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Section 1

Tokamak magnetic equilibrium
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Tokamak magnetic equilibrium Magnetic field and current description

Subsection 1

Magnetic field and current description
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Tokamak magnetic equilibrium Magnetic field and current description

Magnetic field in a tokamak plasma
• The magnetic field is assumed to be axisymmetric ∂/∂ϕ = 0
• We also assume the existence of nested flux-surfaces
• We describe the total B field as toroidal + poloidal field

B = T∇ϕ+ Bp, (T = rBϕ) (1)

Bp =
−1
2πr

∂ψ

∂z
er +

1
2πr

∂ψ

∂r
ez =

1
2π

∇ψ ×∇ϕ (2)

with ψ the upward magnetic flux through a loop at constant (r , z)
• note that ∇ψ · B = 0: Field lines lie on flux surfaces
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Tokamak magnetic equilibrium Magnetic field and current description

Currents in the plasma
• Apply Ampère’s law and some vector calculus to (1)

µ0j = ∇× B = ∇×
(
T∇ϕ+ Bp

)
(3)

µ0j = µ0jϕeϕ +∇× (T∇ϕ) = µ0jϕeϕ +∇T ×∇ϕ (4)

with

µ0jϕeϕ = ∇×
(∇ψ

2π
×∇ϕ

)
= − 1

2πr
r2∇ ·

(∇ψ
r2

)
︸ ︷︷ ︸

∆∗ψ

eϕ (5)

∆∗ψ = r
∂

∂r

(
1
r
∂ψ

∂r

)
+
∂2ψ

∂z2 = −2πrµ0jϕ (6)

• This relation is valid for any axisymmetric magnetic configuration.
It is valid in the coils, vacuum vessel, vacuum region and plasma
with no other assumption.

• It is often referred to as the Poisson equation.
A. Merle, F. Felici (SPC-EPFL) Tokamak magnetic modeling Part IV PHYS-748, February 2025 6 / 54



default

Tokamak magnetic equilibrium Magnetic field and current description

Another interpretation for T

B = T∇ϕ+
1

2π
∇ψ ×∇ϕ,

µ0j = µ0jϕeϕ +∇T ×∇ϕ

• 2π/µ0T (r , z) is the total upward current flowing through the loop at
constant (r , z).

• This can also be seen from Ampere’s law
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Tokamak magnetic equilibrium MHD model for a tokamak

Subsection 2

MHD model for a tokamak
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Tokamak magnetic equilibrium MHD model for a tokamak

MHD equations
• The Magneto HydroDynamical (or MHD) model is a magnetised

fluid model for the plasma
• It describes the evolution of the velocity v, magnetic field B,

current density j, plasma pressure tensor p (assumed to be
isotropic), mass density ρ, and the electric resistivity η.

∂ρ

∂t
+∇ · (ρv) = 0 continuity (7)

ρ

(
∂

∂t
+ v ·∇

)
v = j × B −∇p momentum (8)

d
dt

(
p
ργ

)
= 0 Equation of state (9)

E + v × B = η(j − jni) Ohm’s law (10)

∂B
∂t

= −∇× E, µ0j = ∇× B, ∇ · B = 0 Maxwell (11)
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Tokamak magnetic equilibrium MHD model for a tokamak

MHD equations for a static equilibrium
• Let’s derive the equations for a plasma at equilibrium.
• Assuming that the equilibrium is static v = 0

j × B = ∇p momentum (12)

E = η(j − jni) Ohm’s law (13)

∇× E = 0, µ0j = ∇× B, ∇ · B = 0 Maxwell (14)

• Note that the mass density ρ is not constrained at equilibrium.

What about transient phases in a tokamak?
• As mentioned in part 3, inertial effects act at a much shorter

timescale than the timescales of interest for plasma control.
• We invoke again the idea of “instantaneous force balance”, the

force balance j × B = ∇p is always verified.
• This is empirically confirmed during controlled operation of

tokamaks.
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Tokamak magnetic equilibrium The Grad-Shafranov equation

Subsection 3

The Grad-Shafranov equation
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Tokamak magnetic equilibrium The Grad-Shafranov equation

Flux functions

• Recall the plasma force balance

∇p = j × B (15)

This implies that B ·∇p = j ·∇p = 0: the pressure gradient is
perpendicular to the local current and magnetic field.

• Using the expressions for j and B:

B ·∇p = (
∇ψ
2π

×∇ϕ) ·∇p = ∇ϕ · (∇p × ∇ψ
2π

) = 0 (16)

j ·∇p = (∇T ×∇ϕ) ·∇p = ∇ϕ · (∇p ×∇T ) = 0 (17)

• We see that ∇p ∥ ∇ψ, ∇T ∥ ∇p so p(ψ), T (ψ) are flux functions,
i.e. constant on a flux surface.
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Tokamak magnetic equilibrium The Grad-Shafranov equation

Updated formulas for magnetic field and current

• The updated expressions for B and j are

B = eϕ
T (ψ)

r
+

1
2πr

(∇ψ × eϕ) (18)

µ0j = −eϕ
1

2πr
∆∗ψ +

1
r

dT
dψ

(∇ψ × eϕ) (19)
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Tokamak magnetic equilibrium The Grad-Shafranov equation

The Grad-Shafranov equation
• Now use decomposition of j and B into poloidal and toroidal

components:

∇p = (jϕeϕ + jp)× (Bϕeϕ + Bp) (20)

= − T
µ0r2∇T + jϕ

∇ψ
2πr

(21)

using ∇T = T ′(ψ)∇ψ and ∇p = p′(ψ)∇ψ:

p′∇ψ = − T
µ0r2 T ′∇ψ +

jϕ
2πr

∇ψ (22)

jϕ = 2π
(

rp′(ψ) +
1
µ0r

TT ′(ψ)

)
(23)

Combining with (5) we get the Grad-Shafranov equation [1], [2]:

∆∗ψ = −4π2
(
µ0r2p′(ψ) + TT ′(ψ)

)
. (24)

A. Merle, F. Felici (SPC-EPFL) Tokamak magnetic modeling Part IV PHYS-748, February 2025 14 / 54



default

Tokamak magnetic equilibrium The Grad-Shafranov equation

The Grad-Shafranov equation

∆∗ψ = −4π2
(
µ0r2p′(ψ) + TT ′(ψ)

)
. (25)

• It is a nonlinear, 2D elliptic PDE. ψ appears nonlinearly in the right
hand side via the dependence of the free p and T functions.

• Free functions?
• The profiles of p and T are set by the transport dynamics in the

plasma. Hence when solving only the Grad-Shafranov equation, we
consider them as given (or p′ and TT ′, or some other combination).

• Usually p and T are not a function of the local ψ value alone, but
also of the value of ψ on axis ψA and at the boundary ψB. It is also
necessary to discriminate locations in and out of the plasma with
some mask function Ωp(r , z).

p(r , z) = p(ψ(r , z), ψA, ψB,Ωp(r , z))

T (r , z) = T (ψ(r , z), ψA, ψB,Ωp(r , z))
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Subsection 4

Characteristics of tokamak equilibria
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Limited vs diverted plasmas

• The last closed flux surface (LCFS) is last flux surface that has
closed magnetic field lines, i.e. that do not intersect the wall.

• Limited plasma: LCFS is determined by a direct contact between
the flux surface of the plasma and the wall.

• Diverted plasma: LCFS is determined by the presence of an
X-point (saddle point of ψ(r , z)) which separates closed from open
field lines.
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Diverted plasmas
• Diverted plasmas are good for many reasons:

• The confined region is not in direct contact with the wall: plasma is
hotter and ’cleaner’. The plasma-wall interaction is limited to a
well-engineered region called the divertor.

• The locally low poloidal field near the X-point (∇ψ = 0) creates
toroidally elongated trajectories for particles so they can cool down
before reaching the divertor.

Figures: ITER.org and EUROfusion.org
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Plasma beta

• To achieve fusion we need high pressure
• A dimensionless figure of merit for high pressure in magnetic

confinement devices is the plasma ‘beta’

β =
volume-averaged kinetic pressure

volume-averaged magnetic pressure

• Volume-averaged kinetic pressure: ⟨p⟩V = 1
V

∫
V pdV .

• Volume-averaged magnetic pressure: ⟨B2/2µ0⟩
• Depending on a particular choice for the magnetic field to

consider, various βs can be defined
• Toroidal beta1: βt =

2µ0⟨p⟩
B2

0

• Poloidal beta: βp = 2µ0⟨p⟩
µ2

0I2
p/L2

p

• Normalized beta: βN = βt [%]
I/aB0

≤ 2.8 (Troyon β limit)
1B0 is the vacuum toroidal field at some reference radius r0, r0 = 0.88 m for TCV.
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Internal inductance
The distribution of current in the plasma can vary depending on the
equilibrium shape and the profiles of the p and T functions.
• The plasma internal inductance is defined as Li = 2Wi/I2

p where
Wi is the magnetic energy stored in the poloidal field inside the
plasma volume.

Wi =

∫
V

B2
p

2µ0
dV =

1
8π2µ0

∫
V

|∇ψ|2
r2 dV

• The normalised internal inductance per unit length is defined as

ℓi =
4π
µ0

Li

2πr0

• Different current profiles lead to different ℓi values
• Peaked current profile leads to high ℓi and is bad for vertical stability
• Wide current profile leads to low ℓi and is bad for MHD stability
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

The q profile

• The magnetic field lines helically warp around the torus
• Their pitch angle will vary along the flux surface, however we can

define a “mean pitch angle”.

q =
number of turns in toroidal direction
number of turns in poloidal direction

(26)

• More formally [3]:

q(ψ) =
1

2π

∮
1
r

Bϕ
Bp

dℓ =
T (ψ)

2π

∮
dℓ

r2Bp
(27)

where the integral is done over one poloidal circuit on a flux
surface.

• q is a measure for the total current contained for a given toroidal

field. Engineering q: q∗ =
2πa2B0
µ0r0Ip

(
1+κ2

2

)
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

The importance of the q profile

• The q profile plays an essential role in tokamak plasma stability. It
is referred to as the ‘safety factor’.

• Plasmas with qedge < 2 are MHD unstable. It is a ‘Hard’ operating
limit for tokamaks.

• If the plasma has regions where (locally) q < 1, this region will be
unstable, leading to periodic internal crashes called sawteeth.

• At surfaces where q is rational q = (4
3 ,

3
2 ,

2
1 ,

3
1 , . . .), the field lines

close on themselves periodically and are prone to develop
magnetic instabilities known as tearing modes

• Plasmas with non-monotonic or ‘flat’ q profiles tend to have good
confinement properties (more in lecture on kinetic control)
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Examples of q profiles

1 inductive

~zero shear (hybrid)

weak reverse shear

strong reverse shear

2

3

1

q

ρ

j

ρ1

• Current and safety factor profiles are strongly linked.
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Shafranov shift

Figure: NSTX equilibria, from: Phys.
Plasmas 17, 032502 (2010)

• The magnetic axis is defined
as the point where ψ(r , z) has
a maximum or minimum ψa.

• This magnetic axis is
displaced with respect to the
LCFS geometric centroid. The
displacement is called the
Shafranov Shift ∆.

• Increases with plasma
pressure and with internal
inductance
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Tokamak magnetic equilibrium Characteristics of tokamak equilibria

Plasma shaping
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Tokamak magnetic equilibrium Equilibrium calculations

Subsection 5

Equilibrium calculations
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Tokamak magnetic equilibrium Equilibrium calculations

Solver types: fixed or free boundary
• The Grad-Shafranov equation is a non-linear 2D PDE:

∆∗ψ = −2πrµ0jϕ = −4π2
(
µ0r2p′(ψ) + TT ′(ψ)

)
(28)

• Given p(ψ) and T (ψ) we can solve for ψ(r , z).
• Several options are available to solve it:

• Fixed-boundary: we prescribe the outline of the plasma boundary
and we solve the GS equation strictly inside this domain using a
Dirichlet condition ψ = ψb at the boundary.

• Free-boundary: the computational domain includes the whole
limiter domain, we look for the solution including all conductors
such that ψ → 0 as (r , z) → ∞.

∆∗ψ = −2πrµ0jϕ(p′,TT ′, ψ) inside the plasma (29)

∆∗ψ = 0 in vacuum (30)

∆∗ψ = −2πrµ0jϕ in other conductors (31)

Determining the plasma boundary is part of the solving process and
reinforces the nonlinear character of the problem.
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Tokamak magnetic equilibrium Equilibrium calculations

Solver types: forward and inverse solvers
We also distinguish solvers based on the formulation of the problem
• Forward solvers (or predictive solvers): solve the GS problem for

given external currents Ie and given functions p(ψ), T (ψ)
• One can also parametrise the free functions p and T and imposing

some local or integral constraints for the solution (e.g. total current
Ip, poloidal beta value βp, value of q at the axis, etc.)

• One can also extend the GS equation with the external circuit
equations to model the evolution of the equilibrium (see Part 5)

• Examples of FB forward solvers: DINA [4], CEDRES++ [5], NICE
[6], CORSICA [7], MEQ-FGE [8], ...

• Inverse solvers (or optimisation solvers): find the GS solution
that minimises a certain cost function (some examples later)

• Again free function parametrisation can be employed as well as
local or integral constraints

• The values of the external currents are usually also part of the
solution (i.e. not a given input)

• Examples of FB inverse solvers: EFIT [9], MEQ-LIUQE [10],
EQUINOX [11], NICE [6], MEQ-FBT [12], ...
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Tokamak magnetic equilibrium Equilibrium calculations

Iterative Picard method

• A popular method to treat this nonlinear problem is to successively
iterate between the current and the flux distributions

• At step [n − 1] the current distribution is j [n−1]
ϕ in the plasma, then

step [n] is reached using the following steps:

1 Solve the Poisson equation ∆∗ψ[n] = −2πµ0rj [n−1]
ϕ in Ω to get ψ[n]

2 Find the plasma domain (LCFS) Ω[n]
p

3 Update the plasma current density

j [n]ϕ = 2π
(

rp′(ψ[n]) + 1
µ0r TT ′(ψ[n])

)
in Ω

[n]
p

4 Test the convergence criterion based on change of jϕ or ψ

• A suitable initial guess for jϕ or ψ has to be provided.
• This can be refined by allowing an update of the external

conductor currents Ie and of the plasma profiles p′,TT ′ at each
iteration.
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Tokamak magnetic equilibrium Equilibrium calculations

The free-boundary Picard method is unstable for κ > 1

• Why? Shortly, the same arguments for the derivation of plasma
vertical stability can be made for the stability of the Picard method.

• One common feature is the relative rigidity of the distribution of
currents in the external conductors.

• Fixed-boundary solvers are stable since the “external field” reacts
instantly to maintain the iso-flux surface at the domain boundary.
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Tokamak magnetic equilibrium Equilibrium calculations

Common stabilisation schemes

• Allow one or more coil current to vary to maintain the plasma
vertical position (add a feedback loop in your iterations)

• Add an artificial radial field to maintain the plasma vertical position
• Allow a shift between the current and flux distributions

j [n]ϕ (R,Z ) = jϕ(p′,TT ′, ψ(R,Z + δZ [n]))

δZ is an additional free parameter. In equilibrium reconstruction
algorithms it is determined from fitting the measurements data.

• All schemes result in either a modification of the original problem
or a violation of the Grad-Shafranov equation.

• Add an outer loop to minimise the artificial field
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Tokamak magnetic equilibrium Equilibrium calculations

Newton method I
• A better option is to formulate the GS problem as a root finding

problem F(x) = 0 (where x can be ψ or jϕ) and use a Newton
method to solve it.

• Given a current estimate x [n], x [n+1] is determined by:

J(x [n]) · (x [n+1] − x [n]) = −F(x [n])

where J = ∂F
∂x is the Jacobian of the function F .

• This method is stable and yields excellent convergence properties
compared to the Picard method (quadratic vs. linear). Many
algorithms to achieve global convergence exist in the literature.

• One difficulty is the evaluation of the jacobian J which can be
alleviated using Jacobian-free Newton-Krylov techniques,
although analytical expressions can also be derived.

• The Picard method is a Newton method with an approximate
jacobian where we have assumed ∂jϕ

∂ψ = 0.
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Tokamak magnetic equilibrium Equilibrium calculations

Definition of F for the free-boundary GS problem

• One can simply define F to be the residual of the GS equation,
including the boundary condition. The ∆∗ operator is discretised
using either finite differences or FEM methods (e.g. NICE,
CREATE-NL).

• Another option is to find the fixed-point of a single Picard iteration.
I.e. given jϕ

1 Solve the Poisson equation ∆∗ψ = −2πµ0rjϕto get ψ
2 Find the plasma domain (LCFS) Ωp

3 Update the plasma current density

j1ϕ = 2π
(

rp′(ψ) +
1
µ0r

TT ′(ψ)

)
in Ωp

and define F(jϕ) = j1ϕ − jϕ
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Tokamak magnetic equilibrium Equilibrium calculations

Solving the Poisson equation
Boundary condition at the edge of the computational domain
• ψb = ψb,p(jϕ) + Mb,eIe on ∂Ω
• The contribution from the plasma current can be computed by

replacing it by a sheet current j∗ϕ at the edge of the domain that
produces the same flux at this boundary.

• j∗ϕ can actually be computed from a solution of the Poisson
equation with ψ = 0 on ∂Ω (see [10], original idea by K. Lackner).

• We solve 2 Poisson equations at each iteration but this is faster
than computing ψb,p using Green functions.

Poisson solver
• The ∆∗ operator is not too different from the Laplace operator so

the usual methods for fast inversion work well (e.g. DFT, cyclic
reduction or tri-diagonal matrix inversion).
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Tokamak magnetic equilibrium Equilibrium calculations

Identifying the plasma domain I

Magnetic axis
• The poloidal field is zero: ∇ψ = 0
• ψ has an extremum: detH(ψ) > 0
• Only points within the limiter contour are

considered
• There may be several magnetic axes (doublet)
• For Ip > 0, the flux decreases away from the

magnetic axis. The LCFS is the closed flux
surface with the smallest flux.

Limited plasma
• For a limited plasma the boundary point is where

the flux on the limiter is maximum (assuming
Ip > 0 and in the absence of X-points).
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Tokamak magnetic equilibrium Equilibrium calculations

Identifying the plasma domain II

X-point(s)
• The poloidal field is zero: ∇ψ = 0
• ψ has a saddle point: detH(ψ) < 0
• There may be several X-points
• The active X-point defines the plasma boundary
• Following the straight line going from the

magnetic axis to the X-point, ψ increases again
after the X-point. This region is called the private
flux region.

Diverted plasma
• The active X-point has the maximum flux

compared to all limiter points and to all X-points
once those in private flux regions of all X-points
have been discarded.
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Tokamak magnetic equilibrium Equilibrium calculations

Updating the plasma current density

• We need to compute

j1ϕ = 2π
(

rp′(ψ) +
1
µ0r

TT ′(ψ)

)
in Ωp

but since we have imposed the functions p and T such that

p(r , z) = p(ψ(r , z), ψA, ψB,Ωp(r , z))

T (r , z) = T (ψ(r , z), ψA, ψB,Ωp(r , z))

and we have already computed all necessary quantities, this task
presents no other difficulties.
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Tokamak magnetic equilibrium Inverse Equilibrium solvers

Subsection 6

Inverse Equilibrium solvers
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Tokamak magnetic equilibrium Inverse Equilibrium solvers

Inverse solvers: a quick peek at the numerical
methods I

• Inverse solvers try to find the Grad-Shafranov solution that
minimises some cost function W

• An optimality condition is added to our systems of equations. If u
represents the optimisation parameters (typically the external
currents Ie) then the solution also has to verify:

∂W
∂u

+
∂W
∂x

dx
du

= 0 (32)

with
dx
du

= −
(
∂F
∂x

)−1 ∂F
∂u

(33)
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Tokamak magnetic equilibrium Inverse Equilibrium solvers

Inverse solvers: a quick peek at the numerical
methods II

• Picard iterations can be employed but vertical stabilisation can be
necessary and are slow to converge.

• Newton or Quasi-Newton methods are more efficient and stable
(see e.g. [6]).

• One can also show in this case that Picard iterations are Newton
iterations with an approximate Jacobian. This means that the
optimality condition is only approximately verified, but in most
cases the Picard and Newton solutions remain very close.
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Tokamak magnetic equilibrium Inverse Equilibrium solvers

Inverse mode: PF coil current calculations I

• Inputs: Desired plasma boundary shape.
Outputs: Required PF coil currents.

• This problem typically has to be solved during the shot preparation
to determine the sequence of Ia to get the desired plasma shape
at a sequence of pre-defined times.

• Typically we assume a nearly steady-state equilibrium: vessel
currents and the transformer coil currents required for maintaining
the plasma current are neglected.

• Note that this calculation automatically yields the required vertical
field: GS equation is the force balance.

• It can also be used in the design phase of a tokamak to determine
the position and size of the coils etc.
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Inverse mode: PF coil current calculations II
• Cost function structure:

• Given control points (Rc ,Zc) on our desired LCFS
• Penalise the departure of the flux at these control points from an

unknown reference value ψ0

W =
∑

c

∥ψ(Rc ,Zc)− ψ0∥2 (34)

• The plasma profiles p and T are chosen to satisfy some constraints
based on some scalar equilibrium characteristics e.g.
Ip,q0,Wk , βp, ℓi , . . .
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Inverse mode: PF coil current calculations III
• Additional constraints can be added to the optimisation problem:

• Absolute value of ψ to use shaping coils to induce Vloop
• Value for BR,Bz at (Rc ,Zc), e.g. X-points have BR = BZ = 0
• Second derivative of ψ can be used to produce hexapoles

(Snowflakes) or different levels of field-line flaring
• Regularisation terms

• to minimise the current in each coil (and power requirements)
• to minimise current dipoles (minimise regions with large poloidal field

and strong LCFS curvature).
• All constraints can be made exact or have a relative weight.
• Inequality constraints can also be used to make sure the solution

stays within a predefined operational domain.

• With enough control points, the Picard iteration method can
converge without vertical stabilisation.
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Equilibrium reconstruction I

• Inputs: measurements of coil currents, flux loops, fields, ...
Outputs: Profiles p′(ψ), TT ′(ψ) and plasma equilibrium ψ(R,Z )

• This is usually a (non-linear) least squares problem using the
measurements

W =

∥∥∥∥y − h
e

∥∥∥∥2

2
(35)

where the y vector contains the actual measurements, h the
synthetic measurements and e the expected errors

• This is solved by so-called equilibrium reconstruction codes.
Examples: EFIT [9], LIUQE [10], EQUINOX [11], ...

• In many tokamaks, this is done in real-time to determine the
plasma equilibrium.
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Equilibrium reconstruction II
• The initial guess for the current distribution can be obtained using

a Finite Element description similar to what was seen in Part II.
• The internal profiles p′ and TT ′ are supposed to be a linear

combination of a set of basis functions

p′(ψ) =
∑

k

αk fk(ψ), TT ′(ψ) =
∑

k

βkgk(ψ) (36)

• The optimisation parameters are (Ia, Iv , α, β[, δz])
• Magnetic measurements: magnetic probes, flux loops, Ip

measurements/estimators, diamagnetic flux loop, etc.
• Others: q markers (from MHD activity), MSE (Motional Stark

Effect) measurements, Faraday rotation from polarimetry, local
kinetic measurements (or estimates) of p ...
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Limitations of equilibrium reconstruction

• Using only external magnetic measurements, the details of the
internal plasma profiles p′ and TT ′ cannot be fully resolved

• Although the LCFS shape can be reconstructed with good
accuracy, it is hard to separate the contributions from p′ and TT ′

to the current profile, especially at low elongation.
• TCV uses a diamagnetic loop (DML) to measure the plasma

contribution to T (i.e. the modification of the toroidal field due to
the plasma) and thus helps disentangle the two contributions.

• The measurement is quite challenging as (T/Tvacuum − 1) ∼ β ∼ 1%

• On TCV standard settings for LIUQE with the magnetics and DML
only include only one basis function for p′ and two for TT ′

• Including internal constraints helps overcome these limitations
• local measurements of the plasma pressure or poloidal field
• estimates of the plasma profiles from transport simulations
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Real-time equilibrium reconstruction

• Typically RT constraints impose a cycle time below 1 ms
• Over this timescale the equilibrium cannot change too much. We

then use this fact to speed up our computation by
• Using the previous time step as the initial guess
• Skipping the convergence test and doing a fixed number of

iterations per time step (typically 1)

• With standard settings on TCV a single RT-LIUQE iteration takes
about 200us

• This is fast enough for shape control but not vertical stabilisation.
• Coupling with RAPTOR to provide p′ and TT ′ profiles allowed RT

kinetic reconstructions [13]
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Section 2

Introduction to the MEQ suite of codes
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MEQ - Matlab EQuilibrium suite

• A suite of codes for solving tokamak equilibrium
problems

• Main features:
• Written in C and Matlab (Octave-compatible)
• A “toolbox” with “onion-skin” API

• Basic users need to know only high-level calls
• Advanced users can use lower-level functions

for their purposes
• Unified equilibrium representation for all

different equilibrium problems
• Maximum re-use of common equilibrium

processing routines across code
• Suite of plotting, visualisation tools
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MEQ - Codes in the suite

Update: FBT-GSPULSE is now solving the inverse evolutive problem
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MEQ - History
• In-house SPC FORTRAN codes developed by F. Hofmann to

compute equilibria for highly shaped TCV (incl. doublets)
• FBT - [14] - Inverse problem
• LIUQE - [12] - Equilibrium reconstruction

• Rewritten in C & MATLAB (& Simulink) including real-time
compatibility [10]

• Real-time code equal to off-line, just do N iterations per time step
• TCV grid 28x65 <200us per time step, runs routinely in TCV PCS

• LIUQE extensively tested for ITER as part of F4E-OPE883
contract (with CREATE)

• ITER equilibrium solved on 65x128 grid <1ms
• Use experience with fast equilibrium codes to write ‘forward’

solvers using the same fast low-level routines [8]
• FGS (Forward GS Static)
• FGE (Forward GS Evolutive)
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MEQ - Code

• Two main developers (A. Merle, F. Felici) plus important
contributions from 4-6 developers in the last 5 years

• Code is hosted on https://gitlab.epfl.ch,
• Systematic code review / merge request practice
• Regular use of issue tracking
• High test coverage, test suite run on every push
• Regular tagged releases to TCV clusters

• Growing user base: CFS, UKAEA, EAST, IPP-Prague, ...

Licensing
• The code is provided to you for the exercise session.
• Now using an Apache 2.0 license, if you are interested in it for

your work, please contact us.
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