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RAPTOR equations (recap) cPrL
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Spatial discretisation =Pi-L
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From continuous PDE to discrete ODE =Pr-L

For y(t) = { (1), Te(t), ... },
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space derivative

Coming back to the equations,
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From continuous PDE to discrete ODE =Pr-L

For y(t) = { (1), Te(t), ... },
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From continuous PDE to discrete ODE

For y(t) = { (1), Te(t), ... },
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a=1

Coming back to the equations,
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=Pi-L

time derivative

space derivative
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From continuous PDE to discrete ODE =Pr-L

For y(t) = { (1), Te(t), ... },
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From continuous PDE to discrete ODE =Pr-L

For y(t) = {¥ (1), Te(¢), ... },
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Coming back to the equations,
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Matrix-vector ODE



From continuous PDE to discrete ODE =Pr-L

For y(t) = {¥ (1), Te(¢), ... },

Nngp
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_ time derivative
a=1
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dy(p, t) _ z 0ha(p) (t) space derivative
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Coming back to the equations,
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Implicit scheme

In the interval [t tx41], Where do you evaluate your time derivative?

Forward Euler method (explicit)

- Yik+1tVi _ ~
Yk TR Ve = Vet Aty

Backward Euler Method (implicit)
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Semi-implicit Euler Method
. . + . .
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Gradient descent

How do you evolve your state x(t)?

given uy V k, initial state z( and initial state sensitivity Oxy/0p.
for each time step k =0... M do
: 0 :
First guess xéil =xr + (zp — xx—1); =0
repeat
Evaluate f,gz)(xgﬁrl,xk,uk) (Function residual)

Evaluate Ji1+1 = Of /0xk+1 (Jacobian)

Solve Eq. (D.34) for d (Newton direction) TE d= f,

Update :z;g::ll ) = xg}rl + 7d (Newton step)

11+ 1
until f () < €Newton
Set 11 = mg}rl
Evaluate J;, = 3fk / Ox
Solve Eq.(7.46) for 0zy41/0p (Forward sensitivity)
end for

=PFL
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Parameter sensitivity & local linearization =PrL

Sensitivity equation

_ d fr Of |0Zki1 N 8 fr Oz N 8 fi Ouy N O fx

0

dp Oxrt1| Op Oxr, Op  Oux Op Op

known from Newton step

Assumed validity region
of linearized models

State linearisation

JT. ﬁ_ﬂ’ 5p State space (2)

Te_(ps t)|p:pn—|—d’p ~ TF (ﬂ}t)?]u + E {9_}}

time [s] —&— Pre-computed
State space (1) reference trajectory
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Git repository

What’s inside...

RAPTORY/

v [1] https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

=Pi-L
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https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

Git repository

What’s inside...

RAPTORY/
[7 code: core files
[7 tests: tests to check that code runs correctly
[ demos: demonstration files and tutorials
[7 doc: documentation
[7 equils: equilibrium files defining equilibrium profiles
[7 projects: projects that are built “on top of” RAPTOR
[7 optimization: tools for non-linear optimization
[7 data: store temporary data here (not versioned)
[7 personal: store personal scripts here (not versioned)
[7 1icense: license agreement
[7 RT: Real-time implementations (Simulink)

V [1] https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

=Pi-L

— open source!
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https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

Git repository

version control
Gitlab v collaborative interface

code testing

How to get started?
many tutorials available on internet
funny game: learngitbranching.js.org

=Pi-L

feature/new_idea

15


https://learngitbranching.js.org/?locale=fr_FR

Git repository

What’s inside...

RAPTORY/

[7 code: core files

[7 tests: tests to check that code runs correctly

[7 demos: demonstration files and tutorials | where you will play today!
[7 doc: documentation

[7 equils: equilibrium files defining equilibrium profiles
[7 projects: projects that are built “on top of” RAPTOR
[7 optimization: tools for non-linear optimization

[7 data: store temporary data here (not versioned)

[7 personal: store personal scripts here (not versioned)
[7 1icense: license agreement

[7 RT: Real-time implementations (Simulink)

v [1] https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

=Pi-L
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https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

Code structure =PrL

‘ config = RAPTOR_config ’ set defaults Legend.

| » User intervention
user modifies config <% Simulation running

Y

‘ [model, params, init, g, v, u] = build_RAPTOR_model(config) I generate matrices

user modifies params, v, u
user modifes init

‘ [x0] = RAPTOR_initial_conditions(model, init, g, v) initialize state

J

4
simres = RAPTOR_predictive(x0, g, v, u, model, params)

launch simulation

‘ out = RAPTOR_out(simres, model, params) ’ post-process
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Code structure cPrL

config

specify equations to solve, equilibrium data, numerics

[model, params, init, g, v, U]
| |

tunable parameters geometries
actuator inputs
pre-calculated structure parameters for
& matrices, not to be generating initial state
changed manually X0

pre-known (time-
varying) kinetic profile
guantities 18



Getting started (5

« Tutorials and demo files
* In /demos, execute echodemo or open the Matlab GUI to run the tutorials
* You also can play with some standard scenarios in /demos/standard scenarios

« Meaning of parameters can be found in functions comments
 RAPTOR config for general parameters
 Inside the module to which the parameter applies

Documentation

* Physics and numerics
» [Eelici PPCF 2012, Eelici PhD thesis, Felici NF 2018]

« Equation details
« RAPTOR equation document in /doc directory

=Pi-L
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https://doi.org/10.1088/0741-3335/54/2/025002
https://infoscience.epfl.ch/record/168656
https://iopscience.iop.org/article/10.1088/1741-4326/aac8f0/meta

=Pi-L

a vous de jouer !
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