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Modeling and control of the plasma current

Section 1

Modeling and control of the plasma current
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Modeling and control of the plasma current

Mutual inductance between plasma and conductors

° We Start by mOdellng the plasma Toroidal current distribution [MA/mz]
as a fixed toroidal conductor
carrying a current /.

e This current is distributed
according to a known distribution
j¢(r7 Z)

e Letj be modeled with a current
distribution vector Iy of currents
[A] on an (r, z) grid, where the
sum of the elements of Iy is /p.

e Let us also define the matrix My
containing the mutual inductance
between all the points on this TR
(r,z) grid. R [m]
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Modeling and control of the plasma current

Mutual inductance plasma - conductors

o We assume that the total plasma current may change, but the
distribution does not, hence Ix(t) = (Ixo//p0)/p(t)

o We write the mutual inductance between plasma and other
conductors as:

ZX M(rX7 Zx, ak)j(rm ZX)S _ IIan
ij(rX7zX)S IP

Here M(ry, zx, ax) is the mutual inductance between active coil a;
and the filament on the grid at point (rx, zx) and S = ArAz is the
surface of the current-carrying element

e Same for M, between plasma and vessel filaments.

¢ Self-inductance of the plasma: for a single conductor
Winag = % LI2, while for multiple conductors Winag = 31" MI,
therefore Ly = Iy Myxhe/ /2

(1)

Mpak =
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Modeling and control of the plasma current

Circuit equations including rigid plasma
e The circuit equation for the plasma is:

Where
e L, is the plasma self-inductance
e R, is the plasma electrical resistance.

o Mya = [Mpa,, - .., Mpa, ] i; the row vector containing mutuals
between plasma and active coils.
o Mpy = [Mpy,, ..., Mpy, ] is the row vector of mutuals between

plasma and passive currents.

e We can now include the plasma in the active coil and passive
circuit equation

Va Maa May My _ia Ria O 0 la
0 = Mua Muww Myp !u + 0 Rw O lu
0 Mpa Mpu Lp Ip 0 0 Rp Ip

)
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Modeling and control of the plasma current

Plasma current induction by ohmic transformer

o We see directly from the plasma circuit equation
that we must induce a voltage to drive the plasma current via PF
coils: Mpala.

e In practice, a combination of PF coils called the ‘ohmic’ coils is

used to drive I,. This set is sometimes also called the Central
Solenoid (CS).

e Assume we want to drive a constant current /,, with a collection of
Ohmic coils carrying current /,,. Then we need to satisfy

0 = My onlon + Rplp (5)

Hence —M,37¢,,7'I,,,7 = Rplp. This quantity is sometimes called the
‘loop voltage’ used to drive the plasma current inductively.
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Modeling and control of the plasma current

Limits of operation for inductively driven plasmas

e The OH current must continuously change to drive the
plasma current.

® lonmin — lon max OF Vvice versa.

e This creates flux swing in the plasma of
AV o = =M, on(lon,max — lon,min)- This is @ measure of how long a
tokamak PF coil set can sustain an Ohmic plasma.

¢ A cold plasma is more resistive than a hot plasma. So a hot
plasma can be sustained longer for a given AW .

o Tokamaks are inherently pulsed devices.

o For steady-state fusion reactor we need another, non-inductive
means to drive the current (later in the course).
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Modeling and control of the plasma current

Controller design for plasma current

e Recall the coil current controller of the form Va = Maau + Rala
which allows us to write la = [ u(#)dt.
e We now choose the ‘OH’ coils to be used for /, control.

o Uon \ _ [ —KL(S)Up,rer — Ip)
u= ( Upf ) B < Kpf(s)(lpfl,)ref - Iplf)) > (©)

|
f %- u
p,re Klp(s) oh

Va — Ip
Maa —»9—» Tokamak
| |
pf,ref
—> “erl®) [ @
Ra |—
select Ipf
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Modeling and control of the plasma current

Controller design for plasma current

o This gives lon = —Ki,(S)(lp,rer — Ip)
e The closed-loop transfer function from I, ,er to I, can be
calculated, neglecting vessel currents:

0 = Lplp + My onlon + Rolp (7)
Mp,thlp(S)(lp,ref) = (Lps + Rp =+ Mp,thlp(S)) IP (9)
Mp,o
b(s) 1Ky (5) (10)
lp’ref(s) <s+ Pth (S))
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Modeling and control of the plasma current

Controller design for plasma current - 2

e Closed-loop transfer function:

Mp.o
W) (1)
brei(S) (s + 2 + Y2k (5)

« If we choose a proportional controller Kj (s) = k, and compute the
steady-state gain

/ My, onk
im Jy(t) = lim 28— Mporfe

12

e For high gain and/or low-resistivity plasmas, this approaches 1
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Magnetic measurements

Section 2

Magnetic measurements
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Magnetic measurements

Magnetic measurements

Various methods are used to measure currents and fields in around

the tokamak. These are also used to reconstruct the plasma position
and shape (later).

References: [1], [2], [3], [4]
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Magnetic measurements

Magnetic measurements - Magnetic probes

e A magnetic probe constists of a small winding with several turns.

e Assuming the probe is small so that the field is homogeneous
inside it, the voltage measured by the probe is

Vorobe = NAB (13)

where N is the number of turns, A is the area of the probe and Bis
the time derivative of the field. To get the total field B the raw
voltage signal must be integrated.

e Advantages: Simple, cheap, robust.

¢ Disadvantages: Integrator drift, no absolute measurement,
damage and disturbance from fusion neutrons.
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Magnetic measurements

Magnetic measurements - Flux loops

e Flux loops consist of a wire wound around the torus. This

measures
W[, "

where Sy is the surface enclosed by the loop.
e The signal is integrated in time to yield the flux enclosed by the
loop

W = /t Us(t) o (15)

e Ideally, a flux loop wound around the torus at coordinates (r¢, z)
measures the local poloidal flux at that point.

¢ |n practice, flux loops are often not ideal and need to be guided
around ports etc, so need to compensate for these 3D effects.
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Magnetic measurements

Magnetic measurements - lllustration

N

Flux loop Vessel  Plasma  Flux loop

Magnetic probes
Figure: From C. Gootzen MSc thesis, TU/e 2014
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Magnetic measurements

Magnetic measurements - lllustration

Figure: TCV poloidal magnetic probe array
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Magnetic measurements

Magnetic measurements - Rogowski coill

A Rogowski coil measures the spatial A
integral of field through solenoid that is o
‘closed’ on itself: Vg = n ¢ (| dA) B-d¢ C/\QMX
where n is the number of windings per unit Q_) @
length, A is the cross-sectional area of the gb §.
solenoid, and d? an infinitesimal element J) CI,D
along the solenoid axis. \Z\
 Recalling Ampére’s law: § B-d¢ = pl we see 2*2 (\J/(\ZA
that this measures Vg = nA<L1. o«

e The voltage is (electronically) integrated to
get the current itself: | = 1 [ Vgd.

o Rogowski coils are frequently used to
measure the total plasma current.
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Magnetic measurements

Magnetic measurements - plasma current estimators

e For practical reasons, no Rogowski coil was
installed in the TCV tokamak

e An alternative plasma current estimator can *‘ig
be constructed by numerically integrating the ‘ i
(tangential) magnetic probe measurements, t
using the trapeze rule: %

1ol = prdg =Y (B + BiAs; (16) %
. I

with As; = /(i —i_1)2 + (z1— zi_1)?,and  “] %
closing the contour with probeg = probe,, i
; O

06 07 08 09 1 11
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Magnetic measurements - Diagmagnetic loop

e The plasma also carries poloidal currents
which generate a toroidal field and flux.

e The total plasma toroidal flux ¢, is related to

B2
c2

the plasma pressure via the approximate %
relation 8
1ol
= 1— 17) 7§

% = gop (1~ Fo) (17)

ok TTTT

with B; the toroidal field and 3, the
polodidal-field normalized pressure (later)

e Plasma toroidal flux in TCV: 0.04mWb to be
separated from toroidal field flux 2Wb and
induced vessel poloidal currents by complex Figure: Four loops in
calibration and signal processing [4]. the poloidal plane used

for TCV DML
diagnostic, from [4]
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Magnetic measurements

Estimating R,Z from measurements: the crude way

e Choose B probes and flux loops
close to the plasma at appropriate
locations

¢ Difference between fluxes/fields at
each location are rough estimate
of plasma position. E.g.:

5Rlp ~ k(11 — 1b2) (18)
5Z/p S kz(Bp3 — Bp4) (19)

Bd Th B

Bl B
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Magnetic measurements

Estimating R,Z from measurements

¢ A slightly less crude way is to
combine magnetic probes and flux .
loops to extrapolate the flux. i

e Assume in nominal case ¥, = ;

eq

® lzo—lz}i:(aa—lfo

o Estimate for flux at position i/, o:

7 2]
¢i%¢A+a—1fA(fi—
b or e — 2
wo w 8rB
oy
or

_ o
A 27TrABz’A arg

(rg — o), with

oy |89

a,I,>Ar

ra),

R

|
1
Bgap,in b}

ey

3} Bgapout

B ’ Figure: From F. Pesamosca EPFL

e Solve for AR with measurements PhD thesis 2021

BZ,Aa BZ,Ba ’(zZ)Aa ?/)B
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Magnetic measurements

Measurement equation

¢ Since all these diagnostics measure fluxes or fields, which are all
linear functions of currents in the coils, vessel and plasma...
o We can write the measurement output equations of the

BprObe == Bmala + Bmvlv + Bmxlx (20)
P12 = Myala + My ly + Myl (21)
IM€8S = Sala + Siyly (22)

e Definingx=[la I Ix | and collecting the measurement vector
in y we can write this as a matrix equation of the form

y = Cx (23)
Can we attempt to solve this weighted least-squares problem?

min [W(y — Cx)| (24)
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Magnetic measurements

Estimating current distribution from measurements

e The coil currents I are usually measured directly

e The passive (e.g. vessel) currents Iy are more difficult to measure.
Two approaches:

e Reduce the number of free parameters by choosing an eigenvector
or other parametrization and attempt to estimate it.

e Associate a flux loop with a segment of the vessel and estimate its
current Is = Ur/Rs with Uy voltage measurement of the flux loop
measurement.

e The current distribution inside the plasma can not be measured
directly. Estimating Ix is not possible since there are many more
elements than there are measurements. The least-squares
problem is ill-conditioned. Need, either:

e Regularization (impose structure on the solution, e.g. smoothness)

¢ Reduction of the number of free parameters: choose coarser grid
for Ix, parametrize the current distribution, or impose that the
solution must represent an MHD equilibrium (later in the course).
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Magnetic measurements

Simple estimators for the current distribution

e Choose a parametrization of the
current plasma distribution, for
example

e Choose discrete filaments carrying
currents Iy = Typlp with Typ

e Choose finite elements distributed
on the plasma grid: Iy = Tyylp with
Txn representing a spatially
distributed current.

e We can then express the mag. probe
and flux |00p measurements, Figure: lllustration of 10 Bilinear Finite
. Elements for TCV
neglecting the vessel curents, as

Bm Bma ] [ Bmh ]
A = l; + /
[ pf ] [ My | @ Mgy |
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Magnetic measurements

Simple estimators for the current distribution

Typically ~100 measurements are available, so 100 equations
Typically 4-8 degrees of freedom for the plasma can be used
Solve in the least-squares sense: minimise w.r.t. I, the function

n i i n, i ~j
m (B — B (] 2 f w/_wllh 2
i=1 Bm i=1 v
where eg,, , ey, are the expected measurement errors, used to
weigh the contributions to the x? term.

Exercise: write (25) in the form x2 = ||Ax — b||3
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Magnetic measurements

Simple estimators for the current distribution

e Typically ~100 measurements are available, so 100 equations
o Typically 4-8 degrees of freedom for the plasma can be used
e Solve in the least-squares sense: minimise w.r.t. I, the function

Mm o pi i 2 Mo i N2
=Y (Bm Sm(lh)) 'y (vf u;f(lh)) (25)
i= 6 i= Gy

where eg,, , ey, are the expected measurement errors, used to
weigh the contributions to the x? term.

o Exercise: write (25) in the form x2 = ||Ax — b]|3

e Solution:
_ _ B By — Bmala
° x—lh,A—W{ th] b= W[ by — Ml ] with
_ | 1/es, O
W= [ 0 1/6#,, :|
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Magnetic measurements

Simple estimators for the current distribution

o Exercise: solve the least-squares problem

min || Ax — b3 (26)
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Magnetic measurements

Simple estimators for the current distribution

o Exercise: solve the least-squares problem
min || Ax — b3 (26)

e Solution:

o We minimize
J(X) = x® = (Ax — b)T(Ax — b) = xTATAx — 2xTATb + b" b with
respect to x. Write the Jacobian:

O _ T T
5y = 2ATAx—2ATb (27)

The function has a minimum where g—j = 0. This yields:
x=A"b (28)

where At = (ATA)f1 AT is the Moore-Penrose Pseudoinverse of A
e in matlab: x=A\b or x=pinv(A)x*b
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Magnetic measurements

Simple estimators for the current distribution

e We obtain
B + B — Bmal
l, — w mh]) W[ m maa} 29
’ ( [Mm oy (29)
=Q

e This solution can be cast into a linear estimator:

Bm
Ih="1 Amm An Ana] | s (30)
h l
pre-computed \,"i_/
measured

with [ Apm Ape | = Qand Ap, = —o[ Bima ]
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Magnetic measurements

Current distribution moments

o Total plasma current:

Bn
b=> k= Tah=[ X, TnAm X, TaAn 3, TnAna | [ o ]
X X Ia
(31)
o Actually not the best estimator, the numerical estimator (16) is
more accurate, particularly if we also subtract the contribution
from poloidal field coils:

n
m A . . . .
IP = Z E(B;;1 + B;n - (B;r?; la + B;na/a))Asi (32)
i=1
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Magnetic measurements

Current distribution moments

e Vertical position (current distribution centroid):
Bm
zlp = Z Z = Y zxTanAmm Yo ZxTanAnt Yoy 2xTxnAna | | Vs
X la
e or: error w.r.t. a given reference z
> (2= 20) e (33)
Bm
=[ Xz — 20)TnAmm D (2x — 20) TanAne >y (2x — 20) TxnAna | | Vs
la

¢ Radial position (current distribution centroid):

Bm
rlp = Z Ily = [ zx I TxnAnm ZX I TxnAnt ZX Ix TxnAna ] [ 'llbf ]
X a
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Magnetic measurements

Current distribution moments

¢ Elongation estimator:
Z(ZX — zo)zlx =

Bn
[ ZX(ZX - 20)2 TxnAbm ZX(ZX - 20)2 TxnAng ZX(ZX - 20)2 TxhAha ] [ b ]
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Magnetic measurements

Generalized toroidal current distribution estimator

o Write a more general least-squares estimator to include passive
current contributions /, and allow uncertainties in I,
measurements

¢ Recall we define segment currents as Is = Sg,/, (where S, is a
selection matrix), and estimate these currents as 5™ = Uy /Rs.

Bn Bra B Bun
M, M, M,
’ir;/]efas = Hafa la + Ofu Iy + ofh In
a
“Igstim 0 S sy Tvu 0

This can again be solved in a weighted least-squares sense, with
uncertainties ABp,, Avyy, Als, Aly, yielding

In Apm  An Ana Anu b
I, = Aam Aaf Aza AaU ’imeas

Iu Asm Asf Asa AsU
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