e lgertaentee

: i #’r
: EEEF
; =F s

- 14 | ——
Parallel Programming

Nicolas Richart
Emmanuel Lanti
Course based on V. Keller's lecture notes

= SCITAS 27th of October - 15t of November 2024

)
‘ . 4
| P
* ¥
1 * 1
! - 1R
! ' b
{ d
¥ b

"

L]
‘w
¢

P T

wiv

TR et O Bardesetdeietde s tde . Tdw 2w

Single-core optimization, MPI, OpenMP, and hybrid programming

|

= SCITAS

Goal of this section

Understand the context of shared memory
Understand more in detail the architecture of a node

Get familiar with the OpenMP execution and memory model

Getting some speedup with Task Level Parallelism

® SCITAS N. Richart, E. Lanti 3 /45

Releases history, present and future

October 1997: Fortran version 1.0

Late 1998: C/C++ version 1.0
June 2000: Fortran version 2.0 en
April 2002: C/C++ version 2.0 ™

June 2005: Combined C/C++ and Fortran version 2.5

May 2008: Combined C/C++ and Fortran version 3.0

July 2011: Combined C/C++ and Fortran version 3.1
July 2013: Combined C/C++ and Fortran version 4.0
November 2015: Combined C/C++ and Fortran version 4.5
November 2018: Combined C/C++ and Fortran version 5.0
November 2020: Combined C/C++ and Fortran version 5.1
November 2021: Combined C/C++ and Fortran version 5.2

® SCITAS N. Richart, E. Lanti 4/ 4s

Terminology

Selected extract of the specification

B Specification:
» Full specification
» RefCard

® Terms:

thread an execution entity with a stack
and a static memory (threadprivate memory)

OpenMP thread a thread managed by the OpenMP runtime

processor an hardware unit on which one or more OpenMP thread can execute

directive a base language mechanism to specify OpenMP program behavior

construct an OpenMP executable directive and the associated statement, loop nest or
structured block, if any, not including the code in any called routines. That is, the
lexical extent of an executable directive.

® SCITAS N. Richart, E. Lanti 5/ 45

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5.1-web.pdf

Memory Model

GPU || GPU GPU || GPU

| CPU e CPU |

RAM RAM

® SCITAS N. Richart, E. Lanti 6/ 45

Memory Model

CPU CPU

]]
Shared Memory

® SCITAS N. Richart, E. Lanti 6/ 45

Memory Model

HEEEE| (BEEEE
HEEEE| |HEEEE
]]

Shared Memory

® SCITAS N. Richart, E. Lanti 6/ 45

Memory Model
=PrL

Shared memor y

Shared Memory

Execution Model
=PrL

Fork/join

Sequential
Fork
Parallel ‘ ‘ ‘
Join
Sequential o 0 o
Parallel 6
Sequential 5 0 5

® SCITAS N. Richart, E. Lanti 7/ 4s

Compiling an OpenMP code

pragmas and compilation

® OpenMP directives are written as pragmas: #pragma omp

W Use the conditional compilation flag #if defined _OPENMP for the preprocessor

® SCITAS N. Richart, E. Lanti 8/ 45

Compiling an OpenMP code

pragmas and compilation

® OpenMP directives are written as pragmas: #pragma omp

W Use the conditional compilation flag #if defined _OPENMP for the preprocessor

® Compilation using the GNU compiler:

$> g++ -fopenmp exl.c -o exl

® Compilation using the Intel compiler:

$> icpc -qopenmp exl.c -o exl

® SCITAS N. Richart, E. Lanti 8/ 45

Hello World in C4++

Simple version

openmp/hello.cc

1 #include <iostream>

2 #include <omp.h>

3

4 int main() {

5

6 #pragma omp parallel

7 {

8 auto mysize = omp_get_num_threads();
9 auto myrank = omp_get_thread_num();
10 std: :printf("Hello from thread %i out of %i\n", myrank, mysize);
11 }

12

13 return 0;

14 }

® SCITAS N. Richart, E. Lanti 9/ 4s

Hello World in C4++

Simple version

openmp/hello.cc

1 #include <iostream>

2 #include <omp.h>

3

4 int main() {

5

6 #pragma omp parallel

7 {

8 auto mysize = omp_get_num_threads();
9 auto myrank = omp_get_thread_num();
10 std: :printf("Hello from thread %i out of %i\n", myrank, mysize);
11 ¥

12

13 return 0;

14 }

OMP_NUM_THREADS=4 ./openmp/hello
Hello from thread 2 out of 4
Hello from thread 1 out of 4

Hello from thread O out of 4
Hello from thread 3 out of 4

= SCITAS

Hello World in C4++

With condition compilation

openmp/hello_c c

6 int main() {

7 int mysize = 1;
8 int myrank = 0;
9

10 #4if defined(_OPENMP)
11 #pragma omp parallel

12

13 mysize = omp_get_num_threads();

14 myrank = omp_get_thread_num();

15 #endif

16 std: :printf("Hello from thread %i out of %i\n", myrank, mysize);
17 #4if defined(_OPENMP)

18 }

19 #endif

20 return 0;

21 }

® SCITAS N. Richart, E. Lanti 10 / 45

Number of concurrent threads

® Default implementation dependent (usually max hardware thread)

B At runtime in the code

[1 omp_set_num_threads(nthreads) ; J

m \With en environment variable

$> export OMP_NUM_THREADS=4

® SCITAS N. Richart, E. Lanti 11 / 45

The parallel construct

= SCITAS

This is the mother of all constructs in OpenMP. It starts a parallel execution.

1 #pragma omp parallel [clause[[,] clause]...]
o {

3 structured-block

4 3

where clause is one of the following:
® if or num _threads : conditional clause
m default(private | firstprivate | shared | none) : default data scoping
® private(list), firstprivate(list), shared(list) or copyin(list) : data scoping
® reduction(operator : list)

N. Richart, E. Lanti 12 / 45

EPFL Hello 7

B |n the pi.cc add a function call to get the number of threads.
® Compile using the porper options for OpenMP
® Test that it works by varying the number of threads export OMP_NUM_THREADS

B To vary the number of threads in a sbatch job you can set the number of threads to the number of
cpus per task.

#!/bin/bash
#SBATCH -c <nthreads>

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
<my_openmp_executable>

® SCITAS N. Richart, E. Lanti 13 / 45

Worksharing constructs

Work-sharing constructs are possible in three “flavours” :
B sections construct
B single construct

®m workshare construct (only in Fortran)

® SCITAS N. Richart, E. Lanti 14 / 45

= SCITAS

Worksharing constructs

The sections construct

#pragma omp [parallel] sections [clause]
{

#pragma omp section

code_block
}

1
2
3
4
5
6
T

}

where clause is one of the following:
® private(list), firstprivate(list), lastprivate(list)
® reduction(operator : list)

B Each section within a sections construct is assigned to one and only one thread

N. Richart, E. Lanti 15 / 45

= SCITAS

A sections construct

Example

openmp/sections.cc

6 #pragma omp parallel sections num_threads(4)

7 G

8 #pragma omp section

9 std::printf ("Thread %i handling section 1\n", omp_get_thread_num());
10 #pragma omp section

11 std: :printf("Thread %i handling section 2\n", omp_get_thread_num());
12 #pragma omp section

13 std: :printf ("Thread %i handling section 3\n", omp_get_thread_num());
14}

N. Richart, E. Lanti 16 / 45

A sections construct

Example

openmp/sections.cc

6 #pragma omp parallel sections num_threads(4)

7 g

8 #pragma omp section

9 std::printf ("Thread %i handling section 1\n", omp_get_thread_num());
10 #pragma omp section

11 std: :printf("Thread %i handling section 2\n", omp_get_thread_num());
12 #pragma omp section

13 std: :printf("Thread %i handling section 3\n", omp_get_thread_num());
14}

./openmp/sections
Thread O handling section
Thread 1 handling section

Thread 2 handling section

= SCITAS N. Richart, E. Lanti 16 / 45

Worksharing constructs

The single construct

Only one thread (usualy the first entering thread) executes the single region.

1 #pragma omp single [clause[[,] clause] ...]
2 {

3 structured-block

4 }

where clause is one of the following:
® private(list), firstprivate(list)
® nowait

® SCITAS N. Richart, E. Lanti 17 / 45

The master directive

Deprecated for masked

Only the master thread execute the section. It can be used in any OpenMP construct

1 #pragma omp master
2l {
3 structured-block
4}

® SCITAS N. Richart, E. Lanti 18 / 45

The Worksharing-loop construct

The for construct

Parallelization of the following loop

#pragma omp for [clause[[,] clause] ...]

1
2
3 for-loop
4

}

where clause is one of the following:
® schedule(kind[, chunk _size])
m collapse(n)
® ordered
® private(list), firstprivate(list), lastprivate(list)

® SCITAS N. Richart, E. Lanti 19 / 45

Example of for construct

openmp/for.cc

#pragma omp parallel num_threads(2)
{

auto myrank = omp_get_thread_num();
#pragma omp for
10 for (int i = 0; i < 6; ++i) {
11 std: :printf("Thread %i handling i=%i\n", myrank, i);
12 X
13}

® SCITAS N. Richart, E. Lanti 20 / 45

Example of for construct

openmp/for.cc

#pragma omp parallel num_threads(2)
{

6
7
8 auto myrank = omp_get_thread_num();
9 #pragma omp for

10 for (int i = 0; i < 6; ++i) {

11 std: :printf("Thread %i handling i=%i\n", myrank, i);
12 }

13 }

./openmp/for
Thread O handling
Thread 0 handling
Thread O handling

Thread
Thread

handling
handling

0
0
Thread 1 handling
1
1

= SCITAS

Compute 7 in parallel
EPFL /

First try at parallel code

Add a parallel for work sharing construct around the integral computation
Run the code
Run the code
Run the code

What can you observe on the value of 7 7

® SCITAS N. Richart, E. Lanti 21 / 45

The Synchronization constructs

The critical construct

1 #pragma omp critical [(name) [[,] hint(hint-ezpression)]]
2 {

3 structured-block

4 }

B name optional to identify the construct
B hint-expression information on the expected execution
» omp_sync_hint_none
omp_sync_hint_uncontended

»

» omp_sync_hint_contended

» omp_sync_hint_nonspeculative
>

omp_sync_hint_speculative

® SCITAS N. Richart, E. Lanti 22 / 45

Compute 7 in parallel
EPFL /

Naive reduction

B To solve the data race condition from the previous exercise we can protect the computation of the sum
B Add a critical directive to protect the sum
B Run the code

B \What can you observe on the execution time while varying the number of threads

® SCITAS N. Richart, E. Lanti 23 / 45

The Synchronization constructs

The barrier construct

Specifies an explicit barrier.

1 #pragma omp barrier

® SCITAS N. Richart, E. Lanti 24 / 45

The Synchronization constructs

The atomic construct

Ensures a specific storage location is accessed atomically.

1 #pragma omp atomic [clause[[,] clause] ...]
2 statement

where clause is one of the following:
B atomic-clauses read, write, update
B memory-order-clauses seq cst, acq rel, releases, acquire, relaxed

B or one of capture, compare, hint(hint-expression), fail(seq_cst | acquire | relaxed), or weak

® SCITAS N. Richart, E. Lanti 25 / 45

Data sharing clauses

What are the variables values

® Most common source of errors
B Determine which variables are private to a thread, which are shared among all the threads

B |n case of a private variable the variable values can be defined using:

» firstprivate defines the value when entering the region
» lastprivate defines the value when exiting the region (OpenMP 5.1 in C/C++)

m default(private | firstprivate | shared | none) can be specified
default(none) means each variables should appear in a shared or private list

® SCITAS N. Richart, E. Lanti 26 / 45

Data sharing clauses

= SCITAS

shared and private

These attributes determines the scope (visibility) of a single or list of variables

1 shared(listl), private(list2)

B The private clause: the data is private to each thread and non-initialized. Each thread has its own
copy. #pragma omp parallel private(sz)

B The shared clause: the data is shared among all the threads. It is accessible (and non-protected) by all
the threads simultaneously. #pragma omp parallel shared(array)

N. Richart, E. Lanti 27 / 45

Data sharing clauses

firstprivate and lastprivate

These clauses determines the attributes of the variables within a parallel region:

1 firstprivate(listl), lastprivate(list2)

B The firstprivate super-set of private, variable is initialized to a copie of variable before the region

B The lastprivate super-set of private the value of the last thread exiting the region is copied

® SCITAS N. Richart, E. Lanti 28 / 45

Data sharing clauses

Example

openmp/private.cc

8 std: :printf ("Thread %i sees, a, b, c: %i, %i, %g (before)\n",
9 omp_get_thread_num(), a, b, c);

10

11 #pragma omp parallel num_threads(3), private(a), firstprivate(b)
12 {

13 std: :printf("Thread %i sees, a, b, c: %i, %i, %g (inside)\n",
14 omp_get_thread_num(), a, b, c);

15 c = -1e-3;

16 }

17

18 std: :printf ("Thread %i sees, a, b, c: %i, %i, %g (after)\n",
19 omp_get_thread_num(), a, b, c¢);

® SCITAS N. Richart, E. Lanti 20 / 45

Data sharing clauses

Example

openmp/private.cc

8 std: :printf ("Thread %i sees, a, b, c: %i, %i, %g (before)\n",
9 omp_get_thread_num(), a, b, c);

10

11 #pragma omp parallel num_threads(3), private(a), firstprivate(b)
12 {

13 std: :printf("Thread %i sees, a, b, c: %i, %i, %g (inside)\n",
14 omp_get_thread_num(), a, b, c);

15 c = -1e-3;

16 }

17

18 std: :printf ("Thread %i sees, a, b, c: %i, %i, %g (after)\n",
19 omp_get_thread_num(), a, b, c¢);

./openmp/private
Thread O sees, a, : 1, 2, 3 (before)
Thread O sees, a, : 1839769744, 2, 3 (inside)
Thread 1 sees, : 12789424, 2, 3 (inside)

Thread 2 sees, : 12801392, 2, -0.001 (inside)
Thread O sees, : 1, 2, -0.001 (after)

= SCITAS

Compute 7 in parallel
EPFL /

Naive reduction improved

m Create a local variable per thread
B Make each thread compute it's own sum

W After the computation of the integral use a critical directive to sum the local sum to a shared sum

® SCITAS N. Richart, E. Lanti 30 / 45

Loop clauses

reduction clause

1 reduction(reduction-identifier : list)

B reduction-identifier: one of the operation +, —, *, &, |, ~, &&, ||
B /ist item on which the reduction applies

W example: #pragma omp for reduction(+: sum)

® SCITAS N. Richart, E. Lanti 31/ 45

EPFL Compute 7 in parallel

Naive reduction improved

B Use the reduction clause

® Compare the timings to the previous versions

® SCITAS N. Richart, E. Lanti 32 / 45

Loop clauses

schedule clause

1 schedule([modifier [, modifier] :] kind [, chunk_sizel)

® kind

» static iterations divided in chunks sized chunk _size assigned to threads in a round-robin fashion

» dynamic iterations divided in chunks sized chunk _size assigned to threads when they request them until no
chunk remains to be distributed -

» guided iterations divided in chunks sized chunk _size assigned to threads when they request them. Size of
chunks is proportional to the remaining unassigned chunks.

» auto The decisions is delegated to the compiler and/or the runtime system

» runtime The decisions is delegated to the runtime system based on ICV

® SCITAS N. Richart, E. Lanti 33 / 45

Loop clauses

collapse clause

1 collapse(n)

Specifies how many loop are combine into a logical space

® SCITAS N. Richart, E. Lanti 34 / 45

Example dgemm

collapse(1)

openmp/dgemm.cc

34 #pragma omp parallel for collapse(1) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)

36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 Cli * N + jl += A[i * N + k] * B[k * N + j];

® SCITAS N. Richart, E. Lanti 35 / 45

Example dgemm

collapse(1)

openmp/dgemm.cc

34 #pragma omp parallel for collapse(1) schedule(static, N / nthreads)

35 for (int i = 0; i < Nj; ++i)

36 for (int j = 0; j < N; ++j)

37 for (int k = 0; k < N; ++k)

38 Cli * N + jl += A[i * N + k] * B[k * N + jl;

OMP_NUM_THREADS=1 ../build/openmp/dgemm

DGEMM with 1 threads, collapse(1): 21.1209 GFLOP/s (verif 2)
OMP_NUM_THREADS=2 ../build/openmp/dgemm

DGEMM with 2 threads, collapse(1): 40.2308 GFLOP/s (verif 2)

OMP_NUM_THREADS=4 ../build/openmp/dgemm
DGEMM with 4 threads, collapse(1): 72.7659 GFLOP/s (verif 2)
OMP_NUM_THREADS=1 ../build/openmp/dgemm

= SCITAS

Example dgemm

collapse(2)

DGEMM with 1 threads, collapse(2): 20.358 GFLOP/s (verif 2)
OMP_NUM_THREADS=2 ../build/openmp/dgemm

DGEMM with 2 threads, collapse(2): 40.0818 GFLOP/s (verif 2)
OMP_NUM_THREADS=4 ../build/openmp/dgemm

DGEMM with 4 threads, collapse(2): 72.4462 GFLOP/s (verif 2)

= SCITAS

Advanced topics

Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

® SCITAS N. Richart, E. Lanti 37 / 45

Advanced topics

Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

® SCITAS N. Richart, E. Lanti 37 / 45

- PFL Advanced topics
= Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

2x UPI 10.4GT x20 1x On-Pkg PCle (MCP) 8GT x16 1x PCle 8GT %16

2x PCle BGT x1§ + DMI x4 1x UP1 10,4GT x20
3 rYy 4

b L

=y Il ATt

1 A 5 2
e e e | i
PCle omi PCle 1
uPI | o ce UPI | I | E i
—— % T o — | !
[s> | s> = [] e e e i i]
| | | |) | i 1 =
1 i [} 1
&—-:;:$ i i I\ = E ;
1 1
- [= e = R = W
> [& core care core IMC ol)
7] N e Sl=al=
i 2 & Je> gy ==X e e Tic
h? = core core core core
—_— T L)) 1 I — —
uc = > uc e ue. uc e uc -3
core I_C%’_\Q core core P core core
e o 7 —
uc — ¥ ; =
core ||‘0 core \ core QU core 5‘ core core ¥
‘ ")

® SCITAS N. Richart, E. Lanti 37 / 45

Advanced topics

Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

® SCITAS N. Richart, E. Lanti 37 / 45

B One thread can only saturate 1 channel

B On memory bound code bandwidth saturate when # of threads ~ # of channels

B |f memory allocated on the other processor memory, data go through CPU interconnect (UPI
3% 10.4GT/s)

® SCITAS N. Richart, E. Lanti 38 / 45

B One thread can only saturate 1 channel

B On memory bound code bandwidth saturate when # of threads ~ # of channels

B |f memory allocated on the other processor memory, data go through CPU interconnect (UPI

3% 10.4GT/s)
B How to mitigate this effects ?

» Loop schedule
» Memory first touch
» Thread placements

= SCITAS

N. Richart, E. Lanti

38 / 45

Thread Affinity

Thread Affinity Control

B The variable describes these places in terms of the available hardware.
B The variable describes how threads are bound to OpenMP places
B The variable helps to debug the affinity

OMP_NUM_THREADS=4 OMP_DISPLAY_AFFINITY=true ./openmp/hello
OMP: pid 2115280 tid 2115280 thread O bound to 0S proc set {0-31}
OMP: pid 2115280 tid 2115285 thread 3 bound to 0S proc set {0-31}
OMP: pid 2115280 tid 2115284 thread 2 bound to 0S proc set {0-31}
Hello from thread O out of 4

Hello from thread 3 out of 4
OMP: pid 2115280 tid 2115283 thread 1 bound to 0S proc set {0-31}
Hello from thread 1 out of 4
Hello from thread 2 out of 4

= SCITAS

Thread Affinity

Possible values for 0MP_PLACES where each place corresponds to:
threads a single hardware thread on the device.
cores a single core (having one or more hardware threads) on the device.
Il caches a set of cores that share the last level cache on the device.
numa_domains a set of cores for which their closest memory on the device is:

B the same memory; and
W at a similar distance from the cores.

sockets a single socket (consisting of one or more cores) on the device.

® SCITAS N. Richart, E. Lanti 40 / 45

Thread Affinity

Possible values for 0MP_PROC_BIND:

false
true
primary
close

spread

= SCITAS

threads not bonded

threads are bonded (implementation dependant)
collocate threads with the primary thread

place threads close to the master in the places list

spread out threads as much as possible

N. Richart, E. Lanti

41/ as

First touch

B Memory is organized in pages
B When allocating data “nothing” happens

B Pages are allocated on the memory associated to the first thread initializing it

® SCITAS N. Richart, E. Lanti 42 / 45

First touch

B Memory is organized in pages
B When allocating data “nothing” happens
B Pages are allocated on the memory associated to the first thread initializing it

B To mitigate the problem, initialize the arrays in same order they are accessed

® SCITAS N. Richart, E. Lanti 42 / 45

Data race, false-sharing

B Data race:

» Data accessed by multiple threads without protection
» Lead to undetermined results

® SCITAS N. Richart, E. Lanti 43 / 45

Data race, false-sharing

B Data race:
» Data accessed by multiple threads without protection
» Lead to undetermined results

B False sharing

» Data smaller than cache-line size
» Multiple threads accessing data in the same cache line will poison each other caches

® SCITAS N. Richart, E. Lanti 43 / 45

Runtime routines

Sub set of the routines in OpenMP

= SCITAS

omp_get_num_threads() : number of threads in the current region
omp_get_thread_num() : id of the current thread

omp_get_max_threads () : upper bound to the number of threads that could be used
omp_get_wtime () : wall clock time in seconds

omp_get_wtick() : seconds between successive clock ticks

N. Richart, E. Lanti 44 / a5

Parallelize the Poisson code using OpenMP
EPFL

B Now you can apply what you learn to the poisson code.

B Remember that 90% of the time is spend in the dumpers. So make sure you dump only once at the
end of the simulation to get a validation image.

® SCITAS N. Richart, E. Lanti 45 / 45

	OpenMP
	Task parallelism
	Introduction
	The parallel construct
	worksharing constructs ("subsubsections", "single", "workshare")
	The Worksharing-loop construct
	The Synchronization constructs
	Data sharing clauses
	Loop clauses
	Advanced topics
	Runtime routines

