

Control and operation of tokamaks

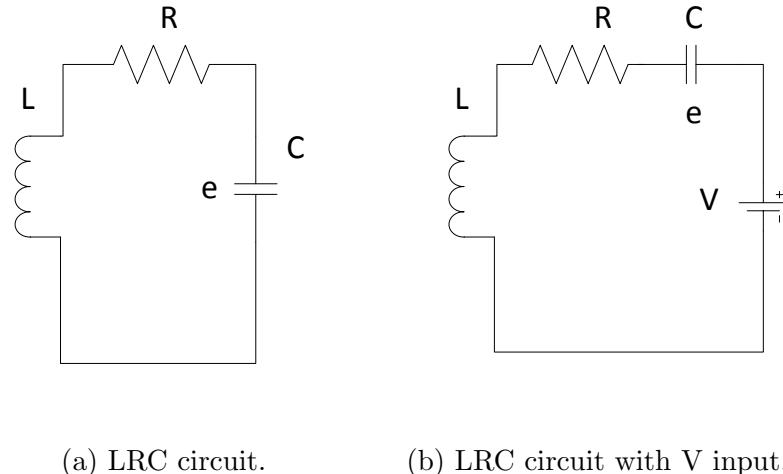
Exercise 0 - Prerequisites

Lecturer: A. Mele (based on notes prepared by F. Felici)

Instructors: R. Coosemans, S. Dubbioso, P. Molina, F. Pastore, J.P. Svantner
EPFL - SPC

February 2025

Exercise 1 - State Space Representation



(a) LRC circuit.

(b) LRC circuit with V input.

Figure 1

Consider the unforced LRC circuit of Fig.1a

- Write down the set of ODEs defining the circuit dynamics.
- Write them as a first order ODE system in a vector matrix form.
- Among the variables, identify the states of the system.

d) Write down the state space representation for this system.

Consider now the forced circuit of Fig.1b with $V = 1V$, $R = 1\Omega$, $C = 0.1\mu F$ and $L = 1\mu H$.

e) Write down the state space representation of the new system.
e) Determine the stability of the system.
e) Plot the step response for the following inductance values: $L = 1\mu H$, $L = 10\mu H$ and $L = 100\mu H$.

Useful Matlab functions: `ss()`, `step()`, `pole()`, `pzmap()`.

Exercise 2 - Circuit diagram: Frequency and step response

Consider the RL circuit of Fig.2

a) Derive the transfer function from voltage input to current for the RL circuit.
b) Plot the step response for a 1 V step for $R = 1\Omega$ and $L = 1\mu H$, $L = 10\mu H$, and, $L = 100\mu H$.
c) Sketch the bode plot for the different inductances. Compare them by using the matlab `bode` function. Use the Bode diagrams to explain the step responses.
d) Convert the transfer function to a discrete-time plant with Tustin mapping. Note that it is a rational function of z^{-1} . Study its stability with various settings. Recall that a discrete-time systems is stable if for all z-plane eigenvalues $|p_n| \leq 1$.

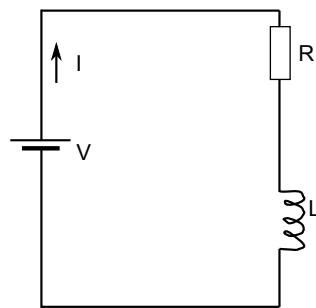


Figure 2: A circuit with a resistor and an inductor.

Useful Matlab functions: `zpk()`, `tf()`, `impulse()`, `bode()`, `c2d()`.

Exercise 3 - P-controller design

In this exercise we will design a proportional controller for a stable dynamical system. The control scheme is given below.

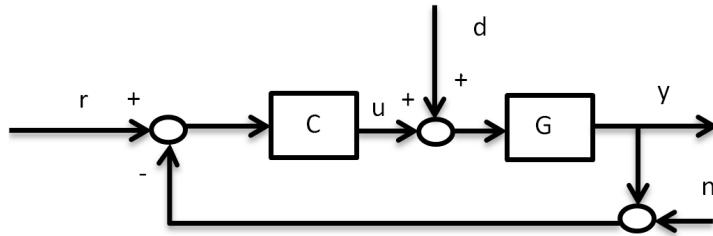


Figure 3: The closed loop for the system $G(s)$ controlled with a controller $C(s)$ in Ex. 3.

The controller computes inputs $u(t)$ to help ensure that the output $y(t)$ follows the reference $r(t)$, even in the presence of input disturbances $d(t)$ and measurement noise $n(t)$.

Robust stability for the closed loop of a stable system $G(s)$ controlled with a controller $C(s)$ can be ensured as follows:

1. In the case of open-loop stable systems, the Nyquist criterion for closed-loop stability requires that in the so-called Nyquist diagram (real vs imaginary plot of the open loop $G(i\omega)C(i\omega)$ for varying frequency ω), the curve $G(i\omega)C(i\omega)$ in the direction of increasing frequencies ω has the point $(-1, 0)$ always on the left hand side.
2. Once stability is obtained, a modulus margin of 6 dB guarantees robustness (stability for a limited variation of the system parameters). The modulus margin is the maximum value of sensitivity function $S = (1 + G(s)C(s))^{-1}$. It also means that the Nyquist plot does not pass through the circle with radius 0.5 around the point $(-1, 0)$.

a) For the plant $G(s)$:

$$G(s) = \frac{0.5}{(s + 0.5)(s + 0.01)}$$

Design a proportional controller $C(s) = K$ with $K \in \mathbb{R}$ that provides a maximum bandwidth (frequency up to which $|G(s)C(s)| \geq 1$), while ensuring stability.

- Verify both conditions (Maximum sensitivity function and Nyquist criterion) for your controller.
- Derive the transfer function between the $u(t)$ and $r(t)$, $y(t)$ and $r(t)$, $y(t)$ and $d(t)$.
- Plot the step response for the above derived transfer functions.

- e) Add a delay to the controller response $u(t)$ (look how to define a delay with `InputDelay` and `pade`). Plot the root locus for the closed loop system with and without the delay and study the effect on the stability of the system.
- f) Plot the bode diagram of the open loop system, with and without the controller response delay. Why is an infinite bandwidth not possible in practice?

Useful Matlab functions: `feedback()`, `nyquist()`, `margin()`, `rlocus()`, `stepinfo()`, `dcgain()`