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Free boundary evolution modeling

Section 1

Free boundary evolution modeling
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default

Free boundary evolution modeling

’Forward’ Grad-Shafranov equilibrium problem

• In previous lectures we saw how to solve the Grad-Shafranov
equation for equilibrium (re)construction problems. We
distinguished two versions of an ’optimization-based’ solver:
• the inverse problem (FBT) where we seek an equilibrium that

minimizes a cost function based on the ’desired equilibrium
properties’ in terms of LCFS location, strike points, etc

• The reconstruction problem (LIUQE) where we seek an equilibrium
that minimizes a cost function based on measurements.

• Now consider the forward problem of finding an equilibrium given:
• External currents Ie(= [Ia; Iu])
• The total plasma current Ip
• Other constraints equations on moments of the internal plasma

profiles (e.g. βp,qA, `i )
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Free boundary evolution modeling

Forward Grad-Shafranov equilibrium problem

• Given Ie, Ip, co, we seek a plasma current distribution vector Iy and
basis function coefficients ag such that:

Fy(Iy , Ie, Ip,ag, co) = 0 residual related to the GS equation (1)

Fg(Iy , Ie, Ip,ag, co) = 0 residual of the Ip and constraint equations
(2)

• One specific choice of Fy (other choices exist):
1 Given I[n−1]

y = j [n−1]
φ /∆S from a previous iteration, compute boundary condition

ψb = Mby I[n−1]
y + MbeIe

2 Compute new flux by inverting Laplace operator: ∆∗ψ[n] = −2πRµ0I[n−1]
y ∆S with

boundary condition ψb

3 Find plasma boundary and domain where I[n]
y 6= 0

4 Compute mapping between plasma current and basis function coefficients Tyg , by
evaluating basis function expressions on ψ[n]: p′ =

∑
i bi (ψ

[n])ai
g ,

TT ′ =
∑

j bj (ψ
[n])aj

g

5 Compute new plasma current distribution I[n]
y = T [n]

yg ag

6 Return plasma current distribution residual Fy = I[n]
y − I[n−1]

y
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Free boundary evolution modeling

Forward Grad-Shafranov equilibrium problem

• Residual equations are computed directly from the equilibrium at
the present iteration, for example if imposing Ip, βp, `i :

Fg =

 Ip,ref −
∑

y Iy
βp,ref − βp,eq(Iy , Ie,ag)
`i,ref − `i,eq(Iy , Ie)

 (3)
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Free boundary evolution modeling

Forward Grad-Shafranov equilibrium problem

• We have a problem of the form

F(x) = 0 (4)

with unknowns x =

[
Iy
ag

]
.

• Solve using Newton method, iterating

x [n] = x [n−1] −
(
∂F
∂x

)−1

F(x [n−1]) (5)

• Construct full Jacobian by Finite Differences or analytical
expressions

• Jacobian-Free Newton-Krylov method [1]: Find Newton step
direction by approximating the column space of the Jacobian.

• This is implemented in the FGS code in the MEQ suite
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Free boundary evolution modeling

The plasma equilibrium response matrix

• Once the solution is found, we can construct the plasma
equilibrium response matrices

∂Iy
∂Ie

response to variation in external currents (6)

∂Iy
∂Ip

response to variation in plasma current (7)

∂Iy
∂co

response to variation in internal constraints (8)

• These can be obtained by finite differences, or if Jacobians are
known, by rewriting

0 =
[

∂F
∂Iy

∂F
∂ag

] [ δIy
δag

]
+
[

∂F
∂Ip

∂F
∂co

∂F
∂Ie

] δIp
δco

δIe

 (9)

in the form δIy =
∂Iy
∂Ie
δIe +

∂Iy
∂co
δco +

∂Iy
∂Ip
δIp
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Free boundary evolution modeling

Free-boundary Grad-Shafranov evolution

• So far we assumed Ie, Ip are given: this makes this a static
problem.

• In reality Ie, Ip will evolve in response to voltages, following
Farday/Ohm’s law

• Add a circuit equation, and discretize

Mee İe + ReeIe + Mey İy = Ve (10)

• Add a plasma current evolution equation

IT
y

Ip
Myy İy +

IT
y Mye

Ip
İe + RpIp = 0 (11)

• Discretize:

Mee(Ik
e − Ik−1

e ) + ∆tReeIk
e + Mey(Ik

y − Ik−1
y ) = ∆tVe (12)

IT
y

Ip
Myy(Ik

y − Ik−1
y ) +

IT
y Mye

Ip
(Ik

e − Ik−1
e ) + ∆tRpIk

p = 0 (13)
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Free boundary evolution modeling

Free-boundary Grad-Shafranov evolution

• Extended system
F(xk) = 0 (14)

with unknowns xk =


Ik
y

ak
g

Ik
p

Ik
e

.

• Solve using similar JFNK or other techniques (Stabilized Picard,
etc)

• This is done using the FGE code in the MEQ suite
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Free boundary evolution modeling

Linearized deformable plasma evolution model

• Recall the circuit equation with a generic induction term due to the
plasma:

Mee İe + ReeIe + ψ̇ep = Ve (15)

with ψep = d
dt (Mey Iy) = Mey

d
dt (Iy). This expression works for any

time-varying change of plasma current, not only rigid ones.
• In part III, we parametrized the plasma current distribution using

the rigid body assumption as Iy = Iy(Rp,Zp, Ip).
• Instead, we now keep the general form Iy = Iy(Ie, Ip, co) where Ie

are the external currents, Ip the plasma current, and co any
externally imposed profile constraints (e.g. βp,qA,`i ).

• We can again linearize using the plasma response matrices (6)-(8)

İy = İy0︸︷︷︸
=0

+
∂Iy
∂Ie

δİe +
∂Iy
∂Ip

δİp +
∂Iy
∂co

δċo (16)
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Free boundary evolution modeling

Linearized deformable plasma evolution model

• Similarly to the rigid model, we realize that because we assume
İy0 = 0, this implies ∂Iy

∂Ie
İe0 = 0. Hence

∂Iy
∂Ie
δİe =

∂Iy
∂Ie

(İe0(t) + δİe) =
∂Iy
∂Ie

İe
• Collecting terms yields:

(Mee + Xee)İe + (Mep + Xep)İp + Xeoδċo + ReeIe = Ve (17)

where:
• Xee = Mey

∂Iy
∂Ie

• Mep = Mey
Iy0

Ip0

• Xep = Mey
∂Iy
∂Ip
−Mep

• Xeo = Mey
∂Iy
∂co
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Free boundary evolution modeling

Generalized rigid plasma evolution model

• Now consider the circuit equation for the plasma current:

ψ̇y + Ryy Iy = 0 (18)

with
ψ̇y = Myy İy + Mye İe (19)

• Again parametrizing Iy = Iy(Ie, Ip, co), linearizing as in (16),
multiplying from the left by IT

y0/Ip0, and assuming plasma
resistance does not change with the plasma shape, yields:

IT
y0

Ip0
Myy

∂Iy
∂Ip

İp︸ ︷︷ ︸
Lpp+Xpp

+

 IT
y0

Ip0
Mye︸ ︷︷ ︸

Mpe

+
IT
y0

Ip0
Myy

∂Iy
∂Ie︸ ︷︷ ︸

Xpe

 İe +
IT
y0

Ip0
Myy

∂Iy
∂co︸ ︷︷ ︸

Xpo

ċo +
IT
y0

Ip0
Ryy

Iy0

Ip0︸ ︷︷ ︸
Rpp

Ip = 0 (20)
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Free boundary evolution modeling

Generalized rigid plasma evolution model

• Hence:

(Lpp + Xpp)İp + (Mpe + Xpe)İe + Xpoδċo + RppIp = 0 (21)

with
• Lpp = IT

y0Myy Iy0/I2
p0

• Xpp =
IT
y0

Ip0
Myy

∂Iy
∂Ip
− Lpp

• Mpe =
IT
y0

Ip0
Mye

• Xpe =
IT
y0

Ip0
Myy

∂Iy
∂Ie

• Xpo =
IT
y0

Ip0
Myy

∂Iy
∂co

• Rpp =
IT
y0

Ip0
Ryy

Iy0

Ip0

F. Felici (SPC-EPFL) Tokamak magnetic modeling Part V PHYS-748, February 2025 14 / 52



default

Free boundary evolution modeling

Generalized rigid plasma evolution model

• We obtain the complete dynamic model or a rigid plasma(
(Mee + Xee) (Mep + Xep)
(Mpe + Xpe) (Lpp + Xpp)

)(
İe
İp

)
(22)

+

(
Ree 0
0 Rpp

)(
Ie
Ip

)
=

(
Va

0

)
(23)

• This model has exactly the same structure as the RZIP model, just
with more general expressions for X∗∗ terms owing to the
deformable plasma response matrix.

• Removing the X∗∗ terms yields the model excluding the effects
due to the plasma motion and deformation.

• We can combine this with a measurement equation as shown in
part II.
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Free boundary evolution modeling

Summary of plasma equilibrium evolution models
We have seen:
• Conductor-only models. No plasma
• Fixed-plasma models:

Iy = Iy(Ip) (24)

• Rigid-plasma linearized model:

Iy = Iy(Rp,Zp, Ip) (25)

• Deformable-plasma linearized model:

Iy = Iyo +
∂Iy
∂Ie

Ie +
∂Iy
∂Ip

δIp +
∂Iy
∂co

δco (26)

• Full evolution model-plasma model:

Iy = Iy(Ie, Ip, co) (27)
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Free boundary evolution modeling

Examples of equilibria using MEQ
addpath ~/matlab/meq/ % adjust to suit your needs
addpath ~/matlab/meq/genlib % adjust to suit your needs

%% RZP model
[L,LX,LY] = rzp(’ana’,shot,time,’izgrid’,true,’cde’,’OhmTor_rigid’);
meas = {’zIp’,’rIp’,’Ip’}; % measurements from model
Ts = 0; % sample time: 0=continuous
sys = fgess(L,0,meas); % linearized model for rzp
fprintf(’RZP unstable pole growth rate: %2.2f [1/s]\n’,max(real(esort(pole(sys)))));

%% FGE: Free boundary Grad-Shafranov Evolution
[L2,LX2,LY2] = fge(’ana’,shot,time,’izgrid’,true,’cde’,’OhmTor_rigid’);
meas = {’zIp’,’rIp’,’Ip’}; % measurements from model
Ts = 0; % sample time: 0=continuous
sys = fgess(L,0,meas); % linearized model for fge
fprintf(’FGE unstable pole growth rate: %2.2f [1/s]\n’,max(real(esort(pole(sys)))));

%% Plot equilibrium
figure(1); set(gcf,’position’,[0 0 600 500]); clf;
meqplotfancy(L,LY);
title(sprintf(’Anamak shot #%d’,shot))
set(gca,’box’,’on’);
set(gcf,’paperpositionmode’,’auto’);
print(’-depsc’,’anamak_eq_2’);

%% Plot eigenmode structures
figure(2); set(gcf,’position’,[0 0 800 400]); clf;
subplot(121), fgeploteig(L)
subplot(122), fgeploteig(L2)
set(gcf,’paperpositionmode’,’auto’); print(’-depsc’,’anamak_growth_rates’);

F. Felici (SPC-EPFL) Tokamak magnetic modeling Part V PHYS-748, February 2025 17 / 52



default

Free boundary evolution modeling

Examples of equilibria using MEQ
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Free boundary evolution modeling

Examples of equilibria using MEQ

unstable mode, =49.40
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Plasma discharge evolution

Section 2

Plasma discharge evolution, from breakdown to
plasma termination
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Plasma discharge evolution Plasma breakdown

Subsection 1

Plasma breakdown
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Plasma discharge evolution Plasma breakdown

Plasma breakdown conditions

• Plasma breakdown occurs when the gas in the torus chamber
ionizes.
• A single electron is accelerated and collides with a neutral atom,

ionizing it.
• This liberates more electrons
• These accelerate and collide with other atoms
• This results in an ionization “avalanche” that quickly ionizes a large

part of the gas.
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Plasma discharge evolution Plasma breakdown

Setting up the field at breakdown

• Plasma breakdown requires:
• An electric field to accelerate the electrons.
• A large connection length: distance for electrons to travel along the

magnetic field to allow ionization of other atoms.
• An appropriate pressure (not too many, not too few particles)

• The first two conditions are created by a combination of coils.
• TF coils generate a toroidal magnetic field.
• The OH (or CS) coils are ramped to induce a loop voltage (electric

field).
• PF coils are used to create a point with 0 poloidal field at the

desired breakdown location and time. The resulting B field is locally
almost exclusively toroidal - large connection length.
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Plasma discharge evolution Plasma breakdown

Example: JET breakdown field

JET poloidal flux at breakdown
from: Albanese et al, 2012 Nucl. Fusion 52 123010
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem
Desiderata for (Ohmic) breakdown:
• Field evolution:

• Before breakdown: vertical field to avoid breakdown.
• At breakdown: null field maximizing connection length.
• After breakdown: ramping vertical field to maintain radial force

balance + positive curvature for vertical stability.

Bp = Bz(t)ez + nullfield(t) (28)

• Loop voltage evolution:
• Sufficient loop voltage at t = 0 and later to breakdown,

burn-through, and ramp Ip.
• Low loop voltage otherwise to avoid consuming Ohmic coil flux.

• Coil evolution:
• Pre-charge OH coils to have maximum flux swing.
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem

• We have linear relations between circuit/passive current evolution
and vacuum fields/loop voltage (excluding plasma):

Br ,x(t) = Br ,xeIe(t) (29)

Bz,x(t) = Bz,xeIe(t) (30)

Vx(t) = Mxe İe(t) (31)

• Also a linear model for the conductor (passive + active) current
evolution:

Mee İe(t) + ReeIe(t) = Ve (36) (32)
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem

• Starting from the circuit equation:

Mee İe(t) + Ree Ie(t) = IeaVa(t). (33)

• Define discrete time points tk = k ∆t and approximate
Ie,k ≈ Ie(tk), Va,k ≈ Va(tk).

• Using the backward Euler approximation, İe(tk) ≈ Ie,k−Ie,k−1
∆t .

Substituting into the circuit equation and evaluating Ie at time tk :

Mee
Ie,k − Ie,k−1

∆t
+ ReeIe,k = IeaVa,k . (34)

Multiply both sides by ∆t and rearranging grouping terms in Ie,k :

(Mee + Ree ∆t) Ie,k = MeeIe,k−1 + ∆tIeaVa,k . (35)

Finally, solving for Ie,k :

Ie,k = (Mee + Ree ∆t)−1(Mee Ie,k−1 + ∆tIeaVa,k
)
. (36)
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem

• Define

A = (Mee + Ree ∆t)−1 Mee, B = (Mee + Ree ∆t)−1 ∆t Sa. (37)

Hence we can write

Ie,k = A Ie,k−1 + B Va,k . (38)

By iterating from k = 1 to N and stacking all {Ie,1, . . . , Ie,N} and
{Va,1, . . . ,Va,N}, we obtain the lifted representation:

Ie,1
Ie,2
...

Ie,N

 =


A
A2

...
AN


︸ ︷︷ ︸

S

Ie,0 +


B 0 · · · 0

A B B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B


︸ ︷︷ ︸

T


Va,1

Va,2

...
Va,N

 (39)
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem

• Using this representation we time-history of currents, but also of
fields and fluxes (at spatial points of interest) to the time-history of
circuit voltages:

Br ,k=1

Br ,k=2
...

Br ,k=N

 = Tr ,a


Va,k=1

Va,k=2
...

Va,k=N

 ,


Bz,k=1

Bz,k=2
...

Bz,k=N

 = Tz,a


Va,k=1

Va,k=2
...

Va,k=N


(40)

• Similarly for the circuit currents:
Ia,k=1

Ia,k=2
...

Ia,k=N

 = TIa


Va,k=1

Va,k=2
...

Va,k=N

 (41)
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem

• This ultimately allows us to define a constrained least-squares
problem for the (time-history of) the fields and voltages (see also
[2, 3]):

min
x

J(x) subject to Cx ≤ d (42)

where
J(x) = νr ‖Br,target−Tr,ax‖2+νz ‖Bz,target−Tz,ax‖2+νV ‖Vtarget−TV ,ax‖2+νx ‖x‖2,

(43)
and

C =


TIa

−TIa

Ia

−Ia

 , d =


Ia,max

−Ia,min

Va,max

−Va,min

 . (44)

• The cost function terms correspond to:
• Radial,Vertical field evolution target
• Loop voltage evolution target
• Regularization term minimizing coil currents

• Constraints: Circuit current constraints and Power supply voltage
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Plasma discharge evolution Plasma breakdown

Breakdown design and optimal control problem
• Quadratic constrained optimization problem:

• Convex problem.
• Fast solvers exist (e.g. Matlab: quadprog, Open-source OSQP).

• Example of optimized TCV breakdown.
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default

Plasma discharge evolution Plasma breakdown

Automated shot-to-shot startup optimisation on TCV

• Write breakdown +startup evolution model: add a circuit equation
for plasma assuming fixed location.

• Design target fields to have radially + vertically stable plasma in
early ramp-up phase.

• Perform nominal design of optimal breakdown based on machine
model. Yields nominal Va(t), Ia(t), and field/flux evolutions.

• Run experiment, harvest error e(t)

• Write relation between error and input trajectory using linear
relations (40)

• Adjust trajectories in the direction to reduce this error.

• Related to control technique called Iterative Learning Control

F. Felici (SPC-EPFL) Tokamak magnetic modeling Part V PHYS-748, February 2025 32 / 52



default

Plasma discharge evolution Plasma breakdown

Automated shot-to-shot optimisation of startup phase
From [3]

• Nominal breakdown:

• First experimental breakdown:
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Plasma discharge evolution Plasma breakdown

Automated shot-to-shot optimisation of startup phase
From [3]

• Nominal breakdown:

• 2rd attempt in the sequence:
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default

Plasma discharge evolution Plasma breakdown

Automated shot-to-shot optimisation of startup phase
From [3]

• Nominal breakdown:

• Final (4th) attempt:
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Plasma discharge evolution Ramp-up phase

Subsection 2

Ramp-up phase
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default

Plasma discharge evolution Ramp-up phase

Example: EAST ramp-up phase

• Start with low-current, limited plasma sitting against the wall
• Ramp up current, increase shape and create x-points
• Fully developed shape at start of flat-top.

Figure: EAST ramp-up shape evolution, from [4]
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default

Plasma discharge evolution Ramp-up phase

Control issues for plasma ramp-up

• Switching from feedfoward-controlled breakdown to feedback
control of plasma position and current

• Switching from R,Z control only to full shape control

• Well-timed formation of x-point.

• Obtain desired q profile, β, `i at the start of the flat-top

• Remain within engineering and physics constraints all the time.
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Plasma discharge evolution Flat-top

Subsection 3

Flat-top
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Plasma discharge evolution Flat-top

Magnetic control issues for plasma flat-top

• Maintain required position, shape and Ip.

• Compensate from disturbances due to change in β, `i , Ip.

• Compensate for changing stray field due to central solenoid ramp.
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default

Plasma discharge evolution Flat-top

Air core vs. iron core tokamaks

• Iron core: iron transformer yoke around tokamak, ’guides’ field
generated by Central Solenoid.

• Air core: no iron, OH gives ‘stray’ vertical field. OH coils designed
to minimize this field.

Figure: Left: JET with iron transformer yokes. Right: Flux map for WEST from CEDRES code
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default

Plasma discharge evolution Flat-top

Air core vs. Iron core tokamaks

Air core Iron core
Adv: Circuit equations are

LTI, easier reconstruc-
tion of fields

Smaller stray field

Disadv: Need to compensate
OH stray field during
shot

Field depends on
iron magnetization:
nonlinear and time-
dependent equations.

Examples: ITER, TCV, AUG, DIII-D JET, Tore Supra
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default

Plasma discharge evolution Ramp-down

Subsection 4

Ramp-down
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default

Plasma discharge evolution Ramp-down

Ramp-down: open research questions

• Ramp down Ip, decrease shape, etc in a controlled way.

• Current profile evolution, timing of H-L transition during
ramp-down play a key role [5]

• Much more to say, but outside the scope of this class.

• Open research field, but very important for ITER and DEMO: safe
plasma termination.
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default

Equilibrium calculation workflows for tokamak operation

Section 3

Equilibrium calculation workflows for tokamak
operation
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default

Equilibrium calculation workflows for tokamak operation

Static inverse problem

FBT
Desired equilib-
rium snapshot

Ia
+Nominal
plasma equilib-
rium

• Picard Iterations used in FBT [6]:
• For fixed Iy , solve constrained QP problem to get Ia.
• For fixed Ia and given plasma constraints, solve GS equation for Iy .
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default

Equilibrium calculation workflows for tokamak operation

Dynamic inverse problem (Pulse Planning)

FBT-evo/GSPD
Desired equilib-
rium evolution

Ia(t), Va(t)
+Nominal
plasma equilib-
rium evolution

• Picard Iterations used in GSPulse [7]:
• For fixed Iy(t), solve constrained QP problem to get Ie(t), Va(t)

using lifted circuit equations like (40)
• For fixed Ie(t) and given plasma internal constraints, solve GS

equation to get Iy(t).
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default

Equilibrium calculation workflows for tokamak operation

Dynamic inverse problem (Pulse Planning)
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default

Equilibrium calculation workflows for tokamak operation

Equilibrium reconstruction

LIUQE / LIH
Magnetic mea-
surements (t)

Reconstructed
plasma equilib-
rium evolution
(t)

• Choice between:
• Full GS model (LIUQE) - accurate but nonlinear
• Simplified Finite-Element model (See Part II) (LIH) - inaccurate but

linear and fast

• Post-shot or real-time (LIUQE < 1ms on TCV).
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Equilibrium calculation workflows for tokamak operation

Controller design and testing

Magnetic
controller

RZP/
FGEL/
FGE

References
/ feed-
forward
Ia(t),Va(t)

Va

Controlled
plasma
equilibrium
evolution

measurements

• Solve time-dependent plasma + circuit evolution equations to test
feedback controllers. Choice between:
• RZP/FGEL: linear rigid / deformable plasma model
• FGE: nonlinear plasma model

• Simulate magnetic controller in the loop
• Receive references and feedforward voltages from pulse planning
• Step the controller together with the plant, including any delays etc.
• Might include RT-equilibrium reconstruction!

• Basically acting as a ’tokamak simulator’ for the magnetics, same
inputs/outputs as real tokamak.
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Equilibrium calculation workflows for tokamak operation

Magnetic control - summary

• Dynamics of PF coils + vessel, controllers for PF coils
• Model for plasma as rigid conductor

• Plasma current control
• Plasma radial force balance and vertical field
• Plasma vertical stability and control
• Plasma shape control

• Magnetic measurements

• Plasma MHD equilibrium and Grad-Shafranov equation

• Equilibrium preparation, simulation and reconstruction workflows

• Plasma discharge phases
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Equilibrium calculation workflows for tokamak operation
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