

Magnetic modeling and control of tokamaks, Part II: Plasma current control and magnetic measurements

Federico Felici
(With some material originally by J-M. Moret)

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

EPFL Doctoral School Course PHYS-748, February 2025

EPFL

Outline I

① Modeling and control of the plasma current

② Magnetic measurements

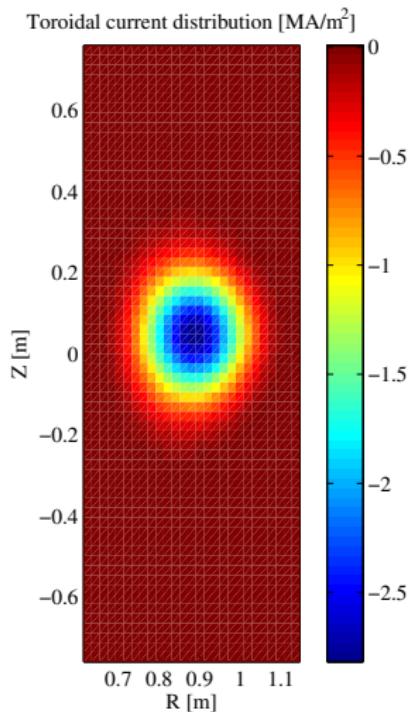
Estimating plasma position from measurements

Section 1

Modeling and control of the plasma current

Mutual inductance between plasma and conductors

- We start by modeling the plasma as a fixed toroidal conductor carrying a current I_p .
- This current is distributed according to a known distribution $j_\phi(r, z)$
- Let j be modeled with a current distribution vector \mathbf{I}_x of currents [A] on an (r, z) grid, where the sum of the elements of \mathbf{I}_x is I_p .
- Let us also define the matrix \mathbf{M}_{xx} containing the mutual inductance between all the points on this (r, z) grid.



Mutual inductance plasma - conductors

- We assume that the total plasma current may change, but the distribution does not, hence $\mathbf{I}_x(t) = (\mathbf{I}_{x0}/I_{p0})I_p(t)$
- We write the mutual inductance between plasma and other conductors as:

$$M_{pa_k} = \frac{\sum_x M(r_x, z_x, a_k) j(r_x, z_x) S}{\sum_x j(r_x, z_x) S} = \frac{\mathbf{I}_x^T \mathbf{M}_{xa}}{I_p} \quad (1)$$

Here $M(r_x, z_x, a_k)$ is the mutual inductance between active coil a_k and the filament on the grid at point (r_x, z_x) and $S = \Delta r \Delta z$ is the surface of the current-carrying element

- Same for M_{pv_k} between plasma and vessel filaments.
- Self-inductance of the plasma: for a single conductor $W_{mag} = \frac{1}{2}LI^2$, while for multiple conductors $W_{mag} = \frac{1}{2}\mathbf{I}^T \mathbf{M} \mathbf{I}$, therefore $L_p = \mathbf{I}_x^T \mathbf{M}_{xx} \mathbf{I}_x / I_p^2$

Circuit equations including rigid plasma

- The circuit equation for the plasma is:

$$0 = \mathbf{M}_{\mathbf{pa}} \mathbf{i}_a + \mathbf{M}_{\mathbf{pu}} \mathbf{i}_u + L_p i_p + R_p I_p \quad (2)$$

Where

- L_p is the plasma self-inductance
- R_p is the plasma electrical resistance.
- $\mathbf{M}_{\mathbf{pa}} = [M_{pa_1}, \dots, M_{pa_{n_a}}]$ is the row vector containing mutuals between plasma and active coils.
- $\mathbf{M}_{\mathbf{pu}} = [M_{pu_1}, \dots, M_{pu_{n_u}}]$ is the row vector of mutuals between plasma and passive currents.
- We can now include the plasma in the active coil and passive circuit equation

$$\begin{pmatrix} \mathbf{V}_a \\ \mathbf{0} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{aa} & \mathbf{M}_{au} & \mathbf{M}_{ap} \\ \mathbf{M}_{ua} & \mathbf{M}_{uu} & \mathbf{M}_{up} \\ \mathbf{M}_{pa} & \mathbf{M}_{pu} & L_p \end{pmatrix} \begin{pmatrix} \mathbf{i}_a \\ \mathbf{i}_u \\ i_p \end{pmatrix} + \begin{pmatrix} \mathbf{R}_{aa} & 0 & 0 \\ 0 & \mathbf{R}_{uu} & 0 \\ 0 & 0 & R_p \end{pmatrix} \begin{pmatrix} \mathbf{i}_a \\ \mathbf{i}_u \\ I_p \end{pmatrix} \quad (3)$$

Plasma current induction by ohmic transformer

- We see directly from the plasma circuit equation

$$0 = \mathbf{M}_{pa} \dot{\mathbf{I}}_a + \mathbf{M}_{pu} \dot{\mathbf{I}}_u + L_p \dot{I}_p + R_p I_p \quad (4)$$

that we must *induce* a voltage to drive the plasma current via PF coils: $\mathbf{M}_{pa} \dot{\mathbf{I}}_a$.

- In practice, a combination of PF coils called the ‘ohmic’ coils is used to drive I_p . This set is sometimes also called the Central Solenoid (CS).
- Assume we want to drive a constant current I_p , with a collection of Ohmic coils carrying current I_{oh} . Then we need to satisfy

$$0 = M_{p,oh} \dot{I}_{oh} + R_p I_p \quad (5)$$

Hence $-M_{p,oh} \dot{I}_{oh} = R_p I_p$. This quantity is sometimes called the ‘loop voltage’ used to drive the plasma current inductively.

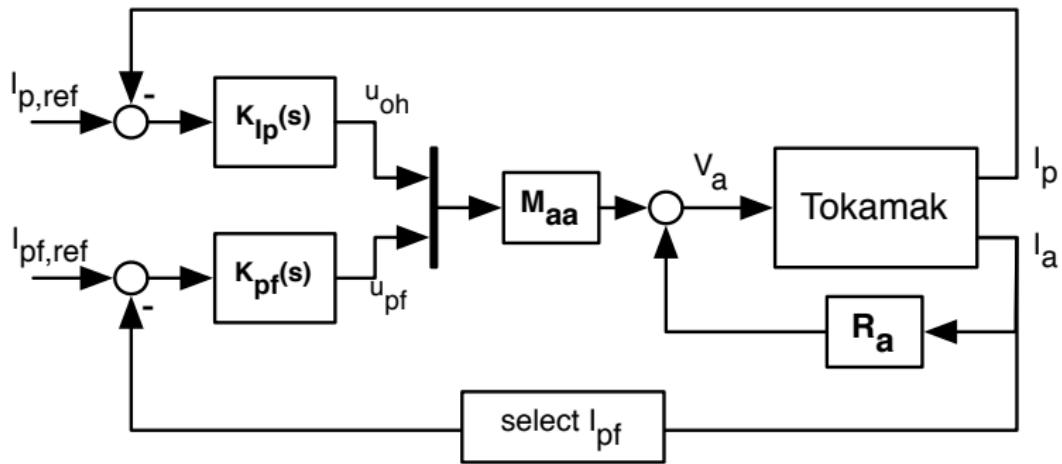
Limits of operation for inductively driven plasmas

- **The OH current must continuously change to drive the plasma current.**
- $I_{oh,min} \rightarrow I_{oh,max}$ or vice versa.
- This creates *flux swing* in the plasma of $\Delta\Psi_{oh} = \pm M_{p,oh}(I_{oh,max} - I_{oh,min})$. This is a measure of how long a tokamak PF coil set can sustain an Ohmic plasma.
- A cold plasma is more resistive than a hot plasma. So a hot plasma can be sustained longer for a given $\Delta\Psi_{oh}$.
- Tokamaks are inherently *pulsed* devices.
- For steady-state fusion reactor we need another, *non-inductive* means to drive the current (later in the course).

Controller design for plasma current

- Recall the coil current controller of the form $\mathbf{V}_a = \mathbf{M}_{aa}\mathbf{u} + \mathbf{R}_a\mathbf{I}_a$ which allows us to write $\mathbf{I}_a = \int_0^t \mathbf{u}(t)dt$.
- We now choose the 'OH' coils to be used for I_p control.

$$\mathbf{u} = \begin{pmatrix} u_{oh} \\ u_{pf} \end{pmatrix} = \begin{pmatrix} -K_{Ip}(s)(I_{p,ref} - I_p) \\ K_{pf}(s)(I_{pf,ref} - I_{pf}) \end{pmatrix} \quad (6)$$



Controller design for plasma current

- This gives $\dot{I}_{oh} = -K_{I_p}(s)(I_{p,ref} - I_p)$
- The closed-loop transfer function from $I_{p,ref}$ to I_p can be calculated, neglecting vessel currents:

$$0 = L_p \dot{I}_p + M_{p,oh} \dot{I}_{oh} + R_p I_p \quad (7)$$

$$M_{p,oh} K_{I_p}(s)(I_{p,ref} - I_p) = L_p s I_p + R_p I_p \quad (8)$$

$$M_{p,oh} K_{I_p}(s)(I_{p,ref}) = (L_p s + R_p + M_{p,oh} K_{I_p}(s)) I_p \quad (9)$$

$$\frac{I_p(s)}{I_{p,ref}(s)} = \frac{\frac{M_{p,oh}}{L_p} K_{I_p}(s)}{\left(s + \frac{R_p}{L_p} + \frac{M_{p,oh}}{L_p} K_{I_p}(s)\right)} \quad (10)$$

Controller design for plasma current - 2

- Closed-loop transfer function:

$$\frac{I_p(s)}{I_{p,ref}(s)} = \frac{\frac{M_{p,oh}}{L_p} K_{I_p}(s)}{(s + \frac{R_p}{L_p} + \frac{M_{p,oh}}{L_p} K_{I_p}(s))} \quad (11)$$

- If we choose a proportional controller $K_{I_p}(s) = k_p$ and compute the steady-state gain

$$\lim_{t \rightarrow \infty} I_p(t) = \lim_{s \downarrow 0} \frac{I_p(s)}{I_{p,ref}(s)} = \frac{M_{p,oh} k_p}{(R_p + M_{p,oh} k_p)} \quad (12)$$

- For high gain and/or low-resistivity plasmas, this approaches 1

Section 2

Magnetic measurements

Magnetic measurements

Various methods are used to measure currents and fields in and around the tokamak. These are also used to reconstruct the plasma position and shape (later).

References: [1], [2], [3], [4]

Magnetic measurements - Magnetic probes

- A magnetic probe consists of a small winding with several turns.
- Assuming the probe is small so that the field is homogeneous inside it, the voltage measured by the probe is

$$V_{\text{probe}} = NAB \quad (13)$$

where N is the number of turns, A is the area of the probe and \dot{B} is the time derivative of the field. To get the total field B the raw voltage signal must be integrated.

- Advantages: Simple, cheap, robust.
- Disadvantages: Integrator drift, no absolute measurement, damage and disturbance from fusion neutrons.

Magnetic measurements - Flux loops

- Flux loops consist of a wire wound around the torus. This measures

$$U_f = \frac{d\psi}{dt} = \iint \frac{dB}{dt} dS_f \quad (14)$$

where S_f is the surface enclosed by the loop.

- The signal is integrated in time to yield the flux enclosed by the loop

$$\psi_f = \int_t U_f(t') dt' \quad (15)$$

- Ideally, a flux loop wound around the torus at coordinates (r_f, z_f) measures the local poloidal flux at that point.
- In practice, flux loops are often not ideal and need to be guided around ports etc, so need to compensate for these 3D effects.

Magnetic measurements - Illustration

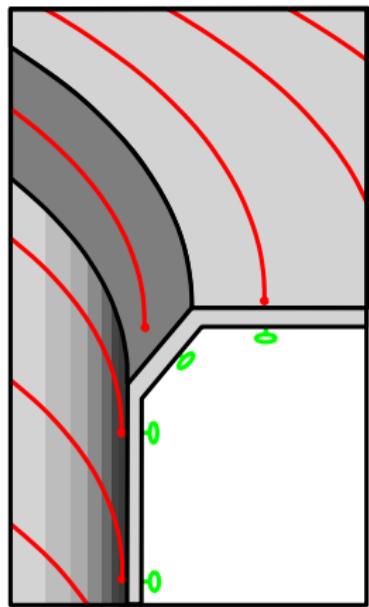
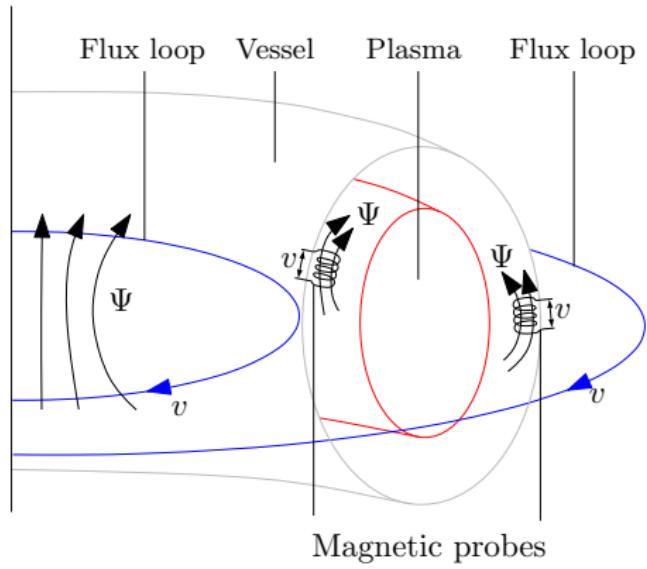


Figure: From C. Gootzen MSc thesis, TU/e 2014

Magnetic measurements - Illustration

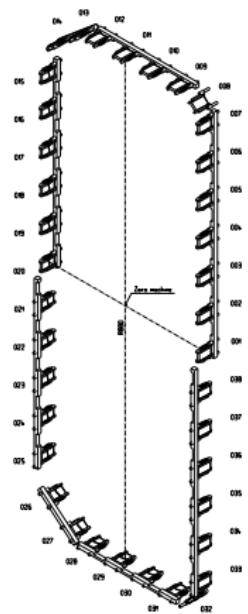
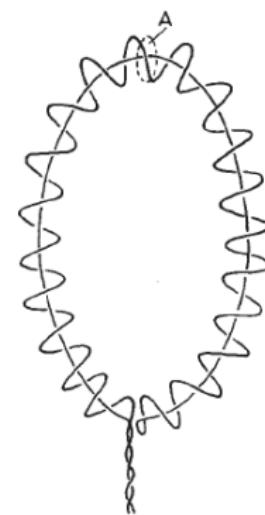


Figure: TCV poloidal magnetic probe array

Magnetic measurements - Rogowski coil

- A Rogowski coil measures the spatial integral of field through solenoid that is 'closed' on itself: $V_R = n \oint (\int dA) \mathbf{B} \cdot d\ell$ where n is the number of windings per unit length, A is the cross-sectional area of the solenoid, and $d\ell$ an infinitesimal element along the solenoid axis.
- Recalling Ampère's law: $\oint \mathbf{B} \cdot d\ell = \mu I$ we see that this measures $V_R = nA \frac{d}{dt} I$.
- The voltage is (electronically) integrated to get the current itself: $I = \frac{1}{nA} \int V_R dt$.
- Rogowski coils are frequently used to measure the total plasma current.

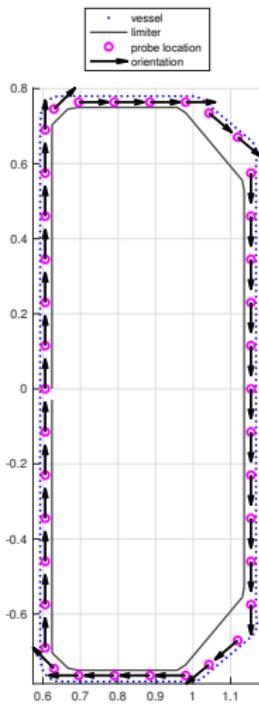


Magnetic measurements - plasma current estimators

- For practical reasons, no Rogowski coil was installed in the TCV tokamak
- An alternative plasma current estimator can be constructed by numerically integrating the (tangential) magnetic probe measurements, using the trapeze rule:

$$\mu_0 I_p = \oint B_p d\ell \approx \sum_{i=1}^{n_m} \frac{1}{2} (B_m^{i-1} + B_m^i) \Delta s_i \quad (16)$$

with $\Delta s_i = \sqrt{(r_i - r_{i-1})^2 + (z_i - z_{i-1})^2}$, and closing the contour with $\text{probe}_0 = \text{probe}_{n_m}$



Magnetic measurements - Diagmagnetic loop

- The plasma also carries poloidal currents which generate a toroidal field and flux.
- The total plasma toroidal flux ϕ_p is related to the plasma pressure via the approximate relation

$$\phi_p = \frac{\mu_0^2 I_p^2}{8\pi B_t} (1 - \beta_p) \quad (17)$$

with B_t the toroidal field and β_p the poloidal-field normalized pressure (later)

- Plasma toroidal flux in TCV: 0.04mWb to be separated from toroidal field flux 2Wb and induced vessel poloidal currents by complex calibration and signal processing [4].

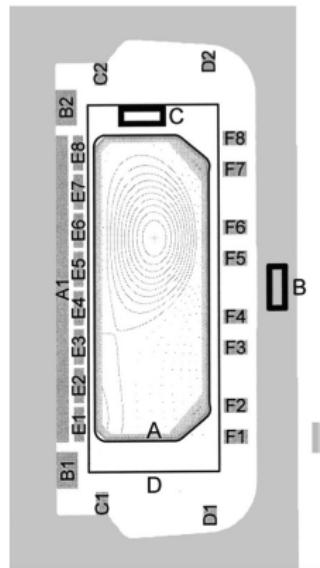


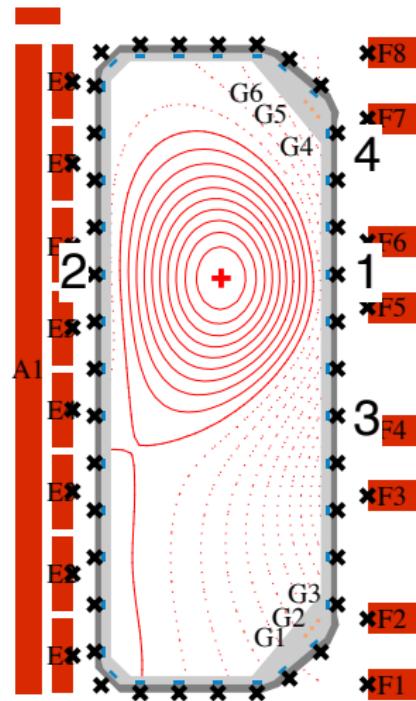
Figure: Four loops in the poloidal plane used for TCV DML diagnostic, from [4]

Estimating R,Z from measurements: the crude way

- Choose B probes and flux loops close to the plasma at appropriate locations
- Difference between fluxes/fields at each location are rough estimate of plasma position. E.g.:

$$\delta RI_p \approx k_r(\psi_1 - \psi_2) \quad (18)$$

$$\delta ZI_p \approx k_z(B_{p3} - B_{p4}) \quad (19)$$



Estimating R,Z from measurements

- A slightly less crude way is to combine magnetic probes and flux loops to extrapolate the flux.
- Assume in nominal case $\psi_o = \psi_i$
- $\tilde{\psi}_o - \tilde{\psi}_i = \left(\frac{\partial \psi}{\partial r} \Big|_o^{eq} - \frac{\partial \psi}{\partial r} \Big|_i^{eq} \right) \Delta r$
- Estimate for flux at position i, o :

$$\tilde{\psi}_i \approx \psi_A + \frac{\partial \psi}{\partial r} \Big|_A (r_i - r_A),$$

$$\tilde{\psi}_o \approx \psi_B - \frac{\partial \psi}{\partial r} \Big|_B (r_B - r_o), \text{ with}$$

$$\frac{\partial \psi}{\partial r} \Big|_A = 2\pi r_A B_{z,A} \quad \frac{\partial \psi}{\partial r} \Big|_B = 2\pi r_B B_{z,B}$$
- Solve for ΔR with measurements $B_{z,A}, B_{z,B}, \psi_A, \psi_B$

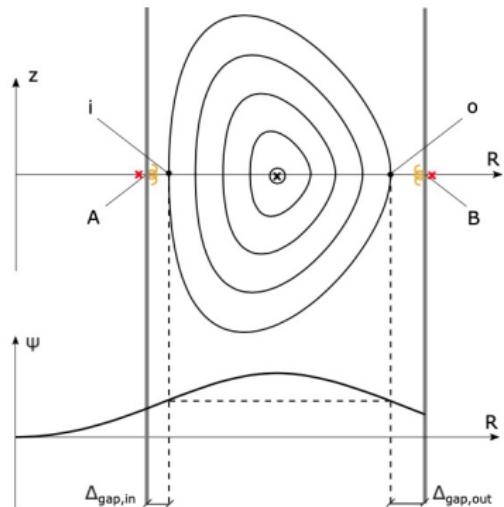


Figure: From F. Pesamosca EPFL
PhD thesis 2021

Measurement equation

- Since all these diagnostics measure fluxes or fields, which are all linear functions of currents in the coils, vessel and plasma...
- We can write the measurement output equations of the

$$\mathbf{B}^{\text{probe}} = \mathbf{B}_{\text{ma}} \mathbf{I}_a + \mathbf{B}_{\text{mv}} \mathbf{I}_v + \mathbf{B}_{\text{mx}} \mathbf{I}_x \quad (20)$$

$$\psi^{\text{loop}} = \mathbf{M}_{\text{fa}} \mathbf{I}_a + \mathbf{M}_{\text{fv}} \mathbf{I}_v + \mathbf{M}_{\text{fx}} \mathbf{I}_x \quad (21)$$

$$\mathbf{I}^{\text{meas}} = \mathbf{S}_{\text{la}} \mathbf{I}_a + \mathbf{S}_{\text{lv}} \mathbf{I}_v \quad (22)$$

- Defining $\mathbf{x} = [\mathbf{I}_a \quad \mathbf{I}_v \quad \mathbf{I}_x]$ and collecting the measurement vector in \mathbf{y} we can write this as a matrix equation of the form

$$\mathbf{y} = \mathbf{Cx} \quad (23)$$

Can we attempt to solve this weighted least-squares problem?

$$\min_x \|\mathbf{W}(\mathbf{y} - \mathbf{Cx})\| \quad (24)$$

Estimating current distribution from measurements

- The coil currents \mathbf{I}_a are usually measured directly
- The passive (e.g. vessel) currents \mathbf{I}_v are more difficult to measure.
Two approaches:
 - Reduce the number of free parameters by choosing an eigenvector or other parametrization and attempt to estimate it.
 - Associate a flux loop with a segment of the vessel and estimate its current $I_s = U_f / R_s$ with U_f voltage measurement of the flux loop measurement.
- The current distribution inside the plasma can not be measured directly. Estimating \mathbf{I}_x is not possible since there are many more elements than there are measurements. **The least-squares problem is ill-conditioned.** Need, either:
 - Regularization (impose structure on the solution, e.g. smoothness)
 - Reduction of the number of free parameters: choose coarser grid for \mathbf{I}_x , parametrize the current distribution, or impose that the solution must represent an MHD equilibrium (later in the course).

Simple estimators for the current distribution

- Choose a parametrization of the current plasma distribution, for example
 - Choose discrete filaments carrying currents $I_x = T_{xh} I_h$ with T_{xh}
 - Choose finite elements distributed on the plasma grid: $I_x = T_{xh} I_h$ with T_{xh} representing a spatially distributed current.
- We can then express the mag. probe and flux loop measurements, neglecting the vessel currents, as

$$\begin{bmatrix} \hat{B}_m \\ \hat{\psi}_f \end{bmatrix} = \begin{bmatrix} B_{ma} \\ M_{fa} \end{bmatrix} I_a + \begin{bmatrix} B_{mh} \\ M_{fh} \end{bmatrix} I_h$$

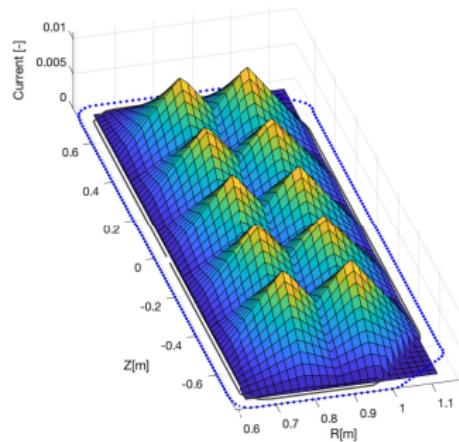


Figure: Illustration of 10 Bilinear Finite Elements for TCV

Simple estimators for the current distribution

- Typically ~ 100 measurements are available, so 100 equations
- Typically 4-8 degrees of freedom for the plasma can be used
- Solve in the least-squares sense: minimise w.r.t. I_h the function

$$\chi^2 = \sum_{i=1}^{n_m} \frac{(B_m^i - \hat{B}_m^i(I_h))^2}{e_{B_m}^2} + \sum_{i=1}^{n_f} \frac{(\psi_f^i - \hat{\psi}_f^i(I_h))^2}{e_{\psi_f}^2} \quad (25)$$

where e_{B_m} , e_{ψ_f} are the expected measurement errors, used to weigh the contributions to the χ^2 term.

- Exercise: write (25) in the form $\chi^2 = \|Ax - b\|_2^2$

Simple estimators for the current distribution

- Typically ~ 100 measurements are available, so 100 equations
- Typically 4-8 degrees of freedom for the plasma can be used
- Solve in the least-squares sense: minimise w.r.t. I_h the function

$$\chi^2 = \sum_{i=1}^{n_m} \frac{(B_m^i - \hat{B}_m^i(I_h))^2}{e_{B_m}^2} + \sum_{i=1}^{n_f} \frac{(\psi_f^i - \hat{\psi}_f^i(I_h))^2}{e_{\psi_f}^2} \quad (25)$$

where e_{B_m} , e_{ψ_f} are the expected measurement errors, used to weigh the contributions to the χ^2 term.

- Exercise: write (25) in the form $\chi^2 = \|Ax - b\|_2^2$
- Solution:

- $x = I_h$, $A = W \begin{bmatrix} B_{mh} \\ M_{fh} \end{bmatrix}$, $b = W \begin{bmatrix} B_m - B_{ma}I_a \\ \psi_f - M_{fa}I_a \end{bmatrix}$, with

$$W = \begin{bmatrix} 1/e_{B_m} & 0 \\ 0 & 1/e_{\psi_f} \end{bmatrix}$$

Simple estimators for the current distribution

- Exercise: solve the least-squares problem

$$\min_x \|Ax - b\|_2^2 \quad (26)$$

Simple estimators for the current distribution

- Exercise: solve the least-squares problem

$$\min_x \|Ax - b\|_2^2 \quad (26)$$

- Solution:

- We minimize

$J(x) = \chi^2 = (Ax - b)^T(Ax - b) = x^T A^T A x - 2x^T A^T b + b^T b$ with respect to x . Write the Jacobian:

$$\frac{\partial J}{\partial x} = 2A^T A x - 2A^T b \quad (27)$$

The function has a minimum where $\frac{\partial J}{\partial x} = 0$. This yields:

$$x = A^+ b \quad (28)$$

where $A^+ = (A^T A)^{-1} A^T$ is the Moore-Penrose Pseudoinverse of A

- in matlab: $x=A\backslash b$ or $x=pinv(A)*b$

Simple estimators for the current distribution

- We obtain

$$I_h = \underbrace{\left(W \begin{bmatrix} B_{mh} \\ M_{fh} \end{bmatrix} \right)^+}_= Q W \begin{bmatrix} B_m - B_{ma} I_a \\ \psi_f - M_{fa} I_a \end{bmatrix} \quad (29)$$

- This solution can be cast into a linear estimator:

$$I_h = \underbrace{\begin{bmatrix} A_{hm} & A_{hf} & A_{ha} \end{bmatrix}}_{\text{pre-computed}} \underbrace{\begin{bmatrix} B_m \\ \psi_f \\ I_a \end{bmatrix}}_{\text{measured}} \quad (30)$$

with $\begin{bmatrix} A_{hm} & A_{hf} \end{bmatrix} = Q$ and $A_{ha} = -Q \begin{bmatrix} B_{ma} \\ M_{fa} \end{bmatrix}$

Current distribution moments

- Total plasma current:

$$I_p = \sum_x I_x = \sum_x T_{xh} I_h = \begin{bmatrix} \sum_x T_{xh} A_{hm} & \sum_x T_{xh} A_{hf} & \sum_x T_{xh} A_{ha} \end{bmatrix} \begin{bmatrix} B_m \\ \psi_f \\ I_a \end{bmatrix} \quad (31)$$

- Actually not the best estimator, the numerical estimator (16) is more accurate, particularly if we also subtract the contribution from poloidal field coils:

$$I_p = \sum_{i=1}^{n_m} \frac{1}{2} (B_m^{i-1} + B_m^i - (B_{ma}^{i-1} I_a + B_{ma}^i I_a)) \Delta s_i \quad (32)$$

Current distribution moments

- Vertical position (current distribution centroid):

$$zI_p = \sum_x z_x I_x = \begin{bmatrix} \sum_x z_x T_{xh} A_{hm} & \sum_x z_x T_{xh} A_{hf} & \sum_x z_x T_{xh} A_{ha} \end{bmatrix} \begin{bmatrix} B_m \\ \psi_f \\ I_a \end{bmatrix}$$

- or: error w.r.t. a given reference z_0

$$\sum_x (z_x - z_0) I_x \tag{33}$$

$$= \begin{bmatrix} \sum_x (z_x - z_0) T_{xh} A_{hm} & \sum_x (z_x - z_0) T_{xh} A_{hf} & \sum_x (z_x - z_0) T_{xh} A_{ha} \end{bmatrix} \begin{bmatrix} B_m \\ \psi_f \\ I_a \end{bmatrix}$$

- Radial position (current distribution centroid):

$$rI_p = \sum_x r_x I_x = \begin{bmatrix} \sum_x r_x T_{xh} A_{hm} & \sum_x r_x T_{xh} A_{hf} & \sum_x r_x T_{xh} A_{ha} \end{bmatrix} \begin{bmatrix} B_m \\ \psi_f \\ I_a \end{bmatrix}$$

Current distribution moments

- Elongation estimator:

$$\sum_x (z_x - z_0)^2 I_x =$$

$$\begin{bmatrix} \sum_x (z_x - z_0)^2 T_{xh} A_{hm} & \sum_x (z_x - z_0)^2 T_{xh} A_{hf} & \sum_x (z_x - z_0)^2 T_{xh} A_{ha} \end{bmatrix} \begin{bmatrix} B_m \\ \psi_f \\ I_a \end{bmatrix}$$

Generalized toroidal current distribution estimator

- Write a more general least-squares estimator to include passive current contributions I_u and allow uncertainties in I_a measurements
- Recall we define segment currents as $I_s = S_{sv} I_v$ (where S_{sv} is a selection matrix), and estimate these currents as $\hat{I}_s^{\text{estim}} = U_f / R_s$.

$$\begin{bmatrix} \hat{B}_m \\ \hat{\psi}_f \\ \hat{I}_a^{\text{meas}} \\ \hat{I}_s^{\text{estim}} \end{bmatrix} = \begin{bmatrix} B_{ma} \\ M_{fa} \\ \mathbb{I}_a \\ 0 \end{bmatrix} I_a + \begin{bmatrix} B_{mu} \\ M_{fu} \\ 0 \\ S_{sv} T_{vu} \end{bmatrix} I_u + \begin{bmatrix} B_{mh} \\ M_{fh} \\ 0 \\ 0 \end{bmatrix} I_h$$

This can again be solved in a weighted least-squares sense, with uncertainties ΔB_m , $\Delta \psi_f$, ΔI_s , ΔI_a , yielding

$$\begin{bmatrix} I_h \\ I_a \\ I_u \end{bmatrix} = \begin{bmatrix} A_{hm} & A_{hf} & A_{ha} & A_{hU} \\ A_{am} & A_{af} & A_{aa} & A_{aU} \\ A_{sm} & A_{sf} & A_{sa} & A_{sU} \end{bmatrix} \begin{bmatrix} B_m \\ \psi_f \\ \hat{I}_a^{\text{meas}} \\ U_f \end{bmatrix}$$

Bibliography I

- Hutchinson, I.H. 2005 *Principles of Plasma Diagnostics* Cambridge University Press second edition
- Moret, J.M. *et al.* 1998 *Review of Scientific Instruments* **69** 2333
- Wesson, J. 2004 *Tokamaks* volume 118 of *International series of monographs on physics* Oxford Science Publications, New York (USA) third edit edition ISBN 0-19-8509227
- Moret, J.M. *et al.* 2003 *Review of Scientific Instruments* **74** 4634