 .

Which can be easily inverted giving the following currents:

Ia =
(
BtB

)−1
BtBrequired .

In our case we have:
Br = G.Brxa and Bz = G.Bzxa ,

and
Br,required = 0 T and Bz,required = −0.1183 T .

This has been implemented in Matlab and the current distributions obtained for Ia are
presented in Table 1. In Figure 4 the obtained magnetic field and the error with respect
to the target magnetic field are presented.
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Table 1: Current distribution obtained from Least-Squares formulation.

Ia,1 Ia,2 Ia,3 Ia,4 Ia,5 Ia,6 Ia,7 Ia,8
1446.6 592.8 883.6 781.1 781.1 883.6 592.8 1446.6

Ia,9 Ia,10 Ia,11 Ia,12 Ia,13 Ia,14 Ia,15 Ia,16
-1972.6 -318.4 -805.8 -660.1 -660.1 -805.8 -318.4 -1972.6

Figure 4: Least-Squares current distribution. Left: error between target Br and obtained
Br,LS. Center: error between target Bz and obtained Bz,LS. Right: B⃗LS obtained from
Least-Squares formulation.

c)

Calculate the vertical field required to balance the radial forces on an ITER plasma of
Ip = 15MA with li = 1, βp = 0.8, κ = 1.6, a = 2.0m, R = 6.2m.

We follow the same procedure as in 3.2.a and use the final result from (3), now for
Ip = 15MA with li = 1, βp = 0.8, κ = 1.6, a = 2.0m, R = 6.2m, to obtain:

Bz ≈ −0.67157 T .

d)

Suppose that the plasma beta suddenly decreases by 50% due to a sudden loss of confine-
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ment. What consequences does this have for the radial position of the plasma? For a given
vertical field, does it move inwards or outwards? What should be done to compensate this?

We start once more with the force balance equation (2):

mp
d2R

dt2
=

µ0I
2
p

2

(
log

8R

a
√
κ
+ βp +

li
2
− 3

2

)
+ 2πRIpBz . (7)

We now take:

Fp(βp) =
µ0I

2
p

2

(
log

8R

a
√
κ
+ βp +

li
2
− 3

2

)
. (8)

Substituting in (7) results in:

mp
d2R

dt2
= Fp(βp) + 2πRIpBz .

Before the reduction of βp to β̃p = 0.5βp the plasma was in equilibrium, therefore:

mp
d2R

dt2
= Fp(βp) + 2πRIpBz = 0 .

When βp is reduced to β̃p = 0.5βp we will have:

mp
d2R

dt2
= Fp(β̃p) + 2πRIpBz < 0 .

This can be easily shown. First note that Fp(β) depends linearly on β as can be easily
seen in (8) and in Figure 5. Then note that Fp(β) > 0 and therefore 2πRIpBz < 0.
Therefore:

β̃p = 0.5βp ⇒ Fp(βp) > Fp(β̃p) ⇒ Fp(β̃p) + 2πRIpBz < 0 .

If:

mp
d2R

dt2
< 0 ,

This means that the plasma is experiencing a negative acceleration in the R-axis, therefore
moving inwards.

To compensate for this we need to have again zero net force. This can be accomplished
by reducing the absolute value of Bz.

Ex 3.2:Study of TCV plasma vertical position control
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Vertical_control_model_TCV

a) Compare the Bode plots of the system with and without
delay

We see that the system with delay loses phase at high frequency.

figure(1); clf

set(gcf,’units’,’points’,’position’,[0,0,400,400])

Wn = logspace(0,4,101);

bode(sysZ,sysD,Wn)
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The Laplace transform of delay is exp(-tau*s). When included in series with the
system, it generates a phase loss while the magnitude remains unchanged. The
pade’ approximant is a way of approximating the delay with a rational function
of given order.

pade(1e-3,5);
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b) Find the minimum and maximum P gain needed for
stability

figure(2);clf; set(gcf,’units’,’points’,’position’,[0,0,800,300])

subplot(121)

nyquist(sysD); set(gca,’xlim’,[-0.01 0]);

subplot(122);

bode(sysD); grid on;
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We see that there are three points in the bode diagram with phase = -180deg,
hence three crossings of the negative real axis The first one is at w0 = 0 (log(w0)
= -inf) , and the corresponding magnitude is the DC gain:

g0dB = 20*log10(abs(dcgain(sysD)));

disp(g0dB); %DC gain in dB

-46.5060

the remaining two (w2 and w3) are found by inspection:

Wn = logspace(0,3.3,101);

[ga,ph] = bode(sysD,Wn);

ga=squeeze(ga); ph=squeeze(ph); % remove third dimension

w1 = 1.07e2; w2 = 1.22e3; % frequencies for crossings of -180deg

g1dB = -70; g2dB = -101.5; % gains at those frequencies

%

figure(2); clf;

subplot(211); semilogx(Wn,20*log10(ga)); hold on;

axis tight; grid on;

plot(Wn([1,end]),g0dB*[1,1]);

plot(Wn([1,end]),g1dB*[1,1]);

plot(Wn([1,end]),g2dB*[1,1]);

set(gca,’colorOrderIndex’,3);

plot(w1*[1,1],[-120,-40])

plot(w2*[1,1],[-120,-40])

ylabel(’Gain [dB]’)

subplot(212); semilogx(Wn,ph); hold on;

axis tight; grid on;

set(gca,’colorOrderIndex’,3);

plot(w1*[1,1],[-220,-160])
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plot(w2*[1,1],[-220,-160])

plot(Wn([1,end]),-180*[1 1],’--k’)

ylabel(’Phase [deg]’); xlabel(’freq [rad/s]’);
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We inspect the Nyquist plot and check which crossing corresponds to which gain

figure(1); clf;

subplot(121);

nyquist(sysD); set(gca,’xlim’,[-0.005 0])

hold on;

set(gca,’colorOrderIndex’,2);

g0 = 10^(g0dB/20);

g1 = 10^(g1dB/20);

g2 = 10^(g2dB/20);

plot(-g0*[1 1], [-1 1]);

plot(-g1*[1 1], [-1 1]);

plot(-g2*[1 1], [-1 1]);

subplot(122);

nyquist(sysD); set(gca,’xlim’,[-0.0004 0.00001]); hold on;

set(gca,’colorOrderIndex’,3);

plot(-g1*[1 1], [-1 1]);

plot(-g2*[1 1], [-1 1]);

title(’zoomed closer to the origin’)
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To stabilise a system with 1 unstable pole, the Generalized Nyquist criterion
tells us that we need 1 counter-clockwise encirclement of the -1 point.

For a counter-clockwise encirclement, we need to inflate (scale) the Nyquist
diagram such that the -1 point falls in the second (smaller) encirclement

Thus the P gain needs to lie between 1/g1R and 1/g2R

Kpmin = 1/g1;

Kpmax = 1/g2;

fprintf(’Kpmin: %2.2f, Kpmax:%2.2f\n’,[Kpmin,Kpmax]);

gmin = -g1dB;

gmax = -g2dB;

fprintf(’Kpmin [dB]: %2.2f, Kpmax [dB]:%2.2f\n’,[gmin,gmax]);

Kpmin: 3162.28, Kpmax:118850.22

Kpmin [dB]: 70.00, Kpmax [dB]:101.50
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Note that the main consequence of the delay is that there is a maximum pro-
portional gain for stability. Compared this to the case of the system without
delay, where it is possible to increase the proportional gain without ever desta-
bilizing the system (since the phase always stays above 90o) at high frequency.
In theory you could get an infinite bandwidth this way! So it is important to
consider the effect of the delay in this case.

We check that indeed, if we are in between these gains, we encircle the -1 point
once counter-clockwise,

Kp = (Kpmin+Kpmax)/2;

K = zpk(Kp); % make LTI object

K.InputName = ’e_z’; K.OutputName = ’V_a’;

figure(1); clf;

nyquist(sysD*K); set(gca,’xlim’,[-30 0]);
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Let’s plot the step responses for a few intermediate cases:
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Kk = linspace(Kpmin,Kpmax,5);

figure(2); clf;

OL = sysD*Kk;

for ii=1:numel(Kk)

sysCL = feedback(sysD*Kk(ii),1);

sysCL.InputName = ’r_z’;

subplot(1,numel(Kk),ii)

step(sysCL,0.1);

title(sprintf(’Kp = %2.2e’,Kk(ii)));

end
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We see that the response is indeed stable and has DC gain of approximately 1
already without adding an integral term. Still, the response is oscillatory in all
cases.

c) Maximize phase, gain and modulus margin separately
with P control

Maximise Phase Margin

The phase margin is defined as the phase lead above -180deg at the frequency
where the open loop magnitude crosses the 0dB line (cross-over frequency). For
stabilization, the proportional gain has to be between Kpmin and Kpmax (and
consequently the cross-over frequency lies between w1 and w2). From inspection
of the Bode plot, it is therefore possible to observe that the maximum phase
margin that can be obtained is 20deg (= -160 - (-180)) at omega=520rad/s:

wPM = 5.2e2; % frequency corresponding to phase at -160deg

gPM = -93;% gain at this frequency

figure(1); clf;

subplot(211);

semilogx(Wn,20*log10(squeeze(ga))); hold on;

axis tight; grid on;

set(gca,’colorOrderIndex’,4);
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plot(Wn([1,end]),gPM*[1,1]);

set(gca,’colorOrderIndex’,4);

plot(wPM*[1,1],[-120,-40])

ylabel(’Gain [dB]’)

title(’Bode of the open-loop system with indication of maximum phase location’)

subplot(212); semilogx(Wn,squeeze(ph)); hold on;

axis tight; grid on;

set(gca,’colorOrderIndex’,4);

plot(wPM*[1,1],[-220,-160])

ylabel(’Phase [deg]’); xlabel(’freq [rad/s]’);
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To maximize the phase margin, is therefore possible to set the controller gain
to 1/(plant gain at the frequency where phase is maximized)

KpPM = 1/(10^(gPM/20)); %conversion in units from dB included here

disp(KpPM);

K.k = KpPM; % use LTI object

4.4668e+04
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to get this closed loop response

sysCLPM = feedback(sysD*K,1);

figure(2); clf;

subplot(131); step(sysCLPM); title(’Optimized PM’)

subplot(132); nyquist(sysD*K); set(gca,’xlim’,[-10 0]);

subplot(133); margin(sysD*K);
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Maximise Gain Margin

The gain margin indicates by how much the open-loop gain can be increased or
decreased before the 180o phase is crossed at 0dB (hence destabilizing the loop.
We know that the maximum and minimum gains are, in dB

disp(20*log10([Kpmin,Kpmax]));

70.0000 101.5000

To maximize the gain margin, we should choose a gain (in dB) exactly in between
these two gains.

gGM = (gmin + gmax)/2;

KpGM = 10^(gGM/20);

K.k = KpGM; % use LTI object

disp(KpGM)

% The margin is then:

GM = gGM-gmin;

1.9387e+04

In the following figures we show:
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1. That the closed loop is indeed stable (Nyquist)
2. That the gain margin is maximized, since the amount (in dB) that we can

decrease or increase the gain before destabilizing is equal
3. This can equivalently be seen in the so-called Nichols plot of Open-loop

phase vs gain. Note that the open-loop crosses the -180deg line twice at
equal distance from the -1 point.

figure(2); clf;

% nyquist

subplot(131); nyquist(sysD*K); set(gca,’xlim’,[-10 0]);

% bode

subplot(232); semilogx(Wn,20*log10(ga*KpGM)); hold on;

plot(w1*[1,1],[0,GM]); plot(w2*[1,1],[0,-GM]);

plot(Wn([1,end]),0*[1 1],’--k’); grid on;

set(gca,’Xlim’,Wn([1,end]),’Ylim’,[-20,50]); grid on;

title(’open-loop bode plot for optimal gain margin’)

subplot(235); semilogx(Wn,ph); hold on;

plot(Wn([1,end]),-180*[1 1],’--k’);

plot(w1*[1,1],[-220,-150]); plot(w2*[1,1],[-220,-150]);

set(gca,’Xlim’,Wn([1,end]),’Ylim’,[-220,-150]); grid on;

% nichols

subplot(133); nichols(sysD*K); grid on;

set(gca,’xlim’,[-220,-135],’ylim’,[-30 30]); hold on;

plot(-180*[1 1],[-30,30],’k--’); plot([-180,-180],GM*[-1 1],’om’)
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Maximise Modulus Margin

The modulus margin the minimum distance of the Nyquist contour from the
-1 point on the complex plane. This can be defined as a minimization over the
frequencies w of the function KP - (-1) (where P is the plant)

m = min w (KP - (-1))

Therefore the best controller k for this purpose is the one maximizing m

m best = max k ( min w (1 + kG))
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kk=linspace(Kpmin,Kpmax,100); %look for the optimized KpMM in this set of values

m=zeros(1,length(kk));

for ii = 1:length(kk)

[RR,II]=nyquist(1+kk(ii)*sysD); %take real and imaginary part of the transfer 1+KG

R=zeros(1,length(RR)); I=zeros(1,length(II));

R(1,:)=RR; I(1,:)=II;

m(ii)=min(R.^2 + I.^2); % compute the min over all frequencies of |1+KG|

end

[MM,ind]=max(m); %find the maximum modulus margin

figure(1); clf

plot(kk,m);

xlabel(’Kp’); ylabel(’m’);

KpMM=kk(ind);

Kp
×10

4

0 2 4 6 8 10 12

m

0

0.02

0.04

0.06

0.08

0.1

0.12

The value of the modulus margin is:

disp(20*log10(1/MM))% in dB

disp(MM);

disp(KpMM);

18.4558
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0.1195

4.0556e+04

This is generally considered too large, usually we want the margin to be <6dB

The modulus margin is equivalent to the inverse of the peak of the sensitivity
function

S = 1 / (1 + K P)

So let’s plot some sensitivity functions for various gains and check:

SensPM = 1/(1+sysD*KpPM);

SensGM = 1/(1+sysD*KpGM);

SensMM = 1/(1+sysD*KpMM);

figure(2); clf;

subplot(121); hold on

Wnplot = logspace(1,4,101);

KMM = linspace(Kpmin,Kpmax,9);

for ii =1:length(KMM)

Sens(ii) = 1/(1+KMM(ii)*sysD);

bodemag(Sens(ii),Wnplot,’b’);

end

bodemag(SensPM,Wnplot,’r’);

bodemag(SensGM,Wnplot,’y’);

bodemag(SensMM,Wnplot,’g’);

legend(’Optimized PM’,’Optimized GM’,’Optimized MM’)

title(’Sensitivity magnitude’)

subplot(122); hold on

opts = bodeoptions; opts.Xlim=[10^2,5*10^3]; opts.Ylim=[-10,15];

bodemag(SensPM,Wnplot,’r’,opts);

bodemag(SensGM,Wnplot,’y’,opts);

bodemag(SensMM,Wnplot,’g’,opts);

for ii =1:length(KMM)

bodemag(Sens(ii),’b’,opts);

end

legend(’Optimized PM’,’Optimized GM’,’Optimized MM’)

title(’zoom into the sensitivity peaks’)
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The optimized controller for the modulus margin has a gain which is close to
the one provided by the optimized phase magin. In fact

disp([KpMM,KpPM,KpGM]);

1.0e+04 *

4.0556 4.4668 1.9387

The closed loop response is

K.k = KpMM; Lp0 = sysD*K;

figure(2); clf;

% nyquist

subplot(231); nyquist(Lp0); set(gca,’xlim’,[-10 0]);

subplot(234); step(feedback(Lp0,1));

% bode

subplot(232); semilogx(Wn,20*log10(ga*KpMM)); hold on;

plot(Wn([1,end]),0*[1 1],’--k’); grid on;

set(gca,’Xlim’,Wn([1,end]),’Ylim’,[-20,50]); grid on;

title(’open-loop bode plot for optimal modulus margin’)

subplot(235); semilogx(Wn,ph); hold on;

plot(Wn([1,end]),-180*[1 1],’--k’);

set(gca,’Xlim’,Wn([1,end]),’Ylim’,[-220,-150]); grid on;

% nichols

subplot(133); nichols(Lp0); grid on;

set(gca,’xlim’,[-220,-135],’ylim’,[-30 30]); hold on;
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The three cases can conveniently be compared usign a Nichols plot. In this plot,
we see how

1. The maximum gain margin means maximizing the distance from -1 along
the phase = -180 axis;

2. The maximum phase margin means maximizing the distance from -1 along
the gain = 0 axis;

3. The maximum modulus margin means maximizing the norm of the dis-
tance to -1 in the Re-Im plane (shown in the dotted grid lines)

Because of the characteristics of the plant, the gains for maximum phase margin
and maximum modulus margin points are close to each other.

figure(1); clf;

nichols(sysD*KpPM,sysD*KpGM,sysD*KpMM,Wnplot); grid on;

set(gca,’xlim’,[-220,-135],’ylim’,[-30 30]); hold on;

legend(’maximum phase margin’,’maximum gain margin’,’maximum modulus margin’)
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d) Optimal PD controller

A PD controller has one real zero, which increases the gain and phase at fre-
quencies higher than the frequency of the zero.

Kp0 = 1; Td0 = 0.1;

s=tf(’s’);

Kpd = Kp0*(1 + s*Td0); %PD with zero placed at ps (zk = 1/Td = ps)

figure(1); clf;

bode(Kpd);

title(’PD controller Bode plot’);
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We study the effect varying Kp and Td gains on the bandwidth and on the
modulus margin m by computing bandwidth and modulus margin on a 2D grid
of Kp vs Td.

Kp = logspace(log10(Kpmin/10),log10(Kpmax),20);

Td = [0,logspace(-4,-1,20)];

b_surf = zeros(numel(Td),numel(Kp));

m_surf = zeros(numel(Td),numel(Kp));

for jj= 1:numel(Td)

fprintf(’.’,jj,numel(Td))

for ii = 1:numel(Kp)

Kpd = Kp(ii)*(1+s*Td(jj)); L = sysD * Kpd; % Controller and open-loop

[RR,II]=nyquist(L);

mmarg = min(sqrt((RR+1).^2 + II.^2)); %modulus margin as min_w (|KG - 1)|)

% bandwidth as point where mag(L) crosses 0dB

mag = bode(L,Wn); magdB = 20*log10(mag); [iw] = find(magdB<0,1,’first’);

if isempty(iw)

wb = NaN;

% mag(L>1), always unstable due to many nyquist encirclements.

elseif iw==1
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wb = NaN;

% first point below 1, no encirclement of -1 point, so unstable!

else

% linear interpolation (in dB) to find bandwidth

wb = Wn(iw)+(Wn(iw)-Wn(iw-1))/(magdB(iw-1)-magdB(iw)) * magdB(iw);

end

m_surf(jj,ii) = mmarg;

b_surf(jj,ii) = wb;

end

end

fprintf(’\n’);

.....................

Plot the results in a 2D plot of Kp vs Ts We show the loci where modulusmargin
= 0.5 and contours of the bandwidth. Points marked with a cross yield an
unstable closed-loop.

figure(1); clf

[XX,YY] = meshgrid(20*log10(Kp),log10(Td));

iunst = isnan(b_surf); oo = ones(size(b_surf));

hu=plot3(XX(iunst),YY(iunst),oo(iunst),’xr’); hold on; view(2); hold on;

%

[C,h]=contour(XX,YY,m_surf,0.5*[1 1],’k’); hold on %contour where modulus margin = 0.5

contour(XX,YY,b_surf,[100:100:1000],’ShowText’,’on’); %2D surface of the bandwidth

xlabel(’Kp [dB]’); ylabel(’log10(Td)’)

title(’Bandwidth (continuous) and locus of (modulus margin)=0.5 (black). x=unstable’)

legend(hu,’unstable’);
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We see that the maximum bandwidth is obtained in the corner close to the
maximum P gain; We perform a second scan in that area

Kp = logspace(85/20,log10(Kpmax),31);

Td = [0,logspace(-4,-3,21)];

b_surf = NaN(numel(Td),numel(Kp));

m_surf = zeros(numel(Td),numel(Kp));

for jj= 1:numel(Td)

fprintf(’.’)

for ii = 1:numel(Kp)

Kpd = Kp(ii)*(1+s*Td(jj)); L = sysD * Kpd; % Controller and open-loop

[RR,II]=nyquist(L);

mmarg = min(sqrt((RR+1).^2 + II.^2)); %modulus margin as min_w (|KG - 1)|)

% bandwidth as point where mag(L) crosses 0dB

mag = bode(L,Wn); magdB = 20*log10(mag); [iw] = find(magdB<0,1,’first’);

if isempty(iw)

wb = NaN;

% mag(L>1), always unstable due to many nyquist encirclements.

elseif iw==1

wb = NaN;

% first point below 1, no encirclement of -1 point, so unstable!

else

% linear interpolation (in dB) to find bandwidth

wb = Wn(iw)+(Wn(iw)-Wn(iw-1))/(magdB(iw-1)-magdB(iw)) * magdB(iw);
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end

m_surf(jj,ii) = mmarg;

b_surf(jj,ii) = wb;

end

end

fprintf(’\n’);

......................

figure(1); clf

[XX,YY] = meshgrid(20*log10(Kp),Td);

iunst = isnan(b_surf); oo = ones(size(b_surf));

hu=plot3(XX(iunst),YY(iunst),oo(iunst),’xr’); hold on; view(2); hold on;

%

[C,h]=contour(XX,YY,m_surf,0.5*[1 1],’k’); hold on %contour where modulus margin = 0.5

contour(XX,YY,b_surf,[100:100:1000],’ShowText’,’on’); %2D surface of the bandwidth

xlabel(’Kp [dB]’); ylabel(’Td’); grid on;

title(’Bandwidth (continuous) and locus of (modulus margin)=0.5 (black). x=unstable’)

legend(hu,’unstable’);
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We find the maximum roughly at
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Td0 = 0.00045; Kp0 = 10^(97/20);

disp(Kp0); disp(Td0);

Kpd0 = Kp0*(1+s*Td0); L0 = Kpd0*sysD; % Controller and open-loop

Lpd0 = Kpd0*sysD;

7.0795e+04

4.5000e-04

Note the nice non-oscillatory step response and good gain, phase margins and
sensitivity below 6dB

figure(2); clf;

subplot(131)

bode(Lp0,Lpd0,Wn); grid on;

subplot(132);

step(Lp0/(1+Lp0),Lpd0/(1+Lpd0)); legend(’P’,’PD’,’location’,’southeast’)

subplot(133)

bodemag(1/(1+Lp0),1/(1+Lpd0)); grid on;
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e) Optimal PID controller

The PD controller is put in series with a PI controller, whose transfer function
is

Ti = 10;

Kpi = (1+1/(Ti*s));

figure(3); clf

bode(Kpi);

title(’Bode PI controller’)
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The presence of an integrator introduces a phase loss at low frequencies but
allows perfect tracking of the reference for the position (i.e. the error e = z-z ref
goes to zero for t -> inf). In series with the previously defined PD controller,
we have a PID controller, i.e. featuring a proportional, derivative and integral
term

Kpid = Kpi * Kpd0

figure(2); clf;

bode(Kpid,Kpd0);

title(’Bode PID controller’)

Kpid =

318.6 s^2 + 7.08e05 s + 7.079e04

--------------------------------

10 s

Continuous-time transfer function.
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To avoid affecting the stability, we must avoid degrading the phase of the con-
troller near the crossover frequency. We can evaluate this using bode plots:

figure(1); clf;

Ti = [0.1,0.05,0.02];

for ii=1:numel(Ti);

Kpid(ii) = (1+1/(Ti(ii)*s))*Kpd0;

legendstr{ii+1} = sprintf(’Ti=%2.2f’,Ti(ii));

end

bode(Kpd0*sysD,Kpid(1)*sysD,Kpid(2)*sysD,Kpid(3)*sysD,logspace(0,3.3,101)); grid on;

legendstr = {’Ti= inf (pure PD)’,legendstr{2:end}};

legend(legendstr,’location’,’southeast’)
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We see that already Ti=2e-2 starts to affect the phase around the crossover
frequency, so we choose this as the limit.

Ti0 = 5e-2;

Kpid0 = (1+1/(Ti0*s))*Kpd0;

Lpid0 = Kpid0*sysD;

We obtain perfect tracking at the expense of a slightly more oscillatory transient
response;

figure(2); clf;

subplot(131)

bode(L0,Lpid0,Wn); grid on;

subplot(232);

step(L0/(1+L0),Lpid0/(1+Lpid0),0.05); grid on;

subplot(235);

step(L0/(1+L0),Lpid0/(1+Lpid0),0.05); grid on; set(gca,’Ylim’,[0.995 1.01])

subplot(133)

bodemag(1/(1+L0),1/(1+Lpid0)); grid on;
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f) Introduction of roll-off

The purpose of the roll off is to limit the high frequency noise amplification. This
can be studied with the control sensitivity function which is the transfer function
high frequency noise (or reference signals) and the control signal entering the
plant.

CS = K / (1 + KG).

We see that to limit CS at high frequency, we need to limit the magnitude of K
at high frequency.

Introducing a roll off in the controller of the form

K = Kpid * 1 / (1 + Tr * sˆ2)

The controller becomes, for example:

Tr = 1e-5;

K = Kpid0 * 1/(1 + Tr * s)^2;

figure(1); clf;

bode(Kpid0,K,logspace(0,6,101)); grid on;

legend(’w/o roll off’,’with roll off’,’location’,’southeast’)
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The presence of two extra poles in the controller leads not only to a reduction
of the noise at high frequencies but also to a phase loss around w = 1/Tr.
Therefore, the stabilizing effect of the controller can be lost if 1/Tr becomes too
large. This can be seen in the open-loop bode plot.

figure(1); clf;

Tr = [1e-4,3e-5,1e-5];

for ii=1:numel(Tr);

Kpidr(ii) = Kpid0/(1+Tr(ii)*s)^2;

legendstr{ii+1} = sprintf(’Tr=%2.2e’,Tr(ii));

end

bode(Kpid0*sysD,Kpidr(1)*sysD,Kpidr(2)*sysD,Kpidr(3)*sysD,logspace(2,3.5,101)); grid on;

legendstr = {’Ti= inf (pure PD)’,legendstr{2:end}};

legend(legendstr,’location’,’southeast’)
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The smallest value for Tr not affecting significantly the performance of the closed
loop is therefore

Tr0=3e-5;

and the final controller is

Kpidr0 = Kpid0/((1 + Tr0*s)^2);

Lpidr0 = Kpidr0*sysD;

Check the closed-loop, note that it is almost the same except for the (very
welcome) reduction of the high-frequency sensitivity.

figure(2); clf;

subplot(131)

bode(Lpidr0,Lpid0,logspace(0,6,101)); grid on;

subplot(232);

step(Lpidr0/(1+Lpidr0),Lpid0/(1+Lpid0),0.05); grid on;

subplot(235);
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step(Lpidr0/(1+Lpidr0),Lpid0/(1+Lpid0),0.05); grid on; set(gca,’Ylim’,[0.995 1.01])

subplot(133)

bodemag(1/(1+Lpidr0),1/(1+Lpid0)); grid on;

legend(’PID+rolloff’,’PID’,’location’,’southeast’)
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g) Comparison of the all the controllers

First we compute all the sensitivity functions

% Sensitivity functions

Sp0 = 1/(1+Lp0); % P

Spd0 = 1/(1+Lpd0); % PD

Spid0 = 1/(1+Lpid0); % PID

Spidr0 = 1/(1+Lpidr0); % with rolloff

% Control sensitivity

Cp0 = Kp0 * Sp0;

Cpd0 = Kpd0 * Spd0;

Cpid0 = Kpid0 * Spid0;

Cpidr0 = Kpidr0 * Spidr0;

% closed-loop transfer function

CLp0 = Lp0*Sp0;

CLpd0 = Lpd0*Spd0;

CLpid0 = Lpid0*Spid0;

CLpidr0 = Lpidr0*Spidr0;

Step responses: The step response with purely P gain is clearly the worst.
The extra phase margin added by the PD and PID controllers gives a much
better response. The controllers with integral gain have zero steady-state error
(step response converges to 1) but the PD controller already had a quite small
steady-state error due to its high gain at low frequency.

figure(2); clf;
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subplot(231);

step(CLp0,CLpd0,CLpid0,CLpidr0);grid on;

subplot(234);

step(CLp0,CLpd0,CLpid0,CLpidr0);grid on;

set(gca,’ylim’,1+[-0.05,0.05]);
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Sensitivities: These represent the response of the tracking error to reference in-
puts. They show that the error at low frequency is diminished for all controllers.
The P controller, however, has a high sensitivity peak. The PD controller re-
duces this peak (again thanks to the better phase margin). The integral term
of the PID controller forces the sensitivity to zero for low gain, assuring a zero
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error for step disturbances. Finally, adding the roll-off term allows to damp the
peaks in the sensitivity at high frequencies by forcing the open-loop gain of the
system to drop to zero at high frequencies. It is therefore always advised to use
roll-off in a PID controller!

subplot(132);

bodemag(Sp0,Spd0,Spid0,Spidr0,logspace(0,6,101));

legend(’P’,’PD’,’PID’,’PID+ro’,’location’,’southeast’)
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Control sensitivities These represent the control signal response to reference
inputs We see that the P controller, having lower bandwidth, has a smaller
response and peaks at lower frequency. The PD, PID and PID+rolloff controllers
have higher bandwidth and higher peak. The rolloff ensures that the high-
frequency controller response stays eventually decays, avoiding the injection of
amplified high-frequency noise into the plant.

subplot(133);

bodemag(Cp0,Cpd0,Cpid0,Cpidr0,logspace(0,6,101));
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Figure 5: Dependency of Fp on βp.
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