
Parallel Programming
Single-core optimization, MPI, OpenMP, and hybrid programming

Nicolas Richart
Emmanuel Lanti
Course based on V. Keller’s lecture notes

27th of October - 1st of November 2024

OpenMP

Goal of this section

Understand the context of shared memory

Understand more in detail the architecture of a node

Get familiar with the OpenMP execution and memory model

Getting some speedup with Task Level Parallelism

N. Richart, E. Lanti 3 / 45

Releases history, present and future

October 1997: Fortran version 1.0

Late 1998: C/C++ version 1.0

June 2000: Fortran version 2.0

April 2002: C/C++ version 2.0

June 2005: Combined C/C++ and Fortran version 2.5

May 2008: Combined C/C++ and Fortran version 3.0

July 2011: Combined C/C++ and Fortran version 3.1
July 2013: Combined C/C++ and Fortran version 4.0

November 2015: Combined C/C++ and Fortran version 4.5

November 2018: Combined C/C++ and Fortran version 5.0

November 2020: Combined C/C++ and Fortran version 5.1

November 2021: Combined C/C++ and Fortran version 5.2

N. Richart, E. Lanti 4 / 45

Terminology
Selected extract of the specification

Specification:
▶ Full specification
▶ RefCard

Terms:
thread an execution entity with a stack

and a static memory (threadprivate memory)

OpenMP thread a thread managed by the OpenMP runtime

processor an hardware unit on which one or more OpenMP thread can execute
directive a base language mechanism to specify OpenMP program behavior

construct an OpenMP executable directive and the associated statement, loop nest or
structured block, if any, not including the code in any called routines. That is, the
lexical extent of an executable directive.

N. Richart, E. Lanti 5 / 45

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5.1-web.pdf

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

N. Richart, E. Lanti 6 / 45

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

N. Richart, E. Lanti 6 / 45

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

N. Richart, E. Lanti 6 / 45

Memory Model
Shared memory

RAM RAM

GPU GPU GPU GPU

CPUCPU

Shared Memory

CPUCPU

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

N. Richart, E. Lanti 6 / 45

Execution Model
Fork/join

Parallel

Parallel

Sequential

Join

Fork

Sequential

Sequential

N. Richart, E. Lanti 7 / 45

Compiling an OpenMP code
pragmas and compilation

OpenMP directives are written as pragmas: #pragma omp

Use the conditional compilation flag #if defined _OPENMP for the preprocessor

Compilation using the GNU compiler:

$> g++ -fopenmp ex1.c -o ex1

Compilation using the Intel compiler:

$> icpc -qopenmp ex1.c -o ex1

N. Richart, E. Lanti 8 / 45

Compiling an OpenMP code
pragmas and compilation

OpenMP directives are written as pragmas: #pragma omp

Use the conditional compilation flag #if defined _OPENMP for the preprocessor

Compilation using the GNU compiler:

$> g++ -fopenmp ex1.c -o ex1

Compilation using the Intel compiler:

$> icpc -qopenmp ex1.c -o ex1

N. Richart, E. Lanti 8 / 45

Hello World in C++
Simple version

openmp/hello.cc

1 # include <iostream>
2 # include <omp.h>
3
4 int main() {
5
6 # pragma omp parallel
7 {
8 auto mysize = omp_get_num_threads();
9 auto myrank = omp_get_thread_num();

10 std::printf("Hello from thread %i out of %i\n", myrank, mysize);
11 }
12
13 return 0;
14 }

$ OMP_NUM_THREADS=4 ./openmp/hello
Hello from thread 2 out of 4
Hello from thread 1 out of 4
Hello from thread 0 out of 4
Hello from thread 3 out of 4

N. Richart, E. Lanti 9 / 45

Hello World in C++
Simple version

openmp/hello.cc

1 # include <iostream>
2 # include <omp.h>
3
4 int main() {
5
6 # pragma omp parallel
7 {
8 auto mysize = omp_get_num_threads();
9 auto myrank = omp_get_thread_num();

10 std::printf("Hello from thread %i out of %i\n", myrank, mysize);
11 }
12
13 return 0;
14 }

$ OMP_NUM_THREADS=4 ./openmp/hello
Hello from thread 2 out of 4
Hello from thread 1 out of 4
Hello from thread 0 out of 4
Hello from thread 3 out of 4

N. Richart, E. Lanti 9 / 45

Hello World in C++
With condition compilation

openmp/hello_cond.cc

6 int main() {
7 int mysize = 1;
8 int myrank = 0;
9

10 # if defined(_OPENMP)
11 # pragma omp parallel
12 {
13 mysize = omp_get_num_threads();
14 myrank = omp_get_thread_num();
15 # endif
16 std::printf("Hello from thread %i out of %i\n", myrank, mysize);
17 # if defined(_OPENMP)
18 }
19 # endif
20 return 0;
21 }

N. Richart, E. Lanti 10 / 45

Number of concurrent threads

Default implementation dependent (usually max hardware thread)

At runtime in the code

1 omp_set_num_threads(nthreads);

With en environment variable

$> export OMP_NUM_THREADS=4

N. Richart, E. Lanti 11 / 45

The parallel construct

This is the mother of all constructs in OpenMP. It starts a parallel execution.

Syntax

1 # pragma omp parallel [clause[[,] clause]...]
2 {
3 structured-block
4 }

where clause is one of the following:

if or num_threads : conditional clause

default(private | firstprivate | shared | none) : default data scoping

private(list), firstprivate(list), shared(list) or copyin(list) : data scoping

reduction(operator : list)

N. Richart, E. Lanti 12 / 45

Hello π

In the pi.cc add a function call to get the number of threads.

Compile using the porper options for OpenMP

Test that it works by varying the number of threads export OMP_NUM_THREADS
To vary the number of threads in a sbatch job you can set the number of threads to the number of
cpus per task.

#!/bin/bash
#SBATCH -c <nthreads>

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
<my_openmp_executable>

N. Richart, E. Lanti 13 / 45

Worksharing constructs

Work-sharing constructs are possible in three “flavours” :

sections construct

single construct

workshare construct (only in Fortran)

N. Richart, E. Lanti 14 / 45

Worksharing constructs
The sections construct

Syntax

1 # pragma omp [parallel] sections [clause]
2 {
3 # pragma omp section
4 {
5 code_block
6 }
7 }

where clause is one of the following:

private(list), firstprivate(list), lastprivate(list)
reduction(operator : list)
Each section within a sections construct is assigned to one and only one thread

N. Richart, E. Lanti 15 / 45

A sections construct
Example

openmp/sections.cc

6 # pragma omp parallel sections num_threads(4)
7 {
8 # pragma omp section
9 std::printf("Thread %i handling section 1\n", omp_get_thread_num());

10 # pragma omp section
11 std::printf("Thread %i handling section 2\n", omp_get_thread_num());
12 # pragma omp section
13 std::printf("Thread %i handling section 3\n", omp_get_thread_num());
14 }

$./openmp/sections
Thread 0 handling section 1
Thread 1 handling section 2
Thread 2 handling section 3

N. Richart, E. Lanti 16 / 45

A sections construct
Example

openmp/sections.cc

6 # pragma omp parallel sections num_threads(4)
7 {
8 # pragma omp section
9 std::printf("Thread %i handling section 1\n", omp_get_thread_num());

10 # pragma omp section
11 std::printf("Thread %i handling section 2\n", omp_get_thread_num());
12 # pragma omp section
13 std::printf("Thread %i handling section 3\n", omp_get_thread_num());
14 }

$./openmp/sections
Thread 0 handling section 1
Thread 1 handling section 2
Thread 2 handling section 3

N. Richart, E. Lanti 16 / 45

Worksharing constructs
The single construct

Only one thread (usualy the first entering thread) executes the single region.

Syntax

1 # pragma omp single [clause[[,] clause] ...]
2 {
3 structured-block
4 }

where clause is one of the following:

private(list), firstprivate(list)
nowait

N. Richart, E. Lanti 17 / 45

The master directive
Deprecated for masked

Only the master thread execute the section. It can be used in any OpenMP construct

Syntax

1 # pragma omp master
2 {
3 structured-block
4 }

N. Richart, E. Lanti 18 / 45

The Worksharing-loop construct
The for construct

Parallelization of the following loop

Syntax

1 # pragma omp for [clause[[,] clause] ...]
2 {
3 for-loop
4 }

where clause is one of the following:

schedule(kind[, chunk_size])
collapse(n)
ordered
private(list), firstprivate(list), lastprivate(list)

N. Richart, E. Lanti 19 / 45

Example of for construct

openmp/for.cc

6 # pragma omp parallel num_threads(2)
7 {
8 auto myrank = omp_get_thread_num();
9 # pragma omp for

10 for (int i = 0; i < 6; ++i) {
11 std::printf("Thread %i handling i=%i\n", myrank, i);
12 }
13 }

$./openmp/for
Thread 0 handling i=0
Thread 0 handling i=1
Thread 0 handling i=2
Thread 1 handling i=3
Thread 1 handling i=4
Thread 1 handling i=5

N. Richart, E. Lanti 20 / 45

Example of for construct

openmp/for.cc

6 # pragma omp parallel num_threads(2)
7 {
8 auto myrank = omp_get_thread_num();
9 # pragma omp for

10 for (int i = 0; i < 6; ++i) {
11 std::printf("Thread %i handling i=%i\n", myrank, i);
12 }
13 }

$./openmp/for
Thread 0 handling i=0
Thread 0 handling i=1
Thread 0 handling i=2
Thread 1 handling i=3
Thread 1 handling i=4
Thread 1 handling i=5

N. Richart, E. Lanti 20 / 45

Compute π in parallel
First try at parallel code

Add a parallel for work sharing construct around the integral computation

Run the code

Run the code

Run the code

What can you observe on the value of π ?

N. Richart, E. Lanti 21 / 45

The Synchronization constructs
The critical construct

Restricts execution of the associated structured block to a single thread at a time

Syntax

1 # pragma omp critical [(name) [[,] hint(hint-expression)]]
2 {
3 structured-block
4 }

name optional to identify the construct
hint-expression information on the expected execution
▶ omp_sync_hint_none

▶ omp_sync_hint_uncontended

▶ omp_sync_hint_contended

▶ omp_sync_hint_nonspeculative

▶ omp_sync_hint_speculative

N. Richart, E. Lanti 22 / 45

Compute π in parallel
Naive reduction

To solve the data race condition from the previous exercise we can protect the computation of the sum

Add a critical directive to protect the sum

Run the code

What can you observe on the execution time while varying the number of threads

N. Richart, E. Lanti 23 / 45

The Synchronization constructs
The barrier construct

Specifies an explicit barrier.

Syntax

1 # pragma omp barrier

N. Richart, E. Lanti 24 / 45

The Synchronization constructs
The atomic construct

Ensures a specific storage location is accessed atomically.

Syntax

1 # pragma omp atomic [clause[[,] clause] ...]
2 statement

where clause is one of the following:

atomic-clauses read, write, update
memory-order-clauses seq_cst, acq_rel, releases, acquire, relaxed
or one of capture, compare, hint(hint-expression), fail(seq_cst | acquire | relaxed), or weak

N. Richart, E. Lanti 25 / 45

Data sharing clauses
What are the variables values

Most common source of errors

Determine which variables are private to a thread, which are shared among all the threads
In case of a private variable the variable values can be defined using:
▶ firstprivate defines the value when entering the region
▶ lastprivate defines the value when exiting the region (OpenMP 5.1 in C/C++)

default(private | firstprivate | shared | none) can be specified
default(none) means each variables should appear in a shared or private list

N. Richart, E. Lanti 26 / 45

Data sharing clauses
shared and private

These attributes determines the scope (visibility) of a single or list of variables

Syntax

1 shared(list1), private(list2)

The private clause: the data is private to each thread and non-initialized. Each thread has its own
copy. #pragma omp parallel private(i)

The shared clause: the data is shared among all the threads. It is accessible (and non-protected) by all
the threads simultaneously. #pragma omp parallel shared(array)

N. Richart, E. Lanti 27 / 45

Data sharing clauses
firstprivate and lastprivate

These clauses determines the attributes of the variables within a parallel region:

Syntax

1 firstprivate(list1), lastprivate(list2)

The firstprivate super-set of private, variable is initialized to a copie of variable before the region

The lastprivate super-set of private the value of the last thread exiting the region is copied

N. Richart, E. Lanti 28 / 45

Data sharing clauses
Example

openmp/private.cc

8 std::printf("Thread %i sees, a, b, c: %i, %i, %g (before)\n",
9 omp_get_thread_num(), a, b, c);

10
11 # pragma omp parallel num_threads(3), private(a), firstprivate(b)
12 {
13 std::printf("Thread %i sees, a, b, c: %i, %i, %g (inside)\n",
14 omp_get_thread_num(), a, b, c);
15 c = -1e-3;
16 }
17
18 std::printf("Thread %i sees, a, b, c: %i, %i, %g (after)\n",
19 omp_get_thread_num(), a, b, c);

$./openmp/private
Thread 0 sees, a, b, c: 1, 2, 3 (before)
Thread 0 sees, a, b, c: 1839769744, 2, 3 (inside)
Thread 1 sees, a, b, c: 12789424, 2, 3 (inside)
Thread 2 sees, a, b, c: 12801392, 2, -0.001 (inside)
Thread 0 sees, a, b, c: 1, 2, -0.001 (after)

N. Richart, E. Lanti 29 / 45

Data sharing clauses
Example

openmp/private.cc

8 std::printf("Thread %i sees, a, b, c: %i, %i, %g (before)\n",
9 omp_get_thread_num(), a, b, c);

10
11 # pragma omp parallel num_threads(3), private(a), firstprivate(b)
12 {
13 std::printf("Thread %i sees, a, b, c: %i, %i, %g (inside)\n",
14 omp_get_thread_num(), a, b, c);
15 c = -1e-3;
16 }
17
18 std::printf("Thread %i sees, a, b, c: %i, %i, %g (after)\n",
19 omp_get_thread_num(), a, b, c);

$./openmp/private
Thread 0 sees, a, b, c: 1, 2, 3 (before)
Thread 0 sees, a, b, c: 1839769744, 2, 3 (inside)
Thread 1 sees, a, b, c: 12789424, 2, 3 (inside)
Thread 2 sees, a, b, c: 12801392, 2, -0.001 (inside)
Thread 0 sees, a, b, c: 1, 2, -0.001 (after)

N. Richart, E. Lanti 29 / 45

Compute π in parallel
Naive reduction improved

Create a local variable per thread

Make each thread compute it’s own sum

After the computation of the integral use a critical directive to sum the local sum to a shared sum

N. Richart, E. Lanti 30 / 45

Loop clauses
reduction clause

Syntax

1 reduction(reduction-identifier : list)

reduction-identifier: one of the operation +, –, *, &, |, ˆ, &&, ||
list item on which the reduction applies

example: #pragma omp for reduction(+: sum)

N. Richart, E. Lanti 31 / 45

Compute π in parallel
Naive reduction improved

Use the reduction clause

Compare the timings to the previous versions

N. Richart, E. Lanti 32 / 45

Loop clauses
schedule clause

Syntax

1 schedule([modifier [, modifier] :] kind [, chunk_size])

kind
▶ static iterations divided in chunks sized chunk_size assigned to threads in a round-robin fashion
▶ dynamic iterations divided in chunks sized chunk_size assigned to threads when they request them until no

chunk remains to be distributed
▶ guided iterations divided in chunks sized chunk_size assigned to threads when they request them. Size of

chunks is proportional to the remaining unassigned chunks.
▶ auto The decisions is delegated to the compiler and/or the runtime system
▶ runtime The decisions is delegated to the runtime system based on ICV

N. Richart, E. Lanti 33 / 45

Loop clauses
collapse clause

Syntax

1 collapse(n)

Specifies how many loop are combine into a logical space

N. Richart, E. Lanti 34 / 45

Example dgemm
collapse(1)

openmp/dgemm.cc

34 # pragma omp parallel for collapse(1) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)
36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 C[i * N + j] += A[i * N + k] * B[k * N + j];

$ OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(1): 21.1209 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=2 ../build/openmp/dgemm
DGEMM with 2 threads, collapse(1): 40.2308 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=4 ../build/openmp/dgemm
DGEMM with 4 threads, collapse(1): 72.7659 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=1 ../build/openmp/dgemm

N. Richart, E. Lanti 35 / 45

Example dgemm
collapse(1)

openmp/dgemm.cc

34 # pragma omp parallel for collapse(1) schedule(static, N / nthreads)
35 for (int i = 0; i < N; ++i)
36 for (int j = 0; j < N; ++j)
37 for (int k = 0; k < N; ++k)
38 C[i * N + j] += A[i * N + k] * B[k * N + j];

$ OMP_NUM_THREADS=1 ../build/openmp/dgemm
DGEMM with 1 threads, collapse(1): 21.1209 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=2 ../build/openmp/dgemm
DGEMM with 2 threads, collapse(1): 40.2308 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=4 ../build/openmp/dgemm
DGEMM with 4 threads, collapse(1): 72.7659 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=1 ../build/openmp/dgemm

N. Richart, E. Lanti 35 / 45

Example dgemm
collapse(2)

DGEMM with 1 threads, collapse(2): 20.358 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=2 ../build/openmp/dgemm
DGEMM with 2 threads, collapse(2): 40.0818 GFLOP/s (verif 2)
$ OMP_NUM_THREADS=4 ../build/openmp/dgemm
DGEMM with 4 threads, collapse(2): 72.4462 GFLOP/s (verif 2)

N. Richart, E. Lanti 36 / 45

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

SKL
SP

SKL
SP

UPI

UPI

UPI

N. Richart, E. Lanti 37 / 45

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

SKL
SP

SKL
SP

UPI

UPI

UPI

N. Richart, E. Lanti 37 / 45

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore CoreSKL
SP

SKL
SP

UPI

UPI

UPI

N. Richart, E. Lanti 37 / 45

Advanced topics
Idealized model vs reality (NUMA, Sub-NUMA Clusters, Cluster-on-Die)

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore CoreSKL
SP

SKL
SP

UPI

UPI

UPI

N. Richart, E. Lanti 37 / 45

Implications of memory layout

SKL
SP

SKL
SP

UPI

UPI

UPI

One thread can only saturate 1 channel

On memory bound code bandwidth saturate when # of threads ∼ # of channels

If memory allocated on the other processor memory, data go through CPU interconnect (UPI
3 × 10.4GT/s)

How to mitigate this effects ?
▶ Loop schedule
▶ Memory first touch
▶ Thread placements

N. Richart, E. Lanti 38 / 45

Implications of memory layout

SKL
SP

SKL
SP

UPI

UPI

UPI

One thread can only saturate 1 channel

On memory bound code bandwidth saturate when # of threads ∼ # of channels

If memory allocated on the other processor memory, data go through CPU interconnect (UPI
3 × 10.4GT/s)
How to mitigate this effects ?
▶ Loop schedule
▶ Memory first touch
▶ Thread placements

N. Richart, E. Lanti 38 / 45

Thread Affinity
Thread Affinity Control

The variable OMP_PLACES describes these places in terms of the available hardware.

The variable OMP_PROC_BIND describes how threads are bound to OpenMP places

The variable OMP_DISPLAY_AFFINITY helps to debug the affinity

$ OMP_NUM_THREADS=4 OMP_DISPLAY_AFFINITY=true ./openmp/hello
OMP: pid 2115280 tid 2115280 thread 0 bound to OS proc set {0-31}
OMP: pid 2115280 tid 2115285 thread 3 bound to OS proc set {0-31}
OMP: pid 2115280 tid 2115284 thread 2 bound to OS proc set {0-31}
Hello from thread 0 out of 4
Hello from thread 3 out of 4
OMP: pid 2115280 tid 2115283 thread 1 bound to OS proc set {0-31}
Hello from thread 1 out of 4
Hello from thread 2 out of 4

N. Richart, E. Lanti 39 / 45

Thread Affinity
OMP_PLACES

Possible values for OMP_PLACES where each place corresponds to:

threads a single hardware thread on the device.

cores a single core (having one or more hardware threads) on the device.

ll_caches a set of cores that share the last level cache on the device.

numa_domains a set of cores for which their closest memory on the device is:
the same memory; and
at a similar distance from the cores.

sockets a single socket (consisting of one or more cores) on the device.

N. Richart, E. Lanti 40 / 45

Thread Affinity
OMP_PROC_BIND

Possible values for OMP_PROC_BIND:

false threads not bonded

true threads are bonded (implementation dependant)

primary collocate threads with the primary thread

close place threads close to the master in the places list

spread spread out threads as much as possible

N. Richart, E. Lanti 41 / 45

First touch

Memory is organized in pages

When allocating data “nothing” happens

Pages are allocated on the memory associated to the first thread initializing it

To mitigate the problem, initialize the arrays in same order they are accessed

N. Richart, E. Lanti 42 / 45

First touch

Memory is organized in pages

When allocating data “nothing” happens

Pages are allocated on the memory associated to the first thread initializing it

To mitigate the problem, initialize the arrays in same order they are accessed

N. Richart, E. Lanti 42 / 45

Data race, false-sharing

Data race:
▶ Data accessed by multiple threads without protection
▶ Lead to undetermined results

False sharing
▶ Data smaller than cache-line size
▶ Multiple threads accessing data in the same cache line will poison each other caches

N. Richart, E. Lanti 43 / 45

Data race, false-sharing

Data race:
▶ Data accessed by multiple threads without protection
▶ Lead to undetermined results

False sharing
▶ Data smaller than cache-line size
▶ Multiple threads accessing data in the same cache line will poison each other caches

N. Richart, E. Lanti 43 / 45

Runtime routines

Sub set of the routines in OpenMP

omp_get_num_threads() : number of threads in the current region

omp_get_thread_num() : id of the current thread

omp_get_max_threads() : upper bound to the number of threads that could be used

omp_get_wtime() : wall clock time in seconds

omp_get_wtick() : seconds between successive clock ticks

N. Richart, E. Lanti 44 / 45

Parallelize the Poisson code using OpenMP

Now you can apply what you learn to the poisson code.

Remember that 90% of the time is spend in the dumpers. So make sure you dump only once at the
end of the simulation to get a validation image.

N. Richart, E. Lanti 45 / 45

	OpenMP
	Task parallelism
	Introduction
	The parallel construct
	worksharing constructs ("subsubsections", "single", "workshare")
	The Worksharing-loop construct
	The Synchronization constructs
	Data sharing clauses
	Loop clauses
	Advanced topics
	Runtime routines

