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1 Simulating the plasma 0D energy balance

In the lecture we saw the following 0D model for the plasma thermal energy balance
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dp

dt
= Sα + SΩ + Saux − Srad − Scond (1)

where

• p = 2nT is the plasma pressure with T in Joule 1. We assumed Ti = Te = T and
ni = ne = n.

• Sα is the power density from the fusion alpha particles. It is given by

Sα =
fDT

(1 + fDT )2
Eαn

2⟨σv⟩ (2)

where fDT is the Deuterium-Tritium fraction, Eα is in Joules, and ⟨σv⟩ can be
approximated, in the temperature region of interest, as

⟨σv⟩ = 1× 10−6 exp
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(3)
where the coefficients are given in Table 1

1(T [J] = qeT [eV]) with qe the Electron charge 1.602176565× 10−19J/eV
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α a−1 a0 a1 a2 a3 a4
0.2935 −21.38 −25.20 −7.101× 10−2 1.938× 10−4 4.925× 10−6 −3.984× 10−8

Table 1: Coefficients for ⟨σv⟩ approximation, from Hively et al, Nuclear Fusion 17, 873
(1977)

• SΩ is the ohmic power density from resistive heating due to the plasma current. For
the present purposes we can write it as

SΩ =
1

V

(
5.6× 104

1− 1.31ϵ1/2 + 0.46ϵ

)(
R0I

2
MA

a2κT
3/2
keV

)
(4)

with ϵ = a/R0 and the volume V = 2π2κR0a
2.

• Saux is the power density from the external (auxiliary) heating sources. It is given
simply by:

Saux = Paux/V (5)

• Srad = 5.35× 103Zeffn
2
1e20T

1/2
keV is power per unit volume radiated to the first wall,

• Scond is the power per unit volume that reaches the first wall by thermal conduction.
It is given by:

Scond =
3

2

p

τe
(6)

where τe is the confinement time for which we will use the scaling law expression

τe = 0.145I0.93p,MAR
1.39
0 a0.58κ0.78n0.41

1e20B
0.15
0,T A0.19 (Paux,MW + PΩ,MW + Pα,MW)−0.69 (7)

where PΩ = SΩV . We will assume a constant density n = 1 × 1020m−3 for this exercise.
The other parameters are:

Ip = 15MA, R0 = 8m, a = 2m, κ = 2, B0 = 7T, A = 2 Zeff = 1.5, fDT = 0
(8)

Also recall that Eα = 3.5MeV. These are parameters close to a DEMO reactor (except
for fDT , for now).

a) You are given a Matlab function that accepts as input: T and Paux and returns, as
output, dT

dt
. In the demo file it is shown how to integrate this ODE in time with the

solver ode45. Simulate the response to a staircase-like power input: Paux = 10MW,
25MW, 50MW. Plot the evolution of the pressure, temperature, and all the source
and sink terms. For this exercise, there is no power source from fusion reactions.
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2 Control of plasma β

Assume T = T0 + δT with δT ≪ T0 and Paux = Paux,0 + δPaux.

a) Complete the linearisation of the model equations around the operating point cor-
responding to Paux,0 = 25MW. Complete the Matlab function linearise model.m by
adding the linearisation of the Ohmic heating and the auxiliary power.

b) For this linearised model, write the transfer function between δPaux and δT .

c) Check your solution for the temperature linearisation by investigating a plot of ∂T/∂t
vs T .

d) Design a PID controller for the temperature and test it on the linear model. Re-
quirements: Bandwidth = 0.5Hz (-6dB), zero steady-state error, rejection of input
disturbances above 100Hz, and no amplification of measurement noise. Try to keep
the controller’s response low in order to limit the required control power.

e) Test the PID controller on the original nonlinear ODE model. Plot the response of
the system.

Recall the following transfer functions:
- Sensitivity: S = 1

1+CG

- Disturbance Rejection: DR = G
1+CG

3 Burn control

For this final exercise we consider a burning plasma, using the power balance model from
the exercise on beta control, and assuming fDT = 1.

a) Repeat exercise 1a), now including the nonzero Sα and compare the result.

b) Plot dT
dt

versus T for the case Paux = 25MW. Identify the stationary points where
dT
dt

= 0. What do you notice?

c) Linearise the equation including Sα, for all the equilibrium points you found. Analyse
the stability of each point.

d) For the burning plasma we can easily measure the output neutron power, e.g. by
a neutron detector. This power is equal to Pn = 4Pα. For each equilibrium point,
determine the transfer function between the input power Paux and the neutron power
4Pα

e) Design a linear controller for each operating point that responds to a reference signal
for the neutron power. The controllers are to have the same requirements as in the
previous exercise.

f) Test the controllers on the original nonlinear ODE model. Plot the response of the
system.
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