
Parallel Programming
Single-core optimization, MPI, OpenMP, and hybrid programming

Nicolas Richart
Emmanuel Lanti
Course based on V. Keller’s lecture notes

14th - 18th of November 2022

Advanced MPI

Advanced MPI
Goals of this section

Overview of more advanced functionalities

Persistent communications

Advanced collective communications

Describing your own datatype

Redefining communicators

Associating a topology to a communicator

Parallel I/O

One sided communications

N. Richart, E. Lanti 3 / 44

Persistent communications

MPI_Send_init MPI_Recv_init , initialize the communication

Same signature as non-blocking communications

MPI_Start , MPI_Startall to start the communication

Completion is checked the same way as for non-blocking

N. Richart, E. Lanti 4 / 44

Persistent communications

Replace the non-blocking communication in the Poisson code by persistent ones

N. Richart, E. Lanti 5 / 44

Collective communications
V extension to MPI_Gather

Syntax

1 int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, const int recvcounts[], const int displs[],
3 MPI_Datatype recvtype, int root, MPI_Comm comm);

recvcounts is now an array, one entry per rank

displs array of displacements defining where to place the ith receive data

receive different sizes per process

receive in an array with strides

N. Richart, E. Lanti 6 / 44

Collective communications
Gatherv semantic

Semantic equivalent

1 // Every process
2 MPI_Send(sendbuf, sendcount, sendtype, root, /*...*/);
3

4 // On root process
5 for(i = 0; i < nb_process; ++i)
6 MPI_Recv(recvbuf+displs[j] * extent(recvtype), recvcounts[j], recvtype, i,
7 /*...*/);

N. Richart, E. Lanti 7 / 44

Collective communications
V extension to MPI_Scatter

Syntax

1 int MPI_Scatterv(const void *sendbuf, const int sendcounts[],
2 const int displs[], MPI_Datatype sendtype, void *recvbuf,
3 int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

sendcounts is now an array, one entry per rank

displs array of displacements defining where to place the ith receive data

receive different sizes

receive in an array with strides

N. Richart, E. Lanti 8 / 44

Collective communications
Scatterv semantic

Semantic equivalent

1 // On root process
2 for(i = 0; i < nb_process; ++i)
3 MPI_Send(sendbuf+displs[i]*extent(sendtype), sendcounts[i], sendtype, i,
4 /*...*/)
5

6 // Every process
7 MPI_Recv(recvbuf, recvcount, recvtype, i, /*...*/).

N. Richart, E. Lanti 9 / 44

Non-blocking collective communications

I variant of collective communications

extra parameter request

MPI_Ibarrier , MPI_Ibcast

MPI_Igather , MPI_Igatherv , MPI_Iscatter , MPI_Iscatterv

MPI_Iallgather , MPI_Iallgatherv , MPI_Ialltoall

MPI_Ireduce , MPI_Iallreduce , MPI_Iscan , MPI_Iexscan

N. Richart, E. Lanti 10 / 44

Persistent collective communications

_init variant of collective communications

extra parameter request

MPI_Barrier_init , MPI_Bcast_init

MPI_Gather_init , MPI_Gatherv_init , MPI_Scatter_init , MPI_Scatterv_init

MPI_Allgather_init , MPI_Allgatherv_init , MPI_Alltoall_init

MPI_Reduce_init , MPI_Allreduce_init , MPI_Scan_init , MPI_Exscan_init

N. Richart, E. Lanti 11 / 44

Persistent collective

Replace the the MPI_Allreduce by a persistent one

N. Richart, E. Lanti 12 / 44

Derived Datatypes
Definition of a datatypes

MPI_Datatype opaque type containing a Typemap

▶ Typemap = {(type0, disp0), · · · , (typen−1, dispn−1)}
▶ sequence of basic datatypes
▶ sequence of displacements (in bytes)

extent is the span from the first byte to the last one, with alignment requirement

lb(Typemap) = min
j
(dispj),

ub(Typemap) = max
j

(dispj + sizeof(typej)) + ϵ, and

extent(Typemap) = ub(Typemap)− lb(Typemap)

ϵ is there to account for alignment requirements

N. Richart, E. Lanti 13 / 44

Derived Datatypes
Base datatypes

MPI datatype C datatype

MPI_CHAR char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT signed long long int

MPI_LONG_LONG signed long long int

MPI_SIGNED_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI datatype C datatype

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

N. Richart, E. Lanti 14 / 44

Derived Datatypes
Base datatypes

MPI datatype C++ datatype

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

MPI datatype C datatype

MPI_AINT MPI_Aint

MPI_OFFSET MPI_Offset

MPI_COUNT MPI_Count

MPI_BYTE

MPI_PACKED

N. Richart, E. Lanti 15 / 44

Derived Datatypes
Arrays

Syntax

1 int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
2 MPI_Datatype *newtype);
3

4 int MPI_Type_vector(int count, int blocklength, int stride,
5 MPI_Datatype oldtype, MPI_Datatype *newtype);

array of contiguous array or with strided blocks of same type

count : number of repetition (blocks)

blocklength : number of element per block

stride : number of element between start of each block

N. Richart, E. Lanti 16 / 44

Derived Datatypes
Array variants

MPI_Type_create_hvector : same as MPI_Type_vector with stride expressed in bytes

MPI_Type_create_indexed_block same as MPI_Type_vector with array of and displacements

MPI_Type_create_hindexed_block : same as MPI_Type_create_indexed_block with

displacements in bytes

MPI_Type_indexed : same as MPI_Type_create_indexed_block with arrays of blocklengths

MPI_Type_create_hindexed : same as MPI_Type_indexed with displacements in bytes

N. Richart, E. Lanti 17 / 44

Derived Datatypes
Structures

Syntax

1 int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
2 const MPI_Aint array_of_displacements[],
3 const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

count : number of repetition (blocks)

array_of_blocklengths : sizes per block

array_of_displacements : displacements between blocks in bytes

array_of_types : types contained in each blocks

N. Richart, E. Lanti 18 / 44

Derived Datatypes
Usefull helper functions

MPI_Get_address : get the address of a variable

MPI_Aint_diff : get the difference between 2 addresses

MPI_Aint_add : get the sum of 2 addresses

MPI_Type_size : get the size of a datatype

MPI_Get_type_extent : get the lower bound and the extent of a type

MPI_Type_create_resized : reset the lower bound and the extent of a type

N. Richart, E. Lanti 19 / 44

Derived Datatypes
Commit/free

Syntax

1 int MPI_Type_commit(MPI_Datatype *datatype);
2

3 int MPI_Type_free(MPI_Datatype *datatype);

new datatypes should be committed before being usable in communications

committed types need to be freed once not used anymore

N. Richart, E. Lanti 20 / 44

Derived Datatypes
Example

mpi/datatypes.cc

13 struct Test_t {
14 double d[2];
15 int i;
16 };
17
18 std::vector<Test_t> foo(100);
19
20 std::array<int, 2> block_lengths = {2, 1};
21 std::array<MPI_Aint, 2> displacements;
22 std::array<MPI_Datatype, 2> old_types = {MPI_DOUBLE, MPI_INT};
23
24 MPI_Aint addr0, addr1;
25 MPI_Get_address(&foo[0], &addr0);
26 MPI_Get_address(&foo[0].d[0], &displacements[0]);
27 MPI_Get_address(&foo[0].i, &displacements[1]);
28
29 displacements[0] = MPI_Aint_diff(displacements[0], addr0);
30 displacements[1] = MPI_Aint_diff(displacements[1], addr0);
31
32 MPI_Datatype mpi_test_t, mpi_test_vector_t;
33
34 MPI_Type_create_struct(2, block_lengths.data(), displacements.data(),
35 old_types.data(), &mpi_test_t);
36
37 MPI_Get_address(&foo[1], &addr1);
38 addr1 = MPI_Aint_diff(addr1, addr0);
39
40 MPI_Type_create_resized(mpi_test_t, 0, addr1, &mpi_test_vector_t);
41 MPI_Type_commit(&mpi_test_vector_t);

N. Richart, E. Lanti 21 / 44

Derived Datatypes
Send lines in poisson code

Create a MPI_Datatype line_t representing a line of data

Exchange data of type line_t instead of MPI_FLOAT

N. Richart, E. Lanti 22 / 44

Pack/Unpack
Pack

Syntax

1 int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
2 void *outbuf, int outsize, int *position, MPI_Comm comm);

inbuf , incount , datatype correspond to the description of data to pack

outbuf , outsize description of the buffer where to pack

position current position in the packing buffer

N. Richart, E. Lanti 23 / 44

Pack/Unpack
Unpack

Syntax

1 int MPI_Unpack(const void *inbuf, int insize, int *position, void *outbuf,
2 int outcount, MPI_Datatype datatype, MPI_Comm comm);

inbuf , incount , description of the buffer from which to unpack

position current position in the unpacking buffer

outbuf , outsize , and datatype correspond to the description of data to unpack

N. Richart, E. Lanti 24 / 44

Pack/Unpack
Example

mpi/pack_unpack.cc

26
27 if (rank == 0) {
28 a = 0xcafe;
29 MPI_Pack(&a, 1, MPI_INT, buf.data(), buf.size(), &position, MPI_COMM_WORLD);
30 MPI_Pack(d, 10, MPI_DOUBLE, buf.data(), buf.size(), &position,
31 MPI_COMM_WORLD);
32 MPI_Send(buf.data(), position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);
33 } else if (rank == 1) {
34 MPI_Recv(buf.data(), buf.size(), MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);
35 MPI_Unpack(buf.data(), buf.size(), &position, &a, 1, MPI_INT,
36 MPI_COMM_WORLD);
37 MPI_Unpack(buf.data(), buf.size(), &position, d, 10, MPI_DOUBLE,
38 MPI_COMM_WORLD);
39 }

N. Richart, E. Lanti 25 / 44

Groups and Communicators

a communicator:
▶ Encapsulate a context, a group, a virtual topology and attributes
▶ Two kinds intra-communicator and inter-communicator

a group:
▶ ordered set of processes
▶ each process has an unique ID (rank within the group) and can belong to several different groups
▶ a group can be used to create a new communicator

N. Richart, E. Lanti 26 / 44

Groups and Communicators
Creating new communicators

duplicating or splitting an existing one MPI_Comm_dup , MPI_Comm_split

creating communicator from a group MPI_Comm_create , MPI_Comm_create_group

need to create groups
▶ from a communicator MPI_Comm_group

▶ boolean operations MPI_Group_union , MPI_Group_intersection , MPI_Group_difference

▶ specifying ranks MPI_Group_incl , MPI_Group_excl

destroy created objects MPI_Comm_free , MPI_Group_free

N. Richart, E. Lanti 27 / 44

Virtual Topologies

potential performance gain by mapping process to hardware

helps for program readability

types of topologies: Cartesian, Graph, Distributed Graph

collective communication on neighborhoods

N. Richart, E. Lanti 28 / 44

Virtual Topologies
Cartesian topology

Syntax

1 int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
2 const int periods[], int reorder, MPI_Comm *comm_cart);

create a communicator with cartesian information
convenient functions:
▶ MPI_Dims_create helps creating balanced distribution of process

▶ MPI_Cart_shift helps determining neighboors

▶ MPI_Cart_rank get the rank based on coordinates

▶ MPI_Cart_coords get coordinates based on rank

N. Richart, E. Lanti 29 / 44

Virtual topology
Neighborhoods collective

MPI_Neighbor_allgather assuming we are on process with rank i , gather data from all rank j if edge
(j , i) exists and send same data to all j where edge (i , j) exists

MPI_Neighbor_alltoall compare to allgather, sends different data to all j process

vector variant are available v
immediate variant are available I
persistent variant are available _init

MPI_Neighbor_alltoall as one in all flavors the w, different datatypes are echanged with all
neighbors

N. Richart, E. Lanti 30 / 44

Virtual topology

Rewrite the parallelism using a cartesian communicator

Use neighbor collective communications

N. Richart, E. Lanti 31 / 44

Parallel I/O overview

I/O is often (if not always) the main bottleneck in a parallel application

MPI provides a mechanism to read/write in parallel

0 1 2 3 MPI Processes

Interconnect

File

N. Richart, E. Lanti 32 / 44

Introducing remarks

MPI IO API works on your desktop/laptop

Most of the large HPC systems have a parallel file system (like GPFS, Lustre, etc.)

If the file is distributed smartly on a parallel file system: performance increases

MPI IO offers a high-level API to access a distributed file (no needs to implement complex POSIX calls)

does not work with ASCII files
Most of the standard file format support MPI IO (e.g. HDF5, NetCDF, etc..)

N. Richart, E. Lanti 33 / 44

Poisson so far

0 1 2 3

MPI_Gather(mypart, 0)

Write()

N. Richart, E. Lanti 34 / 44

Poisson ideal

0 1 2 3

MPI_File_Write()

N. Richart, E. Lanti 35 / 44

Open/Close a file in parallel

Syntax

1 int MPI_File_open(MPI_Comm comm, const char *filename, int amode,
2 MPI_Info info, MPI_File *fh);
3

4 int MPI_File_close(MPI_File *fh);

comm : the communicator that contains the writing/reading MPI processes

filename : a file name

amode : file access mode, MPI_MODE_RDONLY , MPI_MODE_WRONLY , MPI_MODE_RDWR ,

MPI_MODE_CREATE , e.t.c.

info : file info object (MPI_INFO_NULL is a valid info)

fh : file handle

Collective calls !!

N. Richart, E. Lanti 36 / 44

Parallel IO
Terminology

etype is the elementary type of the data of the parallel accessed file

offset is a position in the file in term of multiple of etypes

displacement of a position within the file is the number of bytes from the beginning of the file

Offset is 9
Displacement is 36

sizeof(etype) = 4 bytes

N. Richart, E. Lanti 37 / 44

Parallel IO
Simple independent read/write

Syntax

1 int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
2 MPI_Datatype datatype, MPI_Status *status);
3

4 int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,
5 int count, MPI_Datatype datatype, MPI_Status *status);

Can be used from a single (or group) of processes

offset must be specified in the buf buffer

count elements of type datatype are written

N. Richart, E. Lanti 38 / 44

Parallel IO
view by each process

Syntax

1 int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
2 MPI_Datatype filetype, const char *datarep, MPI_Info info);
3

4 int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
5 MPI_Datatype *filetype, char *datarep);

initially, each process view the file as a linear byte stream and each process views data in its own native
representation

disp is the displacement (defines the beginning of the data of the file that belongs to the process) in
byte

etype is the unit of data access and positioning

filetype is a single etype of a multiple of it

N. Richart, E. Lanti 39 / 44

Setting up a view

first view

second view

file structure:

header

first displacement second displacement

(source : MPI 2.2 specifications)
N. Richart, E. Lanti 40 / 44

Parallel IO
Simple independent read/write without offset

Syntax

1 int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
2 MPI_Status *status);
3

4 int MPI_File_write(MPI_File fh, const void *buf, int count,
5 MPI_Datatype datatype, MPI_Status *status);

N. Richart, E. Lanti 41 / 44

Parallel IO
Collective read/write with/without offset

Syntax

1 int MPI_File_write_all(MPI_File fh, const void *buf, int count,
2 MPI_Datatype datatype, MPI_Status *status);
3

4 int MPI_File_read_all(MPI_File fh, void *buf, int count,
5 MPI_Datatype datatype, MPI_Status *status);

N. Richart, E. Lanti 42 / 44

What we did not view

One Sided communications
▶ MPI_Put , MPI_Get

▶ MPI_Win_*
▶ shared memory

Process management
▶ MPI_Comm_spawn
▶ Communications on inter-communicators

N. Richart, E. Lanti 43 / 44

Parallelization of the poisson code

N

N

Parallelize the Poisson 2D problem using
the Messages Passing Interface (MPI)

N. Richart, E. Lanti 44 / 44

Parallelization of the poisson code

N

N

This time, we want to make a 2D domain
decomposition using Cartesian topology

Use MPI_Dims_create and
MPI_Cart_create to create a Cratesian
topology

N. Richart, E. Lanti 44 / 44

Parallelization of the poisson code

N
/p

y

N/px

The p processes are split into (px , py) to
make the Cartesian grid

Each domain has size (N/px ,N/py) (1 per
process)

Use MPI_Cart_shift to find the
neighboring domains

N. Richart, E. Lanti 44 / 44

Parallelization of the poisson code

Adding ghost lines before and after

Use the ghost lines to receive the missing
local data

You will need to define a new matrix
column datatype and update the matrix
line datatype

N. Richart, E. Lanti 44 / 44

Parallelization of the poisson code

Use the MPI_neighbor_alltoallw routine

You can use the number of iteration as a
check

Remove the dump() function to start

N. Richart, E. Lanti 44 / 44

	Advanced MPI
	Persistent point to point
	Advanced collective communications
	Derived Datatypes
	Pack/Unpack
	Groups and Communicator
	Virutal Topologies
	Parallel I/O
	One Sided

