

```
# MEQ Geometry cheatsheet
This cheatsheet provides help to beginner users trying to understand MEQ
`G` (geometry) structure variable naming. In general, naming follows a
strict convention that is explained in `meqhelp.m`. For output
quantities, see `meqt.m` Also please consult the
[README.md] (../README.md) file for more help sources.
See also `meqg.m`, `vveig.m`
```

Quantities are part of the `L.G` structure unless specified otherwise.

```
## Computational grids
| Variable name | Description |
| ----- | ----- |
| `LY.Fx` | flux on the `x` grid |
| `LY.Brx` | Radial magnetic field on the `x` grid |
| `LY.Bzx` | Verical magnetic field on the `x` grid |
| `LY.Iy` | plasma current on `y` grid |
| `rx` | r coordinate of `x` grid (computational grid inside limiter) |
| `zx` | z coordinate of `x` grid (computational grid inside limiter) |
| `L.nzx` | number of `zx` elements |
| `L.nrx` | number of `rx` elements |
| `L.rrx` | r of meshgrid for `rx,zx` |
| `L.zzx` | z of meshgrid for `rx,zx` |
| `rz` | r coordinate of `z` grid (extended outside limiter for post-
processing) |
| `zz` | z coordinate of `z` grid (extended outside limiter for post-
processing) |
| `ry` | reduced grid for plasma current: `rx(2:end-1)` |
| `zy` | reduced grid for plasma current: `zx(2:end-1)` |
| `Mxx` | mutual inductance between filaments on plasma `x` grid |

## Magnetic probes
| Variable name | Description |
| ----- | ----- |
| `rm` | r position of magnetic field measurement point |
| `zm` | z position of magnetic field measurement point |
| `am` | orientation (in rad), positive counterlockwise so that `Bm =
cos(am)*Br + sin(am)*Bz` |
| `Tmm` | Matrix to compose effective probe measurements as linear
combinations of ideal ones. |
| `Bma` | transfer function that gives measured B fields at mag. probes
due to currents in active coils `Bm = Bma*Ia` |
| `Bmx` | same as `Bma` but for `Ix` currents in the plasma grid |
| `Bmu` | same as `Bma` but for `Iu` passive currents |
| `dimm` | description string |
| `nm` | number of probes |
```



```
## Flux loops
| Variable name | Description |
| ----- | ----- |
```

```

| `rf`    | r position of flux loops      |
| `zf`    | z position of flux loops      |
| `Tff`   | Matrix to compose effective flux measurements as linear
combinations of ideal ones. |
| `Mfa`   | mutual inductance between flux loops and active coils
(`Mfa*Ia` is flux measured at each loop due to current) |
| `Mfv`   | mutual inductance between flux loops and filamentary vessel |
| `Mfu`   | mutual inductance between flux loops and generalized vessel |
| `Mfx`   | mutual inductance between flux loops and plasma current
elements |
| `dimf`  | flux loop labels      |
| `nf`    | number of flux loops      |

## Active circuits
| Variable name | Description |
| ----- | ----- |
| `LY.Ia` | active coil currents      |
| `Maa`   | mutual inductance between active circuits |
| `Mav`   | mutual inductance between active circuits and vessel filament
elements |
| `Mau`   | mutual inductance between active circuits and generalized
vessel |
| `Mxa`   | mutual inductance between `x` grid and active circuits |
| `Mza`   | mutual inductance between `z` grid and active circuits |
| `Brxa`  | matrix such that `Br = Brxa*Ia`. Where `Br` is the radial
magnetic field on the `x` grid due to currents in the active circuits |
| `Bzxa`  | Same as `Brxa` but for vertical component of poloidal field |
| `dima`  | active coil labels      |
| `na`    | number of active circuits      |

## Vessel filamentary description
| Variable name | Description |
| ----- | ----- |
| `LY.Iv` | Vessel filament currents
| `Mvv`   | mutual inductance between vessel filaments
| `Rv`    | resistance of individual vessel elements
| `rv`    | `r` location of filament
| `zv`    | `z` location of filament
| `hv`    | height of rectangular filament (`dv=NaN`)
| `wv`    | width of rectangular filament (`dv=NaN`)
| `dv`    | diameter of circular filament (`wv=hv=NaN`)
| `dimv`  | description label

## Vessel filamentary description
| Variable name | Description |
| ----- | ----- |
| `LY.Iv` | Vessel filament currents
| `Mvv`   | mutual inductance between vessel filaments |
| `Rv`    | resistance of individual vessel elements |
| `rv`    | `r` location of filament |
| `zv`    | `z` location of filament |
| `hv`    | height of rectangular filament (`dv=NaN`) |
| `wv`    | width of rectangular filament (`dv=NaN`) |
| `dv`    | diameter of circular filament (`wv=hv=NaN`) |

```

```

| `dimv`    | description label    |

## Generalized vessel
| Variable name | Description |
| ----- | ----- |
| `LY.Iu` | generalized vessel currents |
| `Tvu` | matrix such that `Iv=Tvu*Iu` |
| `Tuv` | matrix premultiplying vessel current equation such that
`Muu=Tuv*Mvv*Tvu` (see `vveig.m`) |
| `Mxu` | mutual inductance between `x` grid and vessel currents |
| `Mzu` | mutual inductance between `z` grid and vessel currents |
| `Muu` | mutual inductances for generalized passive currents |
| `Mau` | mutual inductances between generalized passive currents and
active coil currents |
| `Brxu` | matrix such that `Br = Brxu*Iu`. Where `Br` is the radial
magnetic field on the `x` grid due to currents in the vessel currents |
| `Bzxu` | same as `Brxu` but for vertical component of poloidal field |
| `Brzu` | matrix such that `Br = Brzu*Iu`. Where `Br` is the radial
magnetic field on the `z` grid due to currents in the vessel currents |
| `Bzzu` | same as `Bzzu` but for the vertical component of the poloidal
field |
| `Ru` | resistances for generalized vessel description |
| `dimu` | description label |

```