mwiIicCoO rOx4zZ200

aNON

Introduction to RAPT #

Tutorial

Cassandre Contré (cassandre.contre@epfl.ch)

RAPTOR equations (recap) cPrL

20,0 dy| p*®p Oy F? 0 [gzgs 61#] .
current: o - = — | 5| ni-B)
| Vo otl, V, dp) 8mtup®,V,0p[p 0)
3 - 0 (i)b 0 1 0 g1 0T,; 5
temperature: 2(,0) o1 ., 20, app [(p) Ne,iTe il V;; ap Véne,zXe,z 3p 5 e e,i 80 e,i
TR, L E —&—A[V’]__1 r.+S
density: vi\orl, 20,05 P T g <

Spatial discretisation =Pi-L

<0=[20]) - 3 Mo 0]

03 | Example of y(p) profile approximated by sum of cubic splines

0.2r

0.1

From continuous PDE to discrete ODE =Pr-L

For y(t) = { (1), Te(t), ... },

Nngp

dy(p,t) AP, (t) - N
— time derivative
dt Z Aa(p) dt

a=1

space derivative

Coming back to the equations,

nsp Ngp

490 RE_ 9 o) |
;m < Aa<p>——;ya(t>apg ol

From continuous PDE to discrete ODE =Pr-L

For y(t) = { (1), Te(t), ... },

Nngp

dy;pt, 2 = Z Ag(p)dya(t) time derivative

a=1

space derivative

a=1 ap
Coming back to the equations,
Nsp nsp
dy (t) a dN,(p)
N mEEE A (0)AL(p) = - Zya(t)Aﬁw 59 et

a=1

projection on Agz(p)

From continuous PDE to discrete ODE

For y(t) = { (1), Te(t), ... },

Nngp

dy(p, t) dya(t)
=) Aa(p)

a=1

Coming back to the equations,

Ngp

a=1

=Pi-L

time derivative

space derivative

a a a(p) Pe

d"a Pe Pe
> w2 [agonaorip = - Zya(o [asto)

dp + kjdp

op? ap 0

integral over p

From continuous PDE to discrete ODE =Pr-L

For y(t) = { (1), Te(t), ... },

Nngp

dy(p,t) d34(t) ' ivati
_ time derivative
a=1
ngp
dy(p, t) _ z 0ha(p) (t) space derivative
dp] ap Ve ’
a=

Coming back to the equations,

< dpl(o) [P R Pe dhg(p) AA4(p) 0N (P)]) | [P, .
Zm o LAB(p)Aa(p)dp——;ya(t)(L 9"o0p " op dp+[g/\g(p) op L>+ . kjdp

a=1
integration by parts

From continuous PDE to discrete ODE =Pr-L

For y(t) = {¥ (1), Te(¢), ... },

Nngp

dy(p,t) d34(t) ' ivati
_ time derivative
a=1
ngp
dy(p, t) _ z 0ha(p) (t) space derivative
dp] ap Ve ’
a=

Coming back to the equations,

& dPa(0) [P R pe ahg(p) 9Ao(p) 0M(D]7\ | (P
Zm o LAB(p)Aa(p)dp—_;Ya(t)<L 9"op " op dp+[g/\/;(p) o]0>+ . kjdp

a=1

Matrix-vector ODE

From continuous PDE to discrete ODE =Pr-L

For y(t) = {¥ (1), Te(¢), ... },

Nngp

dy(p,t) d34(t) ' ivati
_ time derivative
a=1
ngp
dy(p, t) _ z 0ha(p) (t) space derivative
dp] ap Ve ’
a=

Coming back to the equations,

I d}/;a(t) Pe _ X N Pe aA,B(p) 5Aa(,0) aAa(p) Pe Pe
Zm o jo Ag(p)Aa(p)dp——;ya(t) (jo 9"op " op dp + [g/\g(p) o]0>+ . kjdp

a=1

Vv
f(.j?(t), :B(t), u(t)) =0Vt state evolution equation

Implicit scheme

In the interval [t tx41], Where do you evaluate your time derivative?

Forward Euler method (explicit)

- Yik+1tVi _ ~
Yk TR Ve = Vet Aty

Backward Euler Method (implicit)

. o Yk+11+Vk _ .
Y1 ® 7 0 Vo1 = Ve T A Yy

Semi-implicit Euler Method
. . + . .
Y1 + (1= @)y =~ HEZE, Yiet1 = Y + At (aViqq + (1 — a)yy)

=PFL

10

Gradient descent

How do you evolve your state x(t)?

given uy V k, initial state z(and initial state sensitivity Oxy/0p.
for each time step k =0... M do
: 0 :
First guess xéil =xr + (zp — xx—1); =0
repeat
Evaluate f,gz)(xgﬁrl,xk,uk) (Function residual)

Evaluate Ji1+1 = Of /0xk+1 (Jacobian)

Solve Eq. (D.34) for d (Newton direction) TE d= f,

Update :z;g::ll) = xg}rl + 7d (Newton step)

11+ 1
until f () < €Newton
Set 11 = mg}rl
Evaluate J;, = 3fk / Ox
Solve Eq.(7.46) for 0zy41/0p (Forward sensitivity)
end for

=PFL

11

Parameter sensitivity & local linearization =PrL

Sensitivity equation

_ d fr Of |0Zki1 N 8 fr Oz N 8 fi Ouy N O fx

0

dp Oxrt1| Op Oxr, Op Oux Op Op

known from Newton step

Assumed validity region
of linearized models

State linearisation

JT. ﬁ_ﬂ’ 5p State space (2)

Te_(ps t)|p:pn—|—d’p ~ TF (ﬂ}t)?]u + E {9_}}

time [s] —&— Pre-computed
State space (1) reference trajectory

12

Git repository

What’s inside...

RAPTORY/

v [1] https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

=Pi-L

13

https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

Git repository

What’s inside...

RAPTORY/
[7 code: core files
[7 tests: tests to check that code runs correctly
[demos: demonstration files and tutorials
[7 doc: documentation
[7 equils: equilibrium files defining equilibrium profiles
[7 projects: projects that are built “on top of” RAPTOR
[7 optimization: tools for non-linear optimization
[7 data: store temporary data here (not versioned)
[7 personal: store personal scripts here (not versioned)
[7 1icense: license agreement
[7 RT: Real-time implementations (Simulink)

V [1] https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

=Pi-L

— open source!

14

https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

Git repository

version control
Gitlab v collaborative interface

code testing

How to get started?
many tutorials available on internet
funny game: learngitbranching.js.org

=Pi-L

feature/new_idea

15

https://learngitbranching.js.org/?locale=fr_FR

Git repository

What’s inside...

RAPTORY/

[7 code: core files

[7 tests: tests to check that code runs correctly

[7 demos: demonstration files and tutorials | where you will play today!
[7 doc: documentation

[7 equils: equilibrium files defining equilibrium profiles
[7 projects: projects that are built “on top of” RAPTOR
[7 optimization: tools for non-linear optimization

[7 data: store temporary data here (not versioned)

[7 personal: store personal scripts here (not versioned)
[7 1icense: license agreement

[7 RT: Real-time implementations (Simulink)

v [1] https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

=Pi-L

16

https://gitlab.epfl.ch/spc/raptor/raptor/-/tree/main

Code structure =PrL

‘ config = RAPTOR_config ’ set defaults Legend.

| » User intervention
user modifies config <% Simulation running

Y

‘ [model, params, init, g, v, u] = build_RAPTOR_model(config) I generate matrices

user modifies params, v, u
user modifes init

‘ [x0] = RAPTOR_initial_conditions(model, init, g, v) initialize state

J

4
simres = RAPTOR_predictive(x0, g, v, u, model, params)

launch simulation

‘ out = RAPTOR_out(simres, model, params) ’ post-process

17

Code structure cPrL

config

specify equations to solve, equilibrium data, numerics

[model, params, init, g, v, U]
| |

tunable parameters geometries
actuator inputs
pre-calculated structure parameters for
& matrices, not to be generating initial state
changed manually X0

pre-known (time-
varying) kinetic profile
guantities 18

Getting started (5

« Tutorials and demo files
* In /demos, execute echodemo or open the Matlab GUI to run the tutorials
* You also can play with some standard scenarios in /demos/standard scenarios

« Meaning of parameters can be found in functions comments
 RAPTOR config for general parameters
 Inside the module to which the parameter applies

Documentation

* Physics and numerics
» [Eelici PPCF 2012, Eelici PhD thesis, Felici NF 2018]

« Equation details
« RAPTOR equation document in /doc directory

=Pi-L

19

https://doi.org/10.1088/0741-3335/54/2/025002
https://infoscience.epfl.ch/record/168656
https://iopscience.iop.org/article/10.1088/1741-4326/aac8f0/meta

=Pi-L

a vous de jouer !

	Section par défaut
	Slide 1: Introduction to RAPTOR Tutorial
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Conclusion
	Slide 20

