m SCITAS

e lgertaentee

(
(
[
[
'

Nicolas Richart
Emmanuel Lanti

I
[
*

- 1. ==
Parallel Programming
Single-core optimization, MPI, OpenMP, and hybrid programming

Course based on V. Keller’s lecture notes

14th _ 18th of November 2022

"

L]
‘w
¢

P T

wiv

TR et O Bardesetdeietde s tde . Tdw 2w

|

= SCITAS

Advanced MPI

Goals of this section

Overview of more advanced functionalities
Persistent communications

Advanced collective communications
Describing your own datatype

Redefining communicators

Associating a topology to a communicator
Parallel 1/0

One sided communications

= SCITAS N. Richart, E. Lanti 3/ 44

Persistent communications

B MPI_Send_init MPI_Recv_init , initialize the communication
B Same signature as non-blocking communications
B MPI_Start , MPI_Startall to start the communication

® Completion is checked the same way as for non-blocking

= SCITAS N. Richart, E. Lanti 4/ 4a

E PFL Persistent communications

B Replace the non-blocking communication in the Poisson code by persistent ones

= SCITAS N. Richart, E. Lanti 5/ 44

Collective communications

V extension to _

1 int MPI_Gatherv(const void #*sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, const int recvcounts[], const int displs[],
3 MPI_Datatype recvtype, int root, MPI_Comm comm);

B recvcounts is now an array, one entry per rank
B displs array of displacements defining where to place the i*" receive data

B receive different sizes per process

B receive in an array with strides

= SCITAS N. Richart, E. Lanti 6/ 44

Collective communications

Gatherv semantic

Semantic equivalent

// Every process
MPI_Send(sendbuf, sendcount, sendtype, root, /#*...%/);

// On root process
for(i = 0; i < nb_process; ++i)
MPI_Recv(recvbuf+displs[j] * extent(recvtype), recvcounts[jl, recvtype, i,

/¥ *)

N T < N

= SCITAS N. Richart, E. Lanti 7/ 44

Collective communications

1 int MPI_Scatterv(const void *sendbuf, const int sendcounts[],
2 const int displs[], MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm) ;

B sendcounts is now an array, one entry per rank

B displs array of displacements defining where to place the i*" receive data
W receive different sizes

B receive in an array with strides

= SCITAS N. Richart, E. Lanti 8/ 44

Collective communications

Scatterv semantic

Semantic equivalent

1 // On root process
2 for(i = 0; i < nb_process; ++i)

3 MPI_Send(sendbuf+displs[i]*extent(sendtype), sendcounts[il, sendtype, i,
4 /¥ %))
5
6
7

// Every process
MPI_Recv(recvbuf, recvcount, recvtype, i, /*...#%/).

= SCITAS N. Richart, E. Lanti 9/ 44

Non-blocking collective communications

I variant of collective communications

extra parameter request

B MPI_Ibarrier , MPI_Ibcast

B MPI_Igather , MPI_Igatherv , MPI_Iscatter , MPI_Iscatterv
B MPI_Tallgather , MPI_Iallgatherv , MPI_Ialltoall

B MPI_Ireduce, MPI_Tallreduce , MPI_Iscan, MPI_Iexscan

= SCITAS N. Richart, E. Lanti 10 / 44

Persistent collective communications

B init variant of collective communications

extra parameter request

B MPI_Barrier_init , MPI_Bcast_init

B MPI_Gather_init , MPI_Gatherv_init , MPI_Scatter_init , MPI_Scatterv_init
B MPI_Allgather_init , MPI_Allgatherv_init , MPI_Alltoall_init

B MPI_Reduce_init , MPI_Allreduce_init , MPI_Scan_init , MPI_Exscan_init

= SCITAS N. Richart, E. Lanti 11/ 44

E PFL Persistent collective

B Replace the the MPI_Allreduce by a persistent one

= SCITAS N. Richart, E. Lanti 12 / 44

Derived Datatypes

Definition of a datatypes

B MPI_Datatype opaque type containing a Typemap

» Typemap = {(typeo, dispo), - - - , (type,—1, dispp—1)}
» sequence of basic datatypes
» sequence of displacements (in bytes)

B extent is the span from the first byte to the last one, with alignment requirement
Ib(Typemap) = rr}in(dispj),
ub(Typemap) = mj‘ax(dispj + sizeof (type;)) + €, and
extent(Typemap) = ub(Typemap) — Ib(Typemap)

¢ is there to account for alignment requirements

= SCITAS N. Richart, E. Lanti 13/ 44

= SCITAS

Derived Datatypes

Base datatypes

MPI datatype C datatype
MPI_CHAR char

MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_SIGNED_CHAR
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG

signed long long int
signed long long int
signed char

unsigned char
unsigned short int
unsigned int
unsigned long int

unsigned long long int

N. Richart, E. Lanti

MPI datatype C datatype
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_WCHAR wchar_t
MPI_C_BOOL _Bool
MPI_INT8_T int8_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINT8_T uint8_t
MPI_UINT16_T uintl6_t
MPI_UINT32_T uint32_t
MPI_UINT64_T uint64_t

14 / 44

Derived Datatypes

Base datatypes

MPI datatype

C++ datatype

MPI_CXX_BOOL
MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX
MPI_CXX_LONG_DOUBLE_COMPLEX

bool
std: :complex<float>
std: : complex<double>

std: :complex<long double>

= SCITAS

N. Richart, E. Lanti

MPI datatype C datatype
MPI_AINT MPI_Aint
MPI_OFFSET MPI_Offset
MPI_COUNT MPI_Count
MPI_BYTE

MPI_PACKED

15 / 44

Derived Datatypes

Arrays

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype);

[T U CR=

int MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype);

B array of contiguous array or with strided blocks of same type
B count : number of repetition (blocks)

B blocklength : number of element per block

B stride : number of element between start of each block

= SCITAS N. Richart, E. Lanti 16 / 44

Derived Datatypes

Array variants

® MPI_Type_create_hvector : same as MPI_Type_vector with stride expressed in bytes
B MPI_Type_create_indexed_block same as MPI_Type_vector with array of and displacements

B MPI_Type_create_hindexed_block : same as MPI_Type_create_indexed_block with

displacements in bytes
B MPI_Type_indexed : same as MPI_Type_create_indexed_block with arrays of blocklengths

B MPI_Type_create_hindexed : same as MPI_Type_indexed with displacements in bytes

= SCITAS N. Richart, E. Lanti 17 / 44

Derived Datatypes

Structures

1 int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[],
const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

B count : number of repetition (blocks)
B array_of_blocklengths : sizes per block
array_of_displacements : displacements between blocks in bytes

B array_of_types : types contained in each blocks

= SCITAS N. Richart, E. Lanti 18 / 44

Derived Datatypes

Usefull helper functions

B MPI_Get_address : get the address of a variable

B MPI_Aint_diff : get the difference between 2 addresses

B MPI_Aint_add : get the sum of 2 addresses

B MPI_Type_size : get the size of a datatype

B MPI_Get_type_extent : get the lower bound and the extent of a type

B MPI_Type_create_resized : reset the lower bound and the extent of a type

= SCITAS N. Richart, E. Lanti 10 / 44

Derived Datatypes

Commit/free

1 int MPI_Type_commit(MPI_Datatype *datatype);
2

3 int MPI_Type_free(MPI_Datatype *datatype) ;

B new datatypes should be committed before being usable in communications
B committed types need to be freed once not used anymore

= SCITAS N. Richart, E. Lanti 20 / 44

Derived Datatypes

Example

mpi/datatypes.cc

13 struct Test_t {
14 double d[2];

15 int i;

16 H

17

18 std::vector<Test_t> f0o(100);

19

20 std::array<int, 2> block_lengths = {2, 1};

21 std::array<MPI_Aint, 2> displacements;
22 std::array<MPI_Datatype, 2> old_types = {MPI_DOUBLE, MPI_INT};

24 MPI_Aint addr0, addri;

25 MPI_Get_address(4foo[0], %addr0);

26 MPI_Get_address(foo[0].d[0], &displacements[0]);
27 MPI_Get_address(ifoo[0].i, &displacements[1]);

29 displacements[0] = MPI_Aint_diff(displacements[0], addr0);
30 displacements[1] = MPI_Aint_diff(displacements[1], addr0);

31

32 MPI_Datatype mpi_test_t, mpi_test_vector_t;

33

34 MPI_Type_create_struct(2, block_lengths.data(), displacements.data(),
35 old_types.data(), &mpi_test_t);

36

37 MPI_Get_address(&foo[1], &addri);
38 addrl = MPI_Aint_diff(addrl, addr0);

40 MPI_Type_create_resized(mpi_test_t, 0, addrl, &mpi_test_vector_t);
41 MPI_Type_commit (mpi_test_vector_t);

= SCITAS N. Richart, E. Lanti 21/ 44

Derived Datatypes
EPFL

Send lines in poisson code

® Create a MPI_Datatype line_t representing a line of data

B Exchange data of type line_t instead of MPI_FLOAT

= SCITAS N. Richart, E. Lanti 22 / 44

Pack/Unpack

1 int MPI_Pack(const void *inbuf, int incount, MPI_Datatype datatype,
® void *outbuf, int outsize, int *position, MPI_Comm comm) ;

B inbuf , incount , datatype correspond to the description of data to pack
B outbuf , outsize description of the buffer where to pack

B position current position in the packing buffer

= SCITAS N. Richart, E. Lanti 23 / 44

Pack/Unpack

Unpack

1 int MPI_Unpack(const void *inbuf, int insize, int *position, void *outbuf,
2 int outcount, MPI_Datatype datatype, MPI_Comm comm) ;

B inbuf , incount , description of the buffer from which to unpack

B position current position in the unpacking buffer

B outbuf , outsize , and datatype correspond to the description of data to unpack

= SCITAS N. Richart, E. Lanti 24 / 44

Pack/Unpack

Example

mpi/pack unpack.cc

26
27 if (rank == 0) {
28 a = Oxcafe;

29 MPI_Pack(&a, 1, MPI_INT, buf.data(), buf.size(), &position, MPI_COMM_WORLD) ;
30 MPI_Pack(d, 10, MPI_DOUBLE, buf.data(), buf.size(), &position,

31 MPI_COMM_WORLD) ;

32 MPI_Send(buf.data(), position, MPI_PACKED, 1, 0, MPI_COMM_WORLD) ;

33 } else if (ramk == 1) {

34 MPI_Recv(buf.data(), buf.size(), MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);
35 MPI_Unpack(buf.data(), buf.size(), &position, &a, 1, MPI_INT,

36 MPI_COMM_WORLD) ;

37 MPI_Unpack(buf.data(), buf.size(), &position, d, 10, MPI_DOUBLE,
38 MPI_COMM_WORLD) ;

39 }

= SCITAS N. Richart, E. Lanti 25 / 44

Groups and Communicators

H 3 communicator:

» Encapsulate a context, a group, a virtual topology and attributes
» Two kinds intra-communicator and inter-communicator

H 3 group:
» ordered set of processes

» each process has an unique ID (rank within the group) and can belong to several different groups
» a group can be used to create a new communicator

= SCITAS N. Richart, E. Lanti 26 / 44

Groups and Communicators

Creating new communicators

B duplicating or splitting an existing one MPI_Comm_dup , MPI_Comm_split

B creating communicator from a group MPI_Comm_create , MPI_Comm_create_group

B need to create groups
» from a communicator MPI_Comm_group
» boolean operations MPI_Group_union , MPI_Group_intersection , MPI_Group_difference

» specifying ranks MPI_Group_incl , MPI_Group_excl

B destroy created objects MPI_Comm_free , MPI_Group_free

= SCITAS N. Richart, E. Lanti 27 / 44

Virtual Topologies

B potential performance gain by mapping process to hardware
B helps for program readability
B types of topologies: Cartesian, Graph, Distributed Graph

B collective communication on neighborhoods

= SCITAS N. Richart, E. Lanti 28 / 44

Virtual Topologies

Cartesian topology

1 int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],
2 const int periods[], int reorder, MPI_Comm *comm_cart);

B create a communicator with cartesian information
B convenient functions:
» MPI_Dims_create helps creating balanced distribution of process
» MPI_Cart_shift helps determining neighboors
» MPI_Cart_rank get the rank based on coordinates
>

MPI_Cart_coords get coordinates based on rank

= SCITAS N. Richart, E. Lanti 20 / 44

Virtual topology

Neighborhoods collective

B MPI_Neighbor_allgather assuming we are on process with rank 7, gather data from all rank j if edge

(j, i) exists and send same data to all j where edge (7,) exists

B MPI_Neighbor_alltoall compare to allgather, sends different data to all j process

B vector variant are available v

B immediate variant are available |

W persistent variant are available _init

B MPI_Neighbor_alltoall as one in all flavors the w, different datatypes are echanged with all

neighbors

= SCITAS N. Richart, E. Lanti 30 / 44

Virtual topology
EPFL

B Rewrite the parallelism using a cartesian communicator

B Use neighbor collective communications

= SCITAS N. Richart, E. Lanti 31/ 44

Parallel 1/0 overview

® |/O is often (if not always) the main bottleneck in a parallel application

® MPI provides a mechanism to read/write in parallel

Interconnect

HIEEENNEEENERENREENNEEEN .

= SCITAS N. Richart, E. Lanti 32/ 44

Introducing remarks

MPI 10 APl works on your desktop/laptop

Most of the large HPC systems have a parallel file system (like GPFS, Lustre, etc.)

If the file is distributed smartly on a parallel file system: performance increases

MPI 10 offers a high-level API to access a distributed file (no needs to implement complex POSIX calls)
does not work with ASCII files

Most of the standard file format support MPI IO (e.g. HDF5, NetCDF, etc..)

= SCITAS N. Richart, E. Lanti 33/ 44

=prL

. ® ©® @

Mr (mypart, 0)

Write()

LT e [P

= SCITAS N. Richart, E. Lanti 34 / aa

=prL
© & e e

MPI_File_Write()

LT T T e [[e

Open/Close a file in parallel

OV VR

int MPI_File_open(MPI_Comm comm, const char *filename, int amode,
MPI_Info info, MPI_File #fh);

int MPI_File_close(MPI_File *fh);

comm : the communicator that contains the writing/reading MPI processes

filename : a file name

amode : file access mode, MPI_MODE_RDONLY , MPI_MODE_WRONLY , MPI_MODE_RDWR ,
MPI_MODE_CREATE , e.t.c.

info : file info object (MPI_INFO_NULL is a valid info)
fh : file handle

Collective calls !!

= SCITAS

N. Richart, E. Lanti 36 / 44

Parallel 10

B etype is the elementary type of the data of the parallel accessed file
m offset is a position in the file in term of multiple of etypes

m displacement of a position within the file is the number of bytes from the beginning of the file

Offset is 9
Displacement is 36

l
HNEEEEEESEEEEEEE

sizeof(etype) = 4 bytes

= SCITAS N. Richart, E. Lanti 37 / 44

Parallel 10

Simple independent read/write

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status);

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,
int count, MPI_Datatype datatype, MPI_Status *status);

B Can be used from a single (or group) of processes

B offset must be specified in the buf buffer

B count elements of type datatype are written

= SCITAS N. Richart, E. Lanti 38 / 44

Parallel 10

view by each process

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, const char *datarep, MPI_Info info);

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
MPI_Datatype *filetype, char *datarep);

W initially, each process view the file as a linear byte stream and each process views data in its own native
representation

B disp is the displacement (defines the beginning of the data of the file that belongs to the process) in
byte

B etype is the unit of data access and positioning

B filetype is a single etype of a multiple of it

= SCITAS N. Richart, E. Lanti 30 / 44

= SCITAS

Setting up a view

second view ’ ‘

file structure:

first displacement second displacement

(source : MPI 2.2 specifications)

N. Richart, E. Lanti 40 / 44

Parallel 10

Simple independent read/write without offset

int MPI_File_read(MPI_File fh, void #*buf, int count, MPI_Datatype datatype,
MPI_Status *status);

int MPI_File_write(MPI_File fh, const void *buf, int count,
MPI_Datatype datatype, MPI_Status *status);

= SCITAS N. Richart, E. Lanti 41 / 44

Parallel 10

Collective read/write with/without offset

int MPI_File_write_all(MPI_File fh, const void *buf, int count,
MPI_Datatype datatype, MPI_Status *status);

int MPI_File_read_all(MPI_File fh, void #*buf, int count,
MPI_Datatype datatype, MPI_Status #*status);

= SCITAS N. Richart, E. Lanti 42 / 44

What we did not view

B One Sided communications
» MPI_Put , MPI_Get
> MPI_Win_*
» shared memory
B Process management
» MPI_Comm_spawn
» Communications on inter-communicators

= SCITAS N. Richart, E. Lanti 43 / 44

Parallelization of the poisson code

B Parallelize the Poisson 2D problem using
the Messages Passing Interface (MPI)

= SCITAS N. Richart, E. Lanti 44 / aa

1 1 : 1
1 1 N 1
1 1 1 1
1 1 N 1
------ Fosseqisssssheassspoooag
| | ! | ® This time, we want to make a 2D domain
: . 0 1 decomposition using Cartesian topology
..... deccccdeaccccbtcacccckhcacaad
5 5 . 5 ® Use MPI_Dims_ create and
i i H 1 =z MPI Cart create to create a Cratesian
h 1 \ 1 _ _
""" R R e topology
1 1 1 1
1 1 \ 1
1 1 1 1
\ \ \ \
----- Lnaaiiie Rl e
H \ | H
1 1 1 1
H ,] H

= SCITAS N. Richart, E. Lanti 44 / 44

Parallelization of the poisson code

= SCITAS

<N/py~

B The p processes are split into (px, py) to

make the Cartesian grid

‘Ad/N’

® Each domain has size (N/px, N/py) (1 per

process)

m Use MPI Cart shift to find the

neighboring domains

. Richart, E. Lanti

44 / 44

Parallelization of the poisson code

B Adding ghost lines before and after

B Use the ghost lines to receive the missing
local data

B You will need to define a new matrix
column datatype and update the matrix
line datatype

= SCITAS N. Richart, E. Lanti 44 / 44

Parallelization of the poisson code

®m Use the MPI_neighbor _alltoallw routine

B You can use the number of iteration as a
check

B Remove the dump() function to start

= SCITAS N. Richart, E. Lanti 44 / 44

	Advanced MPI
	Persistent point to point
	Advanced collective communications
	Derived Datatypes
	Pack/Unpack
	Groups and Communicator
	Virutal Topologies
	Parallel I/O
	One Sided

