
Parallel Programming
Single-core optimization, MPI, OpenMP, and hybrid programming

Nicolas Richart
Emmanuel Lanti
Course based on V. Keller’s lecture notes

27th of October - 1st of November 2024

Message Passing Interface (MPI)

MPI
Goals of this section

Introduce distributed memory programming paradigm

Point-to-point communications

Collective communications

N. Richart, E. Lanti 3 / 35

MPI
Overview and goals of MPI

MPI is a Message-Passing Interface specification

There are many implementations (MPICH, MVAPICH, Intel MPI, OpenMPI, etc)

Library interface, not a programming language
It is standardized
▶ Defined by the MPI forum
▶ Current version is MPI 4.0

As such, it is portable, flexible and efficient

Interface to C and Fortran in standard

N. Richart, E. Lanti 4 / 35

https://www.mpi-forum.org/

MPI
A simple hello world example

mpi/hello_mpi.cc

1 # include <iostream>
2 # include <mpi.h>
3
4 int main(int argc, char *argv[]) {
5 MPI_Init(&argc, &argv);
6
7 int size, rank;
8 MPI_Comm_size(MPI_COMM_WORLD, &size);
9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

10
11 std::cout << "I am process " << rank << " out of " << size << std::endl;
12
13 MPI_Finalize();
14 return 0;
15 }

N. Richart, E. Lanti 5 / 35

Environment

MPI code is bordered by a MPI_Init and a MPI_Finalize

MPI starts N processes numbered 0, 1, ...,N − 1. It is the process rank

They are grouped in a communicator of size N

After init, MPI provides a default communicator called MPI_COMM_WORLD

0 1

2

3

4

5

MPI_COMM_WORLD

N. Richart, E. Lanti 6 / 35

Hello world π

In the pi code initialize/finalize properly MPI

Print out the number of processes and the rank of each process

Modify the makefile to use mpicxx instead of g++
Write a batch script to run your parallel code

#!/bin/bash
#SBATCH -n <ntasks>
module purge
module load <compiler> <mpi library>
srun <my_mpi_executable>

Note : To use MPI on the cluster you first have to load a MPI implementation through the module
openmpi or intel-oneapi-mpi.

N. Richart, E. Lanti 7 / 35

Types of communications in MPI

Point-to-Point (One-to-One)

Collectives (One-to-All, All-to-One, All-to-All)

One-sided/Shared memory (One-to...)

Blocking and Non-Blocking of all types

N. Richart, E. Lanti 8 / 35

MPI
Message passing concepts

Let’s derive a minimal message-passing interface

The goal is to define an interface for send and recv

N. Richart, E. Lanti 9 / 35

Send/Receive

Syntax

1 int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest,
2 int tag, MPI_Comm comm);
3

4 int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
5 int tag, MPI_Comm comm, MPI_Status *status);

buf pointer to the data to send/receive

count number of element to send/receive

datatype datatype of the data to send/receive

dest, source the rank of the destination/source of the communication

tag a message tag to differentiate the communications

comm communicator in which to communication happens

status object containing information on the communication

N. Richart, E. Lanti 10 / 35

Send/Receive
Details on the buffer

Buffer is a pointer to the first data (buf), a size (count) and a datatype

Datatypes (extract):
▶ MPI_INT

▶ MPI_UNSIGNED

▶ MPI_FLOAT

▶ MPI_DOUBLE

For std::vector<double> vect :

▶ buf = vect.data()

▶ count = vect.size()

▶ datatype = MPI_DOUBLE

N. Richart, E. Lanti 11 / 35

Send/Receive
Useful constants and status

Constants:

MPI_STATUS_IGNORE to state that the status is ignored

MPI_PROC_NULL placeholder for the source or destination

MPI_ANY_SOURCE is a wildcard for the source of a receive

MPI_ANY_TAG is a wildcard for the tag of a receive

Status:

Structure containing tag and source

1 MPI_Status status;
2 std::cout << "Tag: " << status.tag << " - "
3 << "Source: " << status.source << std::endl;

Size of the message can be asked using the status

1 int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,
2 int *count);

N. Richart, E. Lanti 12 / 35

Send/Receive
Example

mpi/send_recv.cc

16 MPI_Init(NULL, NULL);
17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
18 MPI_Comm_size(MPI_COMM_WORLD, &size);
19
20 assert(size == 2 && "Works only with 2 procs");
21
22 if (rank == 0) {
23 fill_buffer(buf);
24 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, 0, MPI_COMM_WORLD);
25 } else if (rank == 1) {
26 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, 0, MPI_COMM_WORLD,
27 MPI_STATUS_IGNORE);
28 }
29

N. Richart, E. Lanti 13 / 35

Ring reduction of π

P
1

l_su
m

se
n
d

su
m

re
cvP

3

l_
su
m

se
n
d

su
m

re
cv

P0

l_sum

send

sum

recv

P2

l_sum

send

sum

recv

l_sum = local_computation();

sum += l_sum;

N. Richart, E. Lanti 14 / 35

Ring reduction of π

P
1

l_su
m

se
n
d

su
m

re
cvP

3

l_
su

m

se
n
d

su
m

re
cv

P0

l_sum

send

sum

recv

P2

l_sum

send

sum

recv

=

=

=

=

1: prepare comms

send_buf = l_sum;

N. Richart, E. Lanti 14 / 35

Ring reduction of π

P
1

l_su
m

se
n
d

su
m

re
cvP

3

l_
su

m

se
n
d

su
m

re
cv

P0

l_sum

send

sum

recv

P2

l_sum

send

sum

recv

2: send/recv
1: prepare comms

send(send_buf);

receive(recv_buf);

N. Richart, E. Lanti 14 / 35

Ring reduction of π

P
1

l_su
m

se
n
d

su
m

re
cvP

3

l_
su

m

se
n
d

su
m

re
cv

P0

l_sum

send

sum

recv

P2

l_sum

send

sum

recv

+

+

+

=

=

=
=

+

3: sum/prepare

1: prepare comms
2: send/recv

send_buf = recv_buf;

sum += recv_buf;

N. Richart, E. Lanti 14 / 35

Ring reduction of π

P
1

l_su
m

se
n
d

su
m

re
cvP

3

l_
su

m

se
n
d

su
m

re
cv

P0

l_sum

send

sum

recv

P2

l_sum

send

sum

recv

4: send/recv
3: sum/prepare
2: send/recv
1: prepare comms

send(send_buf);

receive(recv_buf);

N. Richart, E. Lanti 14 / 35

Ring reduction of π

P
1

l_su
m

se
n
d

su
m

re
cvP

3

l_
su

m

se
n
d

su
m

re
cv

P0

l_sum

send

sum

recv

P2

l_sum

send

sum

recv

+

+

+

=

=

=
=

+

3: sum/prepare

1: prepare comms
2: send/recv

4: send/recv
3: sum/prepare

5: sum/prepare...

Split the sum space between the processes

Implement a ring to communicate the
partial sum between the processes. using
MPI_Ssend and MPI_Recv
Remember : each MPI process runs the
same code!
Note : in a loop the next process is
(prank + 1) % psize and the previous is

(prank - 1 + psize) % psize

N. Richart, E. Lanti 14 / 35

Send/Receive
Send variants

MPI_Ssend : (S for Synchronous) function returns when other end posted matching recv and the
buffer can be safely reused

MPI_Bsend : (B for Buffer) function returns immediately, send buffer can be reused immediately

MPI_Rsend : (R for Ready) can be used only when a receive is already posted

MPI_Send : acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger ones

N. Richart, E. Lanti 15 / 35

Send/Receive
Particularity of MPI_Send

mpi/ping_ping.cc

31 auto size = 1 << n;
32 fill_buffer(buf, size);
33
34 auto t_start = clk::now();
35 for (size_t repetition = 0; repetition < REP; ++repetition) {
36 MPI_Send(buf.data(), buf.size(), MPI_INT, partner, 0, MPI_COMM_WORLD);
37 MPI_Recv(buf.data(), buf.size(), MPI_INT, partner, 0, MPI_COMM_WORLD,
38 MPI_STATUS_IGNORE);
39 }
40 auto time_s = (second{clk::now() - t_start}).count() / REP;

$ mpirun -np 2 ./mpi/ping_ping
PingPing size: 4.0B time: 303.5ns bandwidth: 12.6MiB/s
PingPing size: 16.0B time: 291.0ns bandwidth: 52.4MiB/s
PingPing size: 64.0B time: 289.7ns bandwidth: 210.7MiB/s
PingPing size: 256.0B time: 327.9ns bandwidth: 744.5MiB/s
PingPing size: 1.0KiB time: 686.9ns bandwidth: 1.4GiB/s

N. Richart, E. Lanti 16 / 35

Send/Receive
Particularity of MPI_Send

mpi/ping_ping.cc

31 auto size = 1 << n;
32 fill_buffer(buf, size);
33
34 auto t_start = clk::now();
35 for (size_t repetition = 0; repetition < REP; ++repetition) {
36 MPI_Send(buf.data(), buf.size(), MPI_INT, partner, 0, MPI_COMM_WORLD);
37 MPI_Recv(buf.data(), buf.size(), MPI_INT, partner, 0, MPI_COMM_WORLD,
38 MPI_STATUS_IGNORE);
39 }
40 auto time_s = (second{clk::now() - t_start}).count() / REP;

$ mpirun -np 2 ./mpi/ping_ping
PingPing size: 4.0B time: 303.5ns bandwidth: 12.6MiB/s
PingPing size: 16.0B time: 291.0ns bandwidth: 52.4MiB/s
PingPing size: 64.0B time: 289.7ns bandwidth: 210.7MiB/s
PingPing size: 256.0B time: 327.9ns bandwidth: 744.5MiB/s
PingPing size: 1.0KiB time: 686.9ns bandwidth: 1.4GiB/s

N. Richart, E. Lanti 16 / 35

Send/Receive
Combined send-receive

Syntax

1 int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 int dest, int sendtag,
3 void *recvbuf, int recvcount, MPI_Datatype recvtype,
4 int source, int recvtag,
5 MPI_Comm comm, MPI_Status *status);

Combines a send and a receive, to help mitigate deadlocks

Has a in-place variant MPI_Sendrecv_replace

N. Richart, E. Lanti 17 / 35

Ring reduction of π
Using MPI_Sendrecv

Modify the previous exercise to use MPI_Sendrecv

N. Richart, E. Lanti 18 / 35

Non-blocking send/receive

Syntax

1 int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
2 int tag, MPI_Comm comm, MPI_Request *request);
3

4 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,
5 int tag, MPI_Comm comm, MPI_Request *request);

I for immediate

request in addition to parameters from blocking version

receive does not have a status

request is an object attached to the communication

the communications starts but is not completed

S, B, and S variant are also defined

N. Richart, E. Lanti 19 / 35

Non-blocking send/receive
Completion

Syntax

1 int MPI_Wait(MPI_Request *request, MPI_Status *status);
2

3 int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

completion of communication should be checked

MPI_Test or MPI_Wait

send completed means the buffer can be reused

receive completed means the buffer can be read

status is set a completion

flag is true if completed, false otherwise

N. Richart, E. Lanti 20 / 35

Send/Receive
Example

mpi/sendrecv.cc

22 MPI_Request request;
23 if (rank == 0) {
24 fill_buffer(buf);
25 MPI_Isend(buf.data(), buf.size(), MPI_INT, 1, 0, MPI_COMM_WORLD, &request);
26 } else if (rank == 1) {
27 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, 0, MPI_COMM_WORLD,
28 MPI_STATUS_IGNORE);
29 }
30 // here I can do computation as long as buf is not modified
31 MPI_Wait(&request, MPI_STATUS_IGNORE);

N. Richart, E. Lanti 21 / 35

Ring reduction of π
Using non-blocking send

Modify the previous exercise to use MPI_Isend and MPI_Recv

Do not forget to wait

N. Richart, E. Lanti 22 / 35

Non-blocking send/receive
Multiple completions

MPI_Waitall , MPI_Testall wait or test completion of all the pending requests

MPI_Waitany , MPI_Testany wait or test completion of one out on many

MPI_Waitsome , MPI_Testsome wait or test completion of all the enabled requests

for arrays of statuses can use MPI_STATUSES_IGNORE

MPI_Request_get_status equivalent to MPI_Test but does not free completed requests

N. Richart, E. Lanti 23 / 35

Probing

Syntax

1 int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
2 MPI_Status *status);
3

4 int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status);

check incoming messages without receiving

Immediate variant returns true if matching message exists

N. Richart, E. Lanti 24 / 35

Collective communications
Synchronization

Syntax

1 int MPI_Barrier(MPI_Comm comm);

collective communications must be called by all processes in the communicator

barrier is hard synchronization

avoid as much a possible

N. Richart, E. Lanti 25 / 35

Collective communications
Broadcast

Syntax

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
2 MPI_Comm comm);

the root process sends data to every other process

N. Richart, E. Lanti 26 / 35

Collective communications
Broadcast

Syntax

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
2 MPI_Comm comm);

the root process sends data to every other process

N. Richart, E. Lanti 26 / 35

Collective communications
Scatter

Syntax

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm);

the root process sends a piece of the data to all processes

the sendbuf , sendcount and sendtype are only relevant on the root

N. Richart, E. Lanti 27 / 35

Collective communications
Scatter

Syntax

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm);

the root process sends a piece of the data to all processes

the sendbuf , sendcount and sendtype are only relevant on the root

N. Richart, E. Lanti 27 / 35

Collective communications
Gather

Syntax

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm);

all process their data to the root process

the recvbuf , recvcount and recvtype are only relevant on the root

recvcount is the size per process not the total size

N. Richart, E. Lanti 28 / 35

Collective communications
Gather

Syntax

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
3 MPI_Comm comm);

all process their data to the root process

the recvbuf , recvcount and recvtype are only relevant on the root

recvcount is the size per process not the total size

N. Richart, E. Lanti 28 / 35

Collective communications
Gather to all

Syntax

1 int MPI_Allgather(const void *sendbuf, int sendcount,
2 MPI_Datatype sendtype, void *recvbuf, int recvcount,
3 MPI_Datatype recvtype, MPI_Comm comm);

all process send their data to all other process

N. Richart, E. Lanti 29 / 35

Collective communications
Gather to all

Syntax

1 int MPI_Allgather(const void *sendbuf, int sendcount,
2 MPI_Datatype sendtype, void *recvbuf, int recvcount,
3 MPI_Datatype recvtype, MPI_Comm comm);

all process send their data to all other process

N. Richart, E. Lanti 29 / 35

Collective communications
All to all gather/scatter

Syntax

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype,
3 MPI_Comm comm);

all process send their a piece of their data to all other process

N. Richart, E. Lanti 30 / 35

Collective communications
All to all gather/scatter

Syntax

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
2 void *recvbuf, int recvcount, MPI_Datatype recvtype,
3 MPI_Comm comm);

all process send their a piece of their data to all other process

N. Richart, E. Lanti 30 / 35

Ring reduction of π
Using collective communications

MPI_Gather the partial sums to the root process.

MPI_Bcast the total sum all the process

N. Richart, E. Lanti 31 / 35

Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

data from all process are reduced on the root process

common operations being MPI_SUM , MPI_MAX , MPI_MIN , MPI_PROD

a MPI_Allreduce variant exists where all the process have the results

MPI_IN_PLACE can be passed in the sendbuf of root for a reduce a of all process for a allreduce

N. Richart, E. Lanti 32 / 35

Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

data from all process are reduced on the root process

common operations being MPI_SUM , MPI_MAX , MPI_MIN , MPI_PROD

a MPI_Allreduce variant exists where all the process have the results

MPI_IN_PLACE can be passed in the sendbuf of root for a reduce a of all process for a allreduce

N. Richart, E. Lanti 32 / 35

Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

data from all process are reduced on the root process

common operations being MPI_SUM , MPI_MAX , MPI_MIN , MPI_PROD

a MPI_Allreduce variant exists where all the process have the results

MPI_IN_PLACE can be passed in the sendbuf of root for a reduce a of all process for a allreduce

N. Richart, E. Lanti 32 / 35

Ring reduction of π
Using collective communications

Modify the previous exercise to use MPI_Reduce and MPI_Bcast

Modify it again to use MPI_Allreduce

N. Richart, E. Lanti 33 / 35

Collective communications
Partial reductions

Syntax

1 int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
2 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);
3

4 int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,
5 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

performs the prefix reduction on data

MPI_Scan on process i contains the reduction of values from processes [0, i]

MPI_Exscan on process i contains the reduction of values from processes [0, i [

MPI_IN_PLACE can be passed a sendbuf

N. Richart, E. Lanti 34 / 35

Parallelization of the poisson code

N

N

Parallelize the Poisson 2D problem using
the Messages Passing Interface (MPI)

N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

N

N

The memory allocation is done in the C
default manner, “Row-Major Order”: make
your domain decomposition by lines

N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

N

N
/p

p domains of size N/p each (1 per process)

N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

N/p-1

1

N/p

1

N/p

N/p

1

1

N/p

0

0

0

0

N/p+1

N/p+1

N/p+1

Adding ghost lines before and after

N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

Use the ghost lines to receive the missing
local data

N. Richart, E. Lanti 35 / 35

Parallelization of the poisson code

Start using MPI_Sendrecv to implement
the communications

You can use the number of iteration as a
check

Remove the dump() function to start

Once it is working try to use non-blocking
communications

N. Richart, E. Lanti 35 / 35

	Message Passing Interface (MPI)
	Introduction
	MPI environment
	Terminology
	Blocking point-to-point communications
	Non-blocking point-to-point communications
	Collective communications

