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default

Modeling and control of the plasma current

Section 1

Modeling and control of the plasma current
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default

Modeling and control of the plasma current

Mutual inductance between plasma and conductors

• We start by modeling the plasma
as a fixed toroidal conductor
carrying a current Ip.

• This current is distributed
according to a known distribution
jφ(r , z)

• Let j be modeled with a current
distribution vector Ix of currents
[A] on an (r , z) grid, where the
sum of the elements of Ix is Ip.

• Let us also define the matrix Mxx

containing the mutual inductance
between all the points on this
(r , z) grid.
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default

Modeling and control of the plasma current

Mutual inductance plasma - conductors

• We assume that the total plasma current may change, but the
distribution does not, hence Ix(t) = (Ix0/Ip0)Ip(t)

• We write the mutual inductance between plasma and other
conductors as:

Mpak =

∑
x M(rx , zx ,ak)j(rx , zx)S∑

x j(rx , zx)S
=

ITxMxa

Ip
(1)

Here M(rx , zx ,ak) is the mutual inductance between active coil ai

and the filament on the grid at point (rx , zx) and S = ∆r∆z is the
surface of the current-carrying element

• Same for Mpvk between plasma and vessel filaments.
• Self-inductance of the plasma: for a single conductor

Wmag = 1
2LI2, while for multiple conductors Wmag = 1

2 IT MI,
therefore Lp = IxT MxxIx/I2

p
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default

Modeling and control of the plasma current

Circuit equations including rigid plasma

• The circuit equation for the plasma is:

0 = Mpa İa + Mpu İu + Lp İp + RpIp (2)

Where
• Lp is the plasma self-inductance
• Rp is the plasma electrical resistance.
• Mpa = [Mpa1 , . . . ,Mpana

] is the row vector containing mutuals
between plasma and active coils.

• Mpu = [Mpu1 , . . . ,Mpunu
] is the row vector of mutuals between

plasma and passive currents.
• We can now include the plasma in the active coil and passive

circuit equation Va

0
0

 =

 Maa Mau Map

Mua Muu Mup

Mpa Mpu Lp

 İa
İu
İp

+

 Raa 0 0
0 Ruu 0
0 0 Rp

 Ia
Iu
Ip


(3)
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default

Modeling and control of the plasma current

Plasma current induction by ohmic transformer

• We see directly from the plasma circuit equation

0 = Mpa İa + Mpu İu + Lp İp + RpIp (4)

that we must induce a voltage to drive the plasma current via PF
coils: Mpa İa.

• In practice, a combination of PF coils called the ‘ohmic’ coils is
used to drive Ip. This set is sometimes also called the Central
Solenoid (CS).

• Assume we want to drive a constant current Ip, with a collection of
Ohmic coils carrying current Ioh. Then we need to satisfy

0 = Mp,oh İoh + RpIp (5)

Hence −Mp,oh İoh = RpIp. This quantity is sometimes called the
’loop voltage’ used to drive the plasma current inductively.
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default

Modeling and control of the plasma current

Limits of operation for inductively driven plasmas

• The OH current must continuously change to drive the
plasma current.

• Ioh,min → Ioh,max or vice versa.

• This creates flux swing in the plasma of
∆Ψoh = ±Mp,oh(Ioh,max − Ioh,min). This is a measure of how long a
tokamak PF coil set can sustain an Ohmic plasma.

• A cold plasma is more resistive than a hot plasma. So a hot
plasma can be sustained longer for a given ∆Ψoh.

• Tokamaks are inherently pulsed devices.

• For steady-state fusion reactor we need another, non-inductive
means to drive the current (later in the course).
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default

Modeling and control of the plasma current

Controller design for plasma current

• Recall the coil current controller of the form Va = Maau + RaIa
which allows us to write Ia =

∫ t
0 u(t)dt .

• We now choose the ‘OH’ coils to be used for Ip control.

u =

(
uoh

upf

)
=

(
−KIp (s)(Ip,ref − Ip)
Kpf(s)(Ipf,ref − Ipf)

)
(6)

TokamakMaa

Ra

Va

IaKpf(s)
Ipf,ref

KIp(s)

select Ipf

Ip,ref

Ip

uoh

upf

-

-
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default

Modeling and control of the plasma current

Controller design for plasma current

• This gives İoh = −KIp (s)(Ip,ref − Ip)

• The closed-loop transfer function from Ip,ref to Ip can be
calculated, neglecting vessel currents:

0 = Lp İp + Mp,oh İoh + RpIp (7)

Mp,ohKIp (s)(Ip,ref − Ip) = LpsIp + RpIp (8)

Mp,ohKIp (s)(Ip,ref ) =
(
Lps + Rp + Mp,ohKIp (s)

)
Ip (9)

Ip(s)

Ip,ref (s)
=

Mp,oh
Lp

KIp (s)(
s +

Rp
Lp

+
Mp,oh

Lp
KIp (s)

) (10)

F. Felici (SPC-EPFL) Tokamak magnetic modeling Part II PHYS-748, February 2025 10 / 33



default

Modeling and control of the plasma current

Controller design for plasma current - 2

• Closed-loop transfer function:

Ip(s)

Ip,ref (s)
=

Mp,oh
Lp

KIp (s)

(s +
Rp
Lp

+
Mp,oh

Lp
KIp (s))

(11)

• If we choose a proportional controller KIp (s) = kp and compute the
steady-state gain

lim
t→∞

Ip(t) = lim
s↓0

Ip(s)

Ip,ref (s)
=

Mp,ohkp(
Rp + Mp,ohkp

) (12)

• For high gain and/or low-resistivity plasmas, this approaches 1
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default

Magnetic measurements

Section 2

Magnetic measurements

F. Felici (SPC-EPFL) Tokamak magnetic modeling Part II PHYS-748, February 2025 12 / 33



default

Magnetic measurements

Magnetic measurements
Various methods are used to measure currents and fields in around
the tokamak. These are also used to reconstruct the plasma position
and shape (later).
References: [1], [2], [3], [4]
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default

Magnetic measurements

Magnetic measurements - Magnetic probes

• A magnetic probe constists of a small winding with several turns.

• Assuming the probe is small so that the field is homogeneous
inside it, the voltage measured by the probe is

Vprobe = NAḂ (13)

where N is the number of turns, A is the area of the probe and Ḃ is
the time derivative of the field. To get the total field B the raw
voltage signal must be integrated.

• Advantages: Simple, cheap, robust.

• Disadvantages: Integrator drift, no absolute measurement,
damage and disturbance from fusion neutrons.
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default

Magnetic measurements

Magnetic measurements - Flux loops

• Flux loops consist of a wire wound around the torus. This
measures

Uf =
dψ
dt

=

∫∫
dB
dt

dSf (14)

where Sf is the surface enclosed by the loop.

• The signal is integrated in time to yield the flux enclosed by the
loop

ψf =

∫
t
Uf (t

′)dt ′ (15)

• Ideally, a flux loop wound around the torus at coordinates (rf , zf )
measures the local poloidal flux at that point.

• In practice, flux loops are often not ideal and need to be guided
around ports etc, so need to compensate for these 3D effects.
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default

Magnetic measurements

Magnetic measurements - Illustration

Flux loop Flux loopVessel Plasma

Ψ

v

v

Ψ

Ψ

vv

Magnetic probes

Figure: From C. Gootzen MSc thesis, TU/e 2014
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default

Magnetic measurements

Magnetic measurements - Illustration

Figure: TCV poloidal magnetic probe array
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default

Magnetic measurements

Magnetic measurements - Rogowski coil

• A Rogowski coil measures the spatial
integral of field through solenoid that is
’closed’ on itself: VR = n

∮ (∫
dA
)

Ḃ ·d`
where n is the number of windings per unit
length, A is the cross-sectional area of the
solenoid, and d` an infinitesimal element
along the solenoid axis.

• Recalling Ampère’s law:
∮

B ·d` = µI we see
that this measures VR = nA d

dt I.

• The voltage is (electronically) integrated to
get the current itself: I = 1

nA

∫
VRdt .

• Rogowski coils are frequently used to
measure the total plasma current.
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default

Magnetic measurements

Magnetic measurements - plasma current estimators

• For practical reasons, no Rogowski coil was
installed in the TCV tokamak

• An alternative plasma current estimator can
be constructed by numerically integrating the
(tangential) magnetic probe measurements,
using the trapeze rule:

µ0Ip =

∮
Bpd` ≈

nm∑
i=1

1
2

(Bi−1
m + Bi

m)∆si (16)

with ∆si =
√

(ri − ri−1)2 + (zi − zi−1)2, and
closing the contour with probe0 = probenm
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default

Magnetic measurements

Magnetic measurements - Diagmagnetic loop

• The plasma also carries poloidal currents
which generate a toroidal field and flux.

• The total plasma toroidal flux φp is related to
the plasma pressure via the approximate
relation

φp =
µ2

0I2
p

8πBt
(1− βp) (17)

with Bt the toroidal field and βp the
polodidal-field normalized pressure (later)

• Plasma toroidal flux in TCV: 0.04mWb to be
separated from toroidal field flux 2Wb and
induced vessel poloidal currents by complex
calibration and signal processing [4].

Figure: Four loops in
the poloidal plane used
for TCV DML
diagnostic, from [4]
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default

Magnetic measurements

Estimating R,Z from measurements: the crude way

• Choose B probes and flux loops
close to the plasma at appropriate
locations

• Difference between fluxes/fields at
each location are rough estimate
of plasma position. E.g.:

δRIp ≈ kr (ψ1 − ψ2) (18)

δZIp ≈ kz(Bp3 − Bp4) (19)
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default

Magnetic measurements

Estimating R,Z from measurements

• A slightly less crude way is to
combine magnetic probes and flux
loops to extrapolate the flux.

• Assume in nominal case ψo = ψi

• ψ̃o − ψ̃i =
(
∂ψ
∂r

∣∣∣eq

o
− ∂ψ

∂r

∣∣∣eq

i

)
∆r

• Estimate for flux at position i, o:

ψ̃i ≈ ψA + ∂ψ
∂r

∣∣∣
A

(ri − rA),

ψ̃o ≈ ψB − ∂ψ
∂r

∣∣∣
B

(rB − ro), with

∂ψ
∂r

∣∣∣
A

= 2πrABz,A
∂ψ
∂rB

∣∣∣
B

= 2πrBz,B

• Solve for ∆R with measurements
Bz,A,Bz,B, ψA, ψB

Figure: From F. Pesamosca EPFL
PhD thesis 2021

F. Felici (SPC-EPFL) Tokamak magnetic modeling Part II PHYS-748, February 2025 22 / 33



default

Magnetic measurements

Measurement equation

• Since all these diagnostics measure fluxes or fields, which are all
linear functions of currents in the coils, vessel and plasma...

• We can write the measurement output equations of the

Bprobe = BmaIa + BmvIv + BmxIx (20)

ψloop = MfaIa + MfvIv + MfxIx (21)

Imeas = SIaIa + SIvIv (22)

• Defining x =
[

Ia Iv Ix
]

and collecting the measurement vector
in y we can write this as a matrix equation of the form

y = Cx (23)

Can we attempt to solve this weighted least-squares problem?

min
x
‖W(y− Cx)‖ (24)
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default

Magnetic measurements

Estimating current distribution from measurements

• The coil currents Ia are usually measured directly
• The passive (e.g. vessel) currents Iv are more difficult to measure.

Two approaches:
• Reduce the number of free parameters by choosing an eigenvector

or other parametrization and attempt to estimate it.
• Associate a flux loop with a segment of the vessel and estimate its

current Is = Uf/Rs with Uf voltage measurement of the flux loop
measurement.

• The current distribution inside the plasma can not be measured
directly. Estimating Ix is not possible since there are many more
elements than there are measurements. The least-squares
problem is ill-conditioned. Need, either:

• Regularization (impose structure on the solution, e.g. smoothness)
• Reduction of the number of free parameters: choose coarser grid

for Ix, parametrize the current distribution, or impose that the
solution must represent an MHD equilibrium (later in the course).
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default

Magnetic measurements

Simple estimators for the current distribution

• Choose a parametrization of the
current plasma distribution, for
example

• Choose discrete filaments carrying
currents Ix = TxhIh with Txh

• Choose finite elements distributed
on the plasma grid: Ix = TxhIh with
Txh representing a spatially
distributed current.

• We can then express the mag. probe
and flux loop measurements,
neglecting the vessel curents, as[

B̂m

ψ̂f

]
=

[
Bma

Mfa

]
Ia +

[
Bmh

Mfh

]
Ih

Figure: Illustration of 10 Bilinear Finite
Elements for TCV
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default

Magnetic measurements

Simple estimators for the current distribution

• Typically ∼100 measurements are available, so 100 equations
• Typically 4-8 degrees of freedom for the plasma can be used
• Solve in the least-squares sense: minimise w.r.t. Ih the function

χ2 =
nm∑
i=1

(Bi
m − B̂i

m(Ih))2

e2
Bm

+

nf∑
i=1

(ψi
f − ψ̂i

f (Ih))2

e2
ψf

(25)

where eBm , eψf are the expected measurement errors, used to
weigh the contributions to the χ2 term.

• Exercise: write (25) in the form χ2 = ‖Ax − b‖22

• Solution:

• x = Ih, A = W
[

Bmh

Mfh

]
, b = W

[
Bm − BmaIa
ψf −MfaIa

]
, with

W =

[
1/eBm 0

0 1/eψf

]
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default

Magnetic measurements

Simple estimators for the current distribution
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default

Magnetic measurements

Simple estimators for the current distribution

• Exercise: solve the least-squares problem

min
x
‖Ax − b‖22 (26)

• Solution:
• We minimize

J(x) = χ2 = (Ax − b)T (Ax − b) = xT AT Ax − 2xT AT b + bT b with
respect to x. Write the Jacobian:

∂J
∂x

= 2AT Ax − 2AT b (27)

The function has a minimum where ∂J
∂x = 0. This yields:

x = A+b (28)

where A+ =
(
AT A

)−1
AT is the Moore-Penrose Pseudoinverse of A

• in matlab: x=A\b or x=pinv(A)*b
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default

Magnetic measurements

Simple estimators for the current distribution

• Exercise: solve the least-squares problem
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default

Magnetic measurements

Simple estimators for the current distribution

• We obtain

Ih =

(
W
[

Bmh

Mfh

])+

W︸ ︷︷ ︸
=Q

[
Bm − BmaIa
ψf −MfaIa

]
(29)

• This solution can be cast into a linear estimator:

Ih =
[

Ahm Ahf Aha
]︸ ︷︷ ︸

pre-computed

 Bm

ψf

Ia


︸ ︷︷ ︸

measured

(30)

with
[

Ahm Ahf
]

= Q and Aha = −Q
[

Bma

Mfa

]
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default

Magnetic measurements

Current distribution moments

• Total plasma current:

Ip =
∑

x

Ix =
∑

x

TxhIh =
[ ∑

x TxhAhm
∑

x TxhAhf
∑

x TxhAha
]  Bm

ψf

Ia


(31)

• Actually not the best estimator, the numerical estimator (16) is
more accurate, particularly if we also subtract the contribution
from poloidal field coils:

Ip =
nm∑
i=1

1
2

(Bi−1
m + Bi

m − (Bi−1
ma Ia + Bi

maIa))∆si (32)
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default

Magnetic measurements

Current distribution moments

• Vertical position (current distribution centroid):

zIp =
∑

x

zx Ix =
[ ∑

x zxTxhAhm
∑

x zxTxhAhf
∑

x zxTxhAha
]  Bm

ψf

Ia


• or: error w.r.t. a given reference z0∑

x

(zx − z0)Ix (33)

=
[ ∑

x(zx − z0)TxhAhm
∑

x(zx − z0)TxhAhf
∑

x(zx − z0)TxhAha
]  Bm

ψf

Ia


• Radial position (current distribution centroid):

rIp =
∑

x

rx Ix =
[ ∑

x rxTxhAhm
∑

x rxTxhAhf
∑

x rxTxhAha
]  Bm

ψf

Ia


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default

Magnetic measurements

Current distribution moments

• Elongation estimator: ∑
x

(zx − z0)
2Ix =

[ ∑
x(zx − z0)

2TxhAhm
∑

x(zx − z0)
2TxhAhf

∑
x(zx − z0)

2TxhAha
]  Bm

ψf

Ia


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default

Magnetic measurements

Generalized toroidal current distribution estimator

• Write a more general least-squares estimator to include passive
current contributions Iu and allow uncertainties in Ia
measurements

• Recall we define segment currents as Is = Ssv Iv (where Ssv is a
selection matrix), and estimate these currents as Iestim

s = Uf/Rs.
B̂m

ψ̂f

Îmeas
a

Îestim
s

 =


Bma

Mfa

Ia

0

 Ia +


Bmu

Mfu

0
Ssv Tvu

 Iu +


Bmh

Mfh

0
0

 Ih

This can again be solved in a weighted least-squares sense, with
uncertainties ∆Bm, ∆ψf , ∆Is, ∆Ia, yielding

 Ih
Ia
Iu

 =

 Ahm Ahf Aha AhU

Aam Aaf Aaa AaU

Asm Asf Asa AsU




Bm

ψf

Îmeas
a

Uf


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default

Magnetic measurements
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