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Kinetic control 0D model of tokamak confinement

Subsection 1

0D model of tokamak confinement
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Kinetic control 0D model of tokamak confinement

0D models of tokamaks

e Energy balance equation for plasma pressure
p = (neTe + n;T;) =~ 2nT (or thermal energy denstiy wy, = gp)

g ((ii_ﬁt) = Ssource - Ssinks (1)
where

e Ssources IS the source power density

e Sginks IS the sink power density
See the book by Freidberg for an overview of power balance
considerations for reactors, Lawson’s criterion, etc. [1]
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Kinetic control 0D model of tokamak confinement

0D models of tokamaks

e Particles
dn

d_t = Ssource,n - Ssink,n (2)

o Ssources,n 1S the source of particles
o Ssinks,n 1S the sink of particles

¢ Global steady-state current balance

Ipl = lp,inductive + 1, ,non—inductive = V/oopRplasma + 1, ,non—inductive (3)

o Inductive current: current driven by (induced) loop voltage.
e Non-inductive current: other sources, self-generated by plasma or
auxiliary current drive.
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Kinetic control Sources of power, particles and current

Subsection 2

Sources of power, particles and current
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Kinetic control Sources of power, particles and current

Fusion power

o g of each fusion reaction’s energy is in the fast 14MeV neutron.
To be used by breeder to breed tritium and to extract energy.

« 1 of each fusion reaction is contained in a 3.5MeV a-particle.
e Alpha particle power density (for DT reactions) is

for >
pr— = e 4
So = Eonpnr(ov) (i +fDT)2E n“(ov) (4)
where fpr = np/nr and we have used nt +np =n

e For sustained fusion reaction, significant fraction of plasma
thermal energy must come from a-particles.
Pa/Pin:‘I <_>Q:Pfus/Pin:5
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Kinetic control Sources of power, particles and current

Ohmic power

e The plasma current causes resistive heating Pop = Vipoplp = lng.

e ‘Ohmic plasmas’ are plasmas heated purely by Ohmic power, no
auxiliary sources.

o Unfortunately, resistivity decreases with plasma temperature, so
Pon decreases. Purely ohmic tokamak plasmas can’t reach high
enough temperatures for ignition.
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Kinetic control Sources of power, particles and current

Bootstrap current

e Self-generated plasma current due to neoclassical (trapped
particle) effects (see [2] for the physical explanation).

e Caused by pressure gradient, proportional to 3—5.

¢ For steady-state tokamaks, we want the entire plasma current
driven non-inductively. But auxiliary current drive is expensive.

o For steady-state tokamaks, we would like a /arge bootstrap current
fraction, Igs/l, > 50%, rest by auxiliary current drive.

e Active field of research in ‘advanced scenarios’: most current
driven by bootstrap + auxiliary.
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Neutral beam injection

¢ Inject high-energy beam of neutral particles, ionize upon entering
plasma

e Beam ions thermalize by colliding with plasma ions, kinetic energy
of beam becomes thermal energy of plasma

o Also drive electrical current and give momentum (rggi}%tjgn) to the
plasm a (R.m"ly1 20, 130 cm) (Ryan=50, 50 70 cm)

e Advantages

e ‘Workhorse’, good for bulk

heating and current drive.
¢ Disadvantages

e Power can only be on or off
for each injector.

e Technologically difficult for
high energy and high power.
Need ‘negative ion’ beams. Figure: NSTX
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Kinetic control Sources of power, particles and current

Electron Cyclotron Heating & Current Drive

e Electrons gyrate around field at

cyclotron frequency we = 2

o EM waves resonantly heat electrons.
e Advantages:

o Waves propagate through vacuum, RIS
no coupling problems. ' 3 incoming be

o Steerable: highly localized TS0 _
heating/cd location in plasma.

o Can drive electric current.

e Disadvantages:

o Heats electrons only.

o Concentrated stray radiation may
damage wall or diagnostics, need T
protection. i E—

o Difficult technology for sources
(f ~170GHz for By = 6T).

X2 upp:
; %< launche

\ X2 equatoria

launcher
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lon Cyclotron Heating and Current Drive

¢ Advantages:
e Source technology easy, f ~ 50MHz.
e Heats the ions: good for fusion.
e Disadvantages:
e Antennas must be close to plasma to couple power:
antenna-plasma interaction and problems with impedance matching

(b) Impedance

transformer Conjugate T RDL

(2nd stage)  junction Strap t
I —
2| A G
§20=300] |_| ] Zor|

(@) Amplifier  Stub Trombone Service Siapb

() stub

(L,b)=(1,2).(3,4).(5,6). 7.8
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Kinetic control Sources of power, particles and current

Lower Hybrid Heating and Current Drive

¢ Advantages:
e Source and trasmission technology is easy, 1 — 8GHz.
e Good at driving non-inductive plasma current.

e Disadvantages:
e Only electron heating.
e Technologically difficult coupling of antenna to plasma.
¢ Hard to tell where the power/current will go.

—0.6

04 06 08 1
Rim]

Figure: LHCD wave propagation according to Genray code. From [3]
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Kinetic control Sinks of power and particles

Subsection 3

Sinks of power and particles
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Kinetic control Sinks of power and particles

Radiation

¢ Physical origin
e Cyclotron: radiation due to centripetal acceleration of gyrating
particles.
e Line radiation: ionization processes involving bound charge states.
e Bremsstrahlung: radiation due to acceleration (change of velocity
direction) of particles during collisions.
e Bremsstrahlung is usually dominant for large hot tokamaks.
e Approximate model:

Sprem = 5.35 x 108 Z,(Nezo )2 Ta/? (5)

e Here, Z.g = nl Zj Z]?n,- is the effective charge. (j sums over
impurity species). Impurities have higher charge and cause
electrons to radiate more. Important to keep Z.g low.

e If high-Z impurities (e.g. Tungsten) accumulate in plasma, then
impurity line radiation may dominate.
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Conductivity losses

e The temperature gradient from core to edge causes outward
thermal diffusion.

o Ultimately, energy flows out of the plasma into the limiter or
divertor.

e This is quantified by the energy confinement time. Neglecting all
other sources and sinks we have

d 1
£ = _Scond = _Ep (6)
so the thermal energy (pressure) decays with characteristic time

TE.

¢ Unfortunately, 7z decreases with increasing input power.
Otherwise we could reach any temperature by just heating
sufficiently.

o Until very recently, tractable first-principle models for 7, did not
exist: use scaling laws instead.
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Kinetic control Sinks of power and particles

L-H transition

e L-mode: ‘normal’ model of operation A
for tokamaks.

¢ H-mode: Transport is locally
suppressed near the edge. Edge
Transport Barrier gives edge
pedestal.
e Pressure pedestal gives extra
pressure in entire plasma
e Occurs in diverted plasmas, after radius edge
reaching power threshold
¢ Detailed mechanisms not
completely understood, involves
complex turbulence and flow.
o Edge pedestal can repetitively
collapse, origin of Edge Localized
Mode (ELM).

pressure

edge
edestal
L-mode P
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Kinetic control Particle transport

Subsection 4

Particle transport
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Gas valves/pellet injectors

e Gas valves
¢ Inject gas into vacuum chamber
o Neutral gas particles become ionized soon after they enter the
plasma.
e Time delays if valves are far away.
e Gas stays near edge and does not penetrate into the plasma in
certain conditions.

¢ Pellet injectors
e e o Inject small pellets of frozen
D, or Hy ice at high speed.
o Penetrates into the plasma
before ablating.
e Can be used for localized
fuelling deep in the plasma.
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https://www.ipp.mpg.de/1124550/systems?page=2

Kinetic control Particle transport

0D model of tokamak particle confinement

e Three ‘reservoirs’: plasma, vacuum,
wall.
e Flows:
e lonization: neutrals in vacuum get
ionized when entering the plasma.
o Recombination: ions in plasma get
neutralized and leave plasma
e SOL losses: plasma form the
scrape-off layer exit plasma and
impact limiter/diverted.
¢ Recycling: Particles from wall
pushed out by new incoming (<]
paticles. Pump

Figure: Particle flows in a tokamak
reactor [T. Blanken Fus.Eng.Des 2017]

lonization

Recombination
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Kinetic control Sensors/Diagnostics for kinetic control

Subsection 5

Sensors/Diagnostics for kinetic control
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Kinetic control Sensors/Diagnostics for kinetic control

Sensors, aka Diagnostics

o Measurements of high-temperature plasma are not easy.
o Entire courses exist on plasma diagnostics.

e Here we look only at the main diagnostics that are used for
real-time control.
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Kinetic control Sensors/Diagnostics for kinetic control

ECE - Electron Cyclotron Emission

e Measure EC radiation leaving the plasma.

- A s et

e Choose measured frequency — nominal & 2, " R frequency
. . . . . (]
emission locadtion inside plasma. g
e In practice, thermal, supra-thermal, and Q

relativistic effects play an important role,
often source of radiation is not
well-localized. !
e Advantages radius
e High temporal resolution.
e Viewing angle can be steered (in-line
ECE).
e Disadvantages
e Measurement location depends on B
field.

L] J1O11 dl Nidn
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Kinetic control Sensors/Diagnostics for kinetic control

In-line ECE

o ECE line of sight shared with ECRH launcher [4].
e Steerable line of sight, sensing and actuating in same location.

Feedback Feedback
Feedback R Reslonance
Plasma E
NOtCh 2" ielectric |
fllter p|ate :
- ™ '

Y Radiometer

s

Gyrotron 15 dielectric mirror
plate
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Kinetic control Sensors/Diagnostics for kinetic control

Thomson scattering

o Laser scatters off plasma electrons.
Intensity of scattered light is proportional to plasma density.
Broadening of scattered spectrum is proportional to plasma
temperature.
Advantages

e Localised measurement.

Disadvantages
o Laser repetition rate limits temporal resolution.
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Kinetic control Sensors/Diagnostics for kinetic control

Radiation measurements

e Soft X-ray
e Plasma core Bremsstrahlung and line radiation is mostly in the
X-ray part of the EM spectrum
e X-ray detectors can be used to measure line-integrated X-ray
radiation in given portion of the spectrum.
e Can be processed by tomographic inversion techniques to get
pictures of plasma position, shape, or internal plasma fluctuations.

e Bolometry

e Broadband measurement of Visible + UV + X-ray radiation
o Used to get total radiated power.
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Kinetic control Sensors/Diagnostics for kinetic control

Interferometry

e Laser beam follows 2 paths, one through plasma, one not.

e Beam through plasma travels more slowly, phase shift w.r.t.
unperturbed beam.

o Interference pattern with other beam gives measure of plasma
density.

o Measurement of line-integrated electron density:
Ap = 2 526 [, nedl where L is the path of the chord.

2megMe

detector 2

mirror
K. *

source sample detector 1

calllmated
beam

beam-splitter
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Kinetic control Sensors/Diagnostics for kinetic control

Motional Stark Effect diagnostic

o Neutral particles (from NBI source) passing through magnetized
plasma experience E = v x B field.

When they ionize the visible light is split under the influence of this
E field (Stark effect)

Polarization of light is aligned with B field: localized measurement.
Advantages

e Localized measurement of internal plasma B field: hard to obtain
otherwise.

Disadvantages
e Technologically difficult, stray polarized light, difficult to calibrate.
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Kinetic control Sensors/Diagnostics for kinetic control

Real-time imaging diagnostics

Real-time camera image processing

MANTIS [5]: multispectral imaging using filters to extract light at
specific wavelengths

Specific wavelengths correspond to specific atomic processes,
linked to temperature and density

RT-analysis of camera images enabled by ML

t=705ms t=2805ms t=905ms t=1005 ms t=1105ms

Dy

ci

Figure: MANTIS images of Clil and D., spectral

Concave mirror Relay lens Interference filter lines (from [5]
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Kinetic control Sensors/Diagnostics for kinetic control

Inverting line-integrated measurements

e Given measurements y; = fL x(R, Z)dl along multiple chords j,

how do we reconstruct x(R, Z)
e Tomographic, or Abel inversion. Assume x is parametrized, for
example

x=3" f(en(R. 2))by 7)

where Yy = (V(R,Z) — va)/(¢p — a) € [0,1] and f is some
basis function. Then given ¥n(R, Z) (from equilibrium
reconstruction) we can construct x(R,Z) = > _; Fi(R, Z)b; and

write
70 =>"b, /L F(R.Z)dl (8)

and we can solve the least-squares problem

mmZZ(y, Zb/ RZd/) (9)
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Kinetic control

Sensors/Diagnostics for kinetic control

New development: state observers

e Tomographic inversion methods are static, they treat each
measurement sample as independent in time.

e Ongoing work: State observers for interpreting measured signals
from plasma including model knowledge.

Standard solution: static inversion
y=Cx—x=Cly (10)

where CT is some inverse of C.
® Simple and robust.

® Does not take time evolution of
the system into account.

F. Felici (SPC-EPFL)

Kinetic control of tokamaks

Observer: dynamic state estimator

X=Ax+Bu+K({y—-y) (11)

Cx (12)

<
Il

Where K is the Kalman Gain. This scheme
is known as a Kalman Filter.
® K can be designed from knowledge
of A, B, C, D and the covariance of
the expected noise.
® [t can be shown that this is the
optimal filter for this system, for
which E[(x — %)?] is minimal.
® See course/book on systems theory
or estimation for details.
PHYS-748, February 2025



Kinetic control Sensors/Diagnostics for kinetic control

State observer: example for density control

e Current practice - control of gas valve via single interferometer
chord

Actuator Interferometry
commands measurements
» Tokamak
Density _
controller |
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Kinetic control Sensors/Diagnostics for kinetic control

State observer: example for density control

e Current practice - control of gas valve via single interferometer

chord
Actuator Interferometry
commands measurements
» Tokamak
Density _
controller

e New approach: model-based observer

Actuator Interferometry

commands measurements
Tokamak

A 4

5 Predictions - ~+
Density ¢ Dynamic > )<

| controller state I
observer Residual
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Kinetic control Sensors/Diagnostics for kinetic control

State observer: example for density control

Actuator Diagnostics
commands measurements
Tokamak

A\ 4

Real-time control system
Model-based, dynamic state estimator
Supervision .
s Predicted Predicted .
AN | Physics-model |state | Diagnostic measuremeg%:
prediction "] models N+
A 4 4 Measurement
State residual
Controllers :
P estimate + OlsERET
D 2 gain
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Kinetic control Current practice for kinetic control

Subsection 6

Current practice for kinetic control
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Common practices, challenges for kinetic control

e Series of SISO control loops. Direct link between diagnostic and
actuator.
e Single interferometer chord — plasma gas valve
e Plasma S from magnetic measurements — NBI or ECRH power.
¢ Individually tuned PID controllers.
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Common practices, challenges for kinetic control

e Series of SISO control loops. Direct link between diagnostic and
actuator.
e Single interferometer chord — plasma gas valve
e Plasma g from magnetic measurements — NBI or ECRH power.
e Individually tuned PID controllers.

e [ control usually works quite well.
e Some issues with density controllers:
¢ Single-sided actuator: at most can close the valve valve, can not
extract more particles. Need anti-windup compensation.
e Most simple controllers do not work well for all density regimes.
Need to re-tune and re-commission controllers.
e Gas valve vs pellet fuelling, different efficiency depending on
density/temperature
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Kinetic control Current practice for kinetic control

Common practices, challenges for kinetic control

e Series of SISO control loops. Direct link between diagnostic and
actuator.
e Single interferometer chord — plasma gas valve
e Plasma g from magnetic measurements — NBI or ECRH power.
e Individually tuned PID controllers.

e (3 control usually works quite well.
e Some issues with density controllers:
¢ Single-sided actuator: at most can close the valve valve, can not
extract more particles. Need anti-windup compensation.
e Most simple controllers do not work well for all density regimes.
Need to re-tune and re-commission controllers.
e Gas valve vs pellet fuelling, different efficiency depending on
density/temperature
e Ongoing research topics:
e Control of radiation fraction and heat flux to mitigate wall loads.
e Actuator management: RT allocation of actuators to various tasks.
e Burn control: nonlinear control problem & solution.
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