e lgertaentee

: i #’r
: EEEF
; =F s

- 14 | ——
Parallel Programming

Nicolas Richart
Emmanuel Lanti
Course based on V. Keller's lecture notes

= SCITAS 27th of October - 15t of November 2024

)
‘ . 4
| P
* ¥
1 * 1
! - 1R
! ' b
{ d
¥ b

"

L]
‘w
¢

P T

wiv

TR et O Bardesetdeietde s tde . Tdw 2w

Single-core optimization, MPI, OpenMP, and hybrid programming

|

- ok b
| | |
J |

N -

O T, | CREmE |
ELE =& e

- St LR N LR T LN TR LW T B T T et o e ———
PO O OO0 | OO | O (e &

o= TOl < ~-18

| | |

e b [|

Message Passing Interface (MPI)

2
E
o
7]
n

MPI

Goals of this section

B [ntroduce distributed memory programming paradigm
B Point-to-point communications

m Collective communications

® SCITAS N. Richart, E. Lanti 3 /38

MPI

Overview and goals of MPI

B MPI is a Message-Passing Interface specification
B There are many implementations (MPICH, MVAPICH, Intel MPI, OpenMPI, etc)
B | ibrary interface, not a programming language
B |t is standardized
» Defined by the MPI forum
» Current version is MPI 4.0
B As such, it is portable, flexible and efficient

Interface to C and Fortran in standard

® SCITAS N. Richart, E. Lanti 4/ 38

https://www.mpi-forum.org/

MPI

A simple hello world example

mpi/hello mpi.cc

#include <iostream>
#include <mpi.h>

1
2
3
4 int main(int argc, char *argv[]) {
5 MPI_Init(&argc, &argv);
6
7
8
9

int size, rank;
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

10

11 std::cout << "I am process " << ramnk << " out of " << size << std::endl;
12

13 MPI_Finalize();

14 return 0;

i6) g

® SCITAS N. Richart, E. Lanti 5/ 35

E PF L Environment

® @
® @
L, ©

MPI_COMM_WORLD

B MPI code is bordered by a MPI_Init and a MPI_Finalize

® MPI starts N processes numbered 0,1,..., N — 1. It is the process rank

B They are grouped in a communicator of size N

®m After init, MPI provides a default communicator called MPI_COMM _WORLD

® SCITAS N. Richart, E. Lanti 6/ 35

EPFL Hello world =

B |n the pi code initialize/finalize properly MPI
B Print out the number of processes and the rank of each process
B Modify the makefile to use mpicxx instead of g++

B Write a batch script to run your parallel code

#!/bin/bash

#SBATCH -n <ntasks>

module purge

module load <compiler> <mpi library>
srun <my_mpi_executable>

Note : To use MPI on the cluster you first have to load a MPI implementation through the module
openmpi or intel-oneapi-mpi.

® SCITAS N. Richart, E. Lanti 7/ 38

Types of communications in MPI

® Point-to-Point (One-to-One)

®m Collectives (One-to-All, All-to-One, All-to-All)
B One-sided/Shared memory (One-to...)

® Blocking and Non-Blocking of all types

® SCITAS N. Richart, E. Lanti 8/ 35

MPI
L= PF L
L Message passing concepts

B | et's derive a minimal message-passing interface

B The goal is to define an interface for send and recv

® SCITAS N. Richart, E. Lanti 9/ 35

Send/Receive

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm) ;

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status);

[T U CR

buf pointer to the data to send/receive

count number of element to send/receive

datatype datatype of the data to send/receive

dest, source the rank of the destination/source of the communication
tag a message tag to differentiate the communications

comm communicator in which to communication happens

status object containing information on the communication

® SCITAS N. Richart, E. Lanti 10 / 35

Send/Receive

Details on the buffer

m Buffer is a pointer to the first data (buf), a size (count) and a datatype

®m Datatypes (extract):

>
>
>
>

® For

= SCITAS

MPI_INT
buf
MPI_UNSIGNED

MPI_FLOAT
MPI_DOUBLE

std: :vector<double> vect :
buf = vect.data()

count = vect.size()

datatype = MPI_DOUBLE

HEEEEEEEEER
f——————count ——

N. Richart, E. Lanti 11 / 35

= SCITAS

Send/Receive

Useful constants and status

Constants:

MPI_STATUS_IGNORE to state that the status is ignored
MPI_PROC_NULL placeholder for the source or destination
MPI_ANY_SOURCE is a wildcard for the source of a receive

MPI_ANY_TAG is a wildcard for the tag of a receive

Status:

Structure containing tag and source

1 MPI_Status status;
2 std::cout << "Tag: " << status.tag << " - "
3 << "Source: " << status.source << std::endl;

Size of the message can be asked using the status

1 int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,
2 int *count);

N. Richart, E. Lanti

12 / 35

Send/Receive

Example

mpi/send recv.cc

16 MPI_Init(NULL, NULL);

17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

18 MPI_Comm_size(MPI_COMM_WORLD, &size);

19

20 assert(size == 2 && "Works only with 2 procs");

21

22 if (rank == 0) {

23 £ill_buffer(buf);

24 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, 0, MPI_COMM_WORLD) ;
25 } else if (rank == 1) {

26 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, O, MPI_COMM_WORLD,
27 MPI_STATUS_IGNORE) ;

® SCITAS N. Richart, E. Lanti 13 / 35

Ring reduction of 7
EPFL

B 1_sum = local_computation();

sum += 1_sum;

wn
® [g[3[e
3li<|la

° wlls|la |l
REs ® @ 588
KIS 3||<|12||3

>
ERE
Llla

£
a

® SCITAS N. Richart, E. Lanti 14 / 35

Ring reduction of 7

EPFL

1: prepare comms

o]
c
3

wn
®
=
o

B send_buf = 1_sum;

@ 5|8
3l||<

1]
° wlls|la |l
sREs ® @ 585
KIS 3||<|12||3
I

>
ERE
Llla

°
C
[J]
wn

€
a|

® SCITAS N. Richart, E. Lanti 14 / 35

Ring reduction of 7
EPFL

1: prepare comms
2: send/recv

B send(send_buf);

receive(recv_buf);

I
S| €
allo
_I v

recv
AD3J

|l
==
2|3

® SCITAS N. Richart, E. Lanti 14 / 35

Ring reduction of 7
EPFL

1: prepare comms
2: send/recv
3: sum/prepare

B send_buf = recv_buf;

sum += recv_buf;

® SCITAS N. Richart, E. Lanti 14 / 35

Ring reduction of 7
EPFL

1: prepare comms
2: send/recv

3: sum/prepare

4: send/recv

|l
==
2|3

B send(send_buf);

receive(recv_buf);

recv
AD3J

I
S| €
allo
_I v

W SCITAS N. Richart, E. Lanti

14 / 35

Ring reduction of 7

EPFL

1: prepare comms
2: send/recv
3: sum/prepare
4: send/recv .
5: sum/prepare B Split the sum space between the processes
: B |mplement a ring to communicate the
partial sum between the processes. using
MPI_Ssend and MPI_Recv
Remember : each MPI process runs the
same code!
Note : in a loop the next process is

(prank + 1)) psize and the previous is

(prank - 1 + psize) / psize

® SCITAS N. Richart, E. Lanti 14 / 35

= SCITAS

Send/Receive

Send variants

® MPI_Ssend : (S for Synchronous) function returns when other end posted matching recv and the
buffer can be safely reused

® MPI_Bsend : (B for Buffer) function returns immediately, send buffer can be reused immediately
® MPI_Rsend : (R for Ready) can be used only when a receive is already posted

B MPI_Send : acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger ones

N. Richart, E. Lanti 15 / 35

Send/Receive

Particularity of -

mpi/ping_ pin

31 auto size = 1 << n;
32 fill_buffer(buf, size);

34 auto t_start = clk::now();

35 for (size_t repetition = 0; repetition < REP; ++repetition) {

36 MPI_Send(buf.data(), buf.size(), MPI_INT, partner, O, MPI_COMM_WORLD);
37 MPI_Recv(buf.data(), buf.size(), MPI_INT, partner, O, MPI_COMM_WORLD,
38 MPI_STATUS_IGNORE) ;

39 }

40 auto time_s = (second{clk::now() - t_start}).count() / REP;

® SCITAS N. Richart, E. Lanti 16 / 35

Send/Receive

Particularity of -

mpi/ping_ ping.cc

31 auto size = 1 << n;
32 fill_buffer(buf, size);

34 auto t_start = clk::now();

35 for (size_t repetition = 0; repetition < REP; ++repetition) {

36 MPI_Send(buf.data(), buf.size(), MPI_INT, partner, O, MPI_COMM_WORLD) ;
37 MPI_Recv(buf.data(), buf.size(), MPI_INT, partner, O, MPI_COMM_WORLD,
38 MPI_STATUS_IGNORE) ;

39 }

40 auto time_s = (second{clk::now() - t_start}).count() / REP;

mpirun -np 2 ./mpi/ping_ping
PingPing size: 4.0B time: . bandwidth: 12.6MiB/s
PingPing size: 16.0B time: . bandwidth: 52.4MiB/s
PingPing size: 64.0B time: . bandwidth: 210.7MiB/s

PingPing size: 256.0B time: . bandwidth: 744.5MiB/s
PingPing size: 1.0KiB time: . bandwidth: 1.4GiB/s

= SCITAS

Send/Receive

Combined send-receive

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvtype,
int source, int recvtag,

MPI_Comm comm, MPI_Status *status);

[S I NI R R

B Combines a send and a receive, to help mitigate deadlocks

B Has a in-place variant MPI_Sendrecv_replace

® SCITAS N. Richart, E. Lanti 17 / 35

Ring reduction of 7
L=
LPFL Using MPI_ Sendrecv

B Modify the previous exercise to use MPI_Sendrecv

® SCITAS N. Richart, E. Lanti 18 / 35

Non-blocking send/receive

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request);

[T U CR

m | for immediate

B request in addition to parameters from blocking version
B receive does not have a status

B request is an object attached to the communication

B the communications starts but is not completed

m S, B, and S variant are also defined

® SCITAS N. Richart, E. Lanti 19 / 35

Non-blocking send/receive

Completion

1 int MPI_Wait(MPI_Request #*request, MPI_Status *status);
2

3 int MPI_Test(MPI_Request *request, int *flag, MPI_Status #*status);

completion of communication should be checked

MPI_Test or MPI_Wait

[
[
® send completed means the buffer can be reused
B receive completed means the buffer can be read
[

status is set a completion

B flag is true if completed, false otherwise

® SCITAS N. Richart, E. Lanti 20 / 35

Send/Receive

Example

mpi/sendrecv.cc

22 MPI_Request request;

23 if (rank == 0) {

24 fill_buffer(buf);

25 MPI_Isend(buf.data(), buf.size(), MPI_INT, 1, O, MPI_COMM_WORLD, &request);
26 } else if (rank == 1) {

27 MPI_Recv(buf.data(), buf.size(), MPI_INT, O, O, MPI_COMM_WORLD,

28 MPI_STATUS_IGNORE) ;

29 }

30 // here I can do computation as long as buf is not modified

31 MPI_Wait(&request, MPI_STATUS_IGNORE) ;

® SCITAS N. Richart, E. Lanti 21 / 35

Ring reduction of 7
L=
L PF L Using non-blocking send

B Modify the previous exercise to use MPI_Isend and MPI_Recv

B Do not forget to wait

® SCITAS N. Richart, E. Lanti 22 / 35

= SCITAS

Non-blocking send/receive

Multiple completions

B MPI_Waitall , MPI_Testall wait or test completion of all the pending requests
B MPI_Waitany , MPI_Testany wait or test completion of one out on many

B MPI_Waitsome , MPI_Testsome wait or test completion of all the enabled requests
W for arrays of statuses can use MPI_STATUSES_IGNORE

B MPI_Request_get_status equivalent to MPI_Test but does not free completed requests

N. Richart, E. Lanti 23 / 35

Probing

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status);

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status);

B check incoming messages without receiving

B Immediate variant returns true if matching message exists

® SCITAS N. Richart, E. Lanti 24 / 35

Collective communications

Synchronization

1 int MPI_Barrier (MPI_Comm comm) ;

B collective communications must be called by all processes in the communicator
B barrier is hard synchronization

B avoid as much a possible

® SCITAS N. Richart, E. Lanti 25 / 35

Collective communications

Broadcast

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
2 MPI_Comm comm);

B the root process sends data to every other process

P, I
Py
P,
P

® SCITAS N. Richart, E. Lanti 26 / 35

Collective communications

Broadcast

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
2 MPI_Comm comm);

B the root process sends data to every other process

r, N
p O
P, O
r; IR

® SCITAS N. Richart, E. Lanti 26 / 35

Collective communications

Scatter

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm) ;

B the root process sends a piece of the data to all processes

B the sendbuf , sendcount and sendtype are only relevant on the root

B LIITTITITITITT]

Py

Py

P

® SCITAS N. Richart, E. Lanti 27 / 35

Collective communications

Scatter

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm) ;

B the root process sends a piece of the data to all processes

B the sendbuf , sendcount and sendtype are only relevant on the root

r, N
p [
P, O
p; [EEE

® SCITAS N. Richart, E. Lanti 27 / 35

Collective communications

Gather

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm) ;

B all process their data to the root process

B the recvbuf , recvcount and recvtype are only relevant on the root

B recvcount is the size per process not the total size

r, N
r NN
pr, O
p; [

® SCITAS N. Richart, E. Lanti 28 / 35

Collective communications
Gather

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm) ;

B all process their data to the root process
B the recvbuf , recvcount and recvtype are only relevant on the root

B recvcount is the size per process not the total size

A TEEETTTI1]

Py

Py

P

® SCITAS N. Richart, E. Lanti 28 / 35

Collective communications

Gather to all

1 int MPI_Allgather(const void *sendbuf, int sendcount,
2 MPI_Datatype sendtype, void *recvbuf, int recvcount,
3 MPI_Datatype recvtype, MPI_Comm comm) ;

B all process send their data to all other process

r, N
r NN
pr, O
p; [

® SCITAS N. Richart, E. Lanti 20 / 35

llectiv mmunication
|=P|=L Collective co unications
= I Gather to all

1 int MPI_Allgather(const void *sendbuf, int sendcount,
2 MPI_Datatype sendtype, void *recvbuf, int recvcount,
3 MPI_Datatype recvtype, MPI_Comm comm) ;

B all process send their data to all other process

P ITEEECTTT 1]
P OOTEEETTITIT]
P (IR TTTIT]
Py [TT TR TTTIT]

® SCITAS N. Richart, E. Lanti 20 / 35

= P|=L Collective communications
= I All to all gather/scatter

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype,
3 MPI_Comm comm) ;

B all process send their a piece of their data to all other process

B LTI
A [ITTTTTITTTT]
P I TTTTTITITT]
By [T TTTTTTTTT]

® SCITAS N. Richart, E. Lanti 30 / 35

= P|=L Collective communications
= I All to all gather/scatter

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype,
3 MPI_Comm comm) ;

B all process send their a piece of their data to all other process

A TEEETTTI1]
P TR TTTIT]
P (IR TTTIT]
Py (TR TTTIT]

® SCITAS N. Richart, E. Lanti 30 / 35

:PFL Ring reduction of 7
L Using collective communications

B MPI_Gather the partial sums to the root process.

B MPI_Bcast the total sum all the process

® SCITAS N. Richart, E. Lanti 31 /35

Collective communications

Reduction

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) ;

B data from all process are reduced on the root process

B common operations being MPI_SUM , MPI_MAX , MPI_MIN , MPI_PROD
B 3 MPI_Allreduce variant exists where all the process have the results

B MPI_IN_PLACE can be passed in the sendbuf of root for a reduce a of all process for a allreduce

r, N
p O
P, O
r; IR

® SCITAS N. Richart, E. Lanti 32 /35

Collective communications

Reduction

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) ;

B data from all process are reduced on the root process

B common operations being MPI_SUM , MPI_MAX , MPI_MIN , MPI_PROD
B 3 MPI_Allreduce variant exists where all the process have the results

B MPI_IN_PLACE can be passed in the sendbuf of root for a reduce a of all process for a allreduce

r, N
p O
pr, O
r; R

® SCITAS N. Richart, E. Lanti 32 /35

Collective communications

Reduction

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) ;

B data from all process are reduced on the root process

B common operations being MPI_SUM , MPI_MAX , MPI_MIN , MPI_PROD
B 3 MPI_Allreduce variant exists where all the process have the results

B MPI_IN_PLACE can be passed in the sendbuf of root for a reduce a of all process for a allreduce

F, [HEE
Py
Py

P

® SCITAS N. Richart, E. Lanti 32 /35

:PFL Ring reduction of 7
L Using collective communications

B Modify the previous exercise to use MPI_Reduce and MPI_Bcast

B Modify it again to use MPI_Allreduce

® SCITAS N. Richart, E. Lanti 33 /35

Collective communications

Partial reductions

int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) ;

int MPI_Exscan(const void *sendbuf, void #*recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) ;

[T U CR

B performs the prefix reduction on data

® MPI_Scan on process i contains the reduction of values from processes [0, i]

® MPI_Exscan on process i contains the reduction of values from processes [0, i[

B MPI_IN_PLACE can be passed a sendbuf

® SCITAS N. Richart, E. Lanti 34 /35

Parallelization of the poisson code

B Parallelize the Poisson 2D problem using
the Messages Passing Interface (MPI)

® SCITAS N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

B The memory allocation is done in the C
default manner, “Row-Major Order”: make
your domain decomposition by lines

® SCITAS N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

B p domains of size N/p each (1 per process)

‘d/N'

® SCITAS N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

N/p-1 N/p

1 0

N B Adding ghost lines before and after
/p N/p+1
1 0

N/p N/p+1
1 0

N/p N/p+1
1 0

® SCITAS N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

B Use the ghost lines to receive the missing
~ local data

® SCITAS N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

B Start using MPI_Sendrecv to implement
the communications

B You can use the number of iteration as a
check

B Remove the dump() function to start

B Once it is working try to use non-blocking
communications

® SCITAS N. Richart, E. Lanti 35 / 35

	Message Passing Interface (MPI)
	Introduction
	MPI environment
	Terminology
	Blocking point-to-point communications
	Non-blocking point-to-point communications
	Collective communications

