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Administration

Course organization

B This parallel programming course amounts to two full weeks of work (70 hours)
B |t is organized in two parts:

» A week of “theoretical” lectures completed by practical exercises
» A personal project realized within the two following weeks

® An oral evaluation of your project (15" 4+ 5') will conclude the course
m |f passed, you'll get 3 ECTS

A few remarks
B During the course, we'll primarily use C4++ for the examples, but you can also use C or Fortran
B Do not hesitate to interrupt if you have questions

W Exercises are important! Do not hesitate to play with them, change the parameters, see what happens,
make the code crash, try to understand why, etc.

® SCITAS N. Richart, E. Lanti 2/ 76



Administration

Lecture and exercises
® \We tried to build this course with as much exercises as possible
B \We often use exercises during the lectures to illustrate and understand concepts we presented
B To easily differentiate between theory and exercises, there are two templates
B This is a theory slide!

® SCITAS N. Richart, E. Lanti 3 /76



E PF L Administration

Lecture and exercises

B This is an exercise slide!

® SCITAS N. Richart, E. Lanti 4 /76
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Goal of this section

Cluster access using ssh
Data transfers using scp and/or rsync
Software modules on the cluster

Code compilation

Debugging

® SCITAS N. Richart, E. Lanti 6 /76



Connection to the cluster

m Secure shell or better known as SSH

$> man ssh
ssh (SSH client) is a program for logging into a remote machine and
for executing commands on a remote machine. It is intended to
provide secure encrypted communications [...]. X11 connections [...]
can also be forwarded over the secure channel.

B Basic usage

$> ssh <user>@<host>

<user> is your GASPAR username, <host> is any of {helvetios,izar, jed}.epfl.ch

B Example

$> ssh jdoe@helvetios.epfl.ch
password: ¥k

W SCITAS N. Richart, E. Lanti
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Connection to the cluster

Optional step

B The alternative to password is to use a cryptographic key pair

$> ssh-keygen -b 4096 -t rsa
[Follow the instructions]
$> ssh-copy-id jdoe®@helvetios.epfl.ch

B ssh-keygen generates a public/private key pair
B By default, they are found in ~/.ssh

» id_rsa.pub is the public key and can be shared with anyone (ssh-copy-id copies it to the remote)
» id_rsa is the private key and it is SECRET!

® SCITAS N. Richart, E. Lanti 8/ 76



Data transfer

® We are working remotely and need to get your data back locally
B There are two main commands:

$> man scp
scp copies files between hosts on a network. It uses ssh for data transfer, and
— uses the same authentication and provides the same security as ssh.

$> man rsync
Rsync is a fast and extraordinarily versatile file copying tool. It can copy
locally, to/from another host over any remote shell, or to/from a remote rsync
daemon. [...] It is famous for its delta-transfer algorithm, which reduces the
amount of data sent over the network by sending only the differences between the
source files and the existing files in the destination. Rsync is widely used for
backups and mirroring and as an improved copy command for everyday use.

B Similar usage pattern. The path on a remote host is written hostname:/path/to/file. For example

$> scp jdoe@helvetios.epfl.ch:src/myCode/file.c src/

® SCITAS N. Richart, E. Lanti 9/ 76
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Software modules

A tool to organize your environment

® HPC clusters are particular because many software and versions of them are installed alongside
B We need a tool to make the software easily available to everyone
B The main tools used today are environment-modules and Lmod

m At SCITAS, we chose Lmod (we'll see later why)

N. Richart, E. Lanti 10 / 76



Software modules

A tool to organize your environment

HPC clusters are particular because many software and versions of them are installed alongside
We need a tool to make the software easily available to everyone

The main tools used today are environment-modules and Lmod

At SCITAS, we chose Lmod (we'll see later why)

Those tools package different software and their configurations into modules

When you need to use a software, you need to load the corresponding module

Examples of (made-up) modules:

» intel-19.0.2: provides Intel compiler version 19.0.2
» data-analysis: provides tools for data-analysis such as Python with different packages, and Matlab

® SCITAS N. Richart, E. Lanti 10 / 76



Software modules

Quick tutorial

B | mod is called using the module command followed by an action:

avail: print a list of available modules

load/unload <modules>: load/unload the <modules>

purge: unload all modules

swap <modulel> <module2>: swap <modulel> for <module2>

list: print a list of currently loaded modules

spider <module>: print all possible versions of <module>

show: print the module configuration

save/restore <name>: save/restore current module collection under <name>
help: print help

VYVVVYVYVYYY

B Many of those commands are also available in environment-modules

® SCITAS N. Richart, E. Lanti 11 / 76



Software modules

Lmod main strength

B | mod supports a hierarchical software stack
B When you switch a module, it will automatically reload the ones depending on it

B You need to load a compiler, and an MPI and BLAS implementation to have access to all modules

® SCITAS N. Richart, E. Lanti 12 / 76



Compilation

0100101110101001010...

B A computer only understands ON and OFF states (1 and 0)
B |t would be very inconvenient for us to code in binary
®m We therefore use different levels of abstraction (languages), e.g. C, C++, Fortran

® \We need a translator!

® SCITAS N. Richart, E. Lanti 13 / 76



Compilation

The four compilation steps

B Translation is made by a compiler in 4 steps
Preprocessing Format source code to make it ready for compilation (remove comments, execute
preprocessing directives such as #include , etc.)
Compiling Translate the source code (C, C++, Fortran, etc) into assembly, a very basic
CPU-dependent language
Assembly Translate the assembly into machine code and store it in object files
Linking Link all the object files into one executable

B |n practice, the first three steps are combined together and simply called “compiling”

® SCITAS N. Richart, E. Lanti 14 / 76



Compilation

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i

#include <stdio.h>
// This is my main function

int main(void) {
_ ~N // I declare i to be equal to 2
Compiler int i = 2;
gcc -S file.i -o file.s b
J
Assembler

External Library

gcc -c file.s -o file.o libexample.so

Linker

gcc file.o -lexample -o file

® SCITAS N. Richart, E. Lanti 15 / 76



Compilation

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i)

[...]
extern int __uflow (FILE *);
extern int _ overflow (FILE *, int);

A N int main(void) {
Compiler int i=2:
gcc -S file.i -o file.s ¥
J
Assembler External Library
gcc -c file.s -o file.o libexample.so
Linker

gcc file.o -lexample -o file
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= SCITAS

Compilation

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i
J main:
.LFBO:
pushq %rbp
N movq  %rsp, %rbp
A movl  $2, -4(%rbp)
Compiler movl  $0, %eax
gcc -S file.i -o file.%) popq  %rbp
Assembler External Library
gcc -c file.s -o file.o libexample.so
Linker

gcc file.o -lexample -o file

N. Richart, E. Lanti
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Compilation

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i/
0000000000000000 <main>:
0: 55
1: 48 89 e5
R N 4: ¢7 45 fc 02 00 00 00
Compiler b: b8 00 00 00 00
gcc -S file.i -o file.s 10: 5d
J
Assembler External Library
gcc -c file.s -o file.o libexample.so

Linker
gcc file.o -lexample -o file

® SCITAS N. Richart, E. Lanti 15 / 76



= SCITAS

Compilation

The four compilation steps (visually)

~
Preprocessor ® Note that in reality, everything is done
gcc -E file.c -o file.%/ transparently

$> gec -c file_1l.c

$> gcc -c file_2.c

N\ $> gcc file_1.0 file_2.0 -lexample -o
— exec

Compiler
gcc -S file.i -o file.s
J

Assembler External Library
gcc -c file.s -o file.o libexample.so
Linker

gcc file.o -lexample -o file

N. Richart, E. Lanti 15 / 76



Debugging

A few advices

® Why bother debugging?
» Studies® show ~ 20 bugs/kloc in industry codes
» You don’t want to find a bug when on a deadline

® Only optimize a correct code

B There are different types of bugs:

Syntax error A code keyword is misspelled, e.g. dobule instead of double. The code doesn't
compile and the compiler tells you where is the error.
Runtime error Division by 0 (fpe), out of bound access (seg. fault), etc. The code compiles fine, but
will (most likely) crash at runtime.
Logical errors Mistake that leads to an incorrect or unexpected behavior. You want to compute a
distance from a velocity and a time, but you use an acceleration instead.

B | ogical errors are clearly the most dangerous! The compiler doesn't complain and your code runs. You
need to test it!

1Code Complete, S. McConnell
® SCITAS N. Richart, E. Lanti 16 / 76



Debugging

A few advices

B Write tests (unit tests, application tests)!

® Write tests!

B Ask the compiler to complain (-g -Wall -Wextra)

® Use debuggers (gdb, TotalView, Alinea DDT)

® Use memory checkers (Valgrind, TotalView, Intel Inspector, -fsanitize=address)
® Don't use print statements (Heisenbug)

® SCITAS N. Richart, E. Lanti 17 / 76



Basic debugging
EPFL

Write overflow

® |n the debugging folder, make the executable.
B Execute the ./write executable

® Run the code with gdb
$ gdb ./write

B Run the code in gdb with run in gdb, it should stop at the line where the segfault happens.

B You can print the value of the variables with print
(gdb) print i
(gdb) print data

B At this point you should see the bug

® SCITAS N. Richart, E. Lanti 18 / 76



Basic debugging

E PF L Read overflow

B Execute the ./read executable
B |t might run fine but there is a bug.
B Run the code with valgrind

$ valgrind ./read

B You can also compile with special sanitize options (this works only with gcc and clang)
$ CXXFLAGS=-fsanitize=address make
In this case the bound check is always done at execution.

® SCITAS N. Richart, E. Lanti 19 / 76
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Cluster Architecture

B The goal of this section is to understand what's under the cluster’s hood

B |n order to take full advantage of your computer, you have to understand how it works, what are the
limits, etc.

m We'll go from the cluster level down to the core level

= SCITAS

N. Richart, E. Lanti
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= SCITAS

Cluster Architecture

General presentation

® An HPC cluster is composed of
» Login node(s)
» Compute nodes
» Storage system
» High performance interconnect
B The simulation data is written on the storage
systems. At SCITAS:

» /home: store source files, input data, small files

» /work: collaboration space for a group

» /scratch: temporary huge result files
Please, note that only /home and /work have
backups! /scratch data can be erased at any
moment!

N. Richart, E. Lanti
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Introduction to Slurm

Compute nodes

®m Users do not run their calculations directly on the m
compute nodes m
B A scheduler is used to ensure fair resource usage

/

Storage

Interconnect

Front node
(login node)

i

e Bl B

Users
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Introduction to Slurm

Compute nodes

® Users do not run their calculations directly on the m— Storage
compute nodes m
B A scheduler is used to ensure fair resource usage Intercomect

m At SCITAS, we use the Slurm scheduler m . .

/work
/home
/scratch

Front node
(login node)

el S

m -

Users
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Introduction to Slurm

®m Users do not run their calculations directly on the
compute nodes

B A scheduler is used to ensure fair resource usage
m At SCITAS, we use the Slurm scheduler

® You submit your simulation and the resources you
need to Slurm

B Slurm stores it into a queue and assigns it a starting
time depending on many parameters

B Your job may not start right away and it is normall!

W SCITAS N. Richart, E. Lanti

Compute nodes

m Storage

Interconnect

o slurm
workload manager

Front node
(login node)

el S

m -

Users

/work
/home
/scratch

23 /76



= SCITAS

Introduction to Slurm

How to submit simulations

To submit a job

$> srun -A phys-743 ./my_program

-A / --account=<account> : name of your Slurm account

-t / —-time=<HH:MM:SS> : set a limit on the total run time of the job

-N / --nodes=<N> : request that a minimum of N nodes be allocated to the job
-n / --ntasks=<n> : advise Slurm that this job will launch a maximum of n tasks
-c / --cpus-per-task=<ncpus> : advise Slurm that job will require ncpus per task

--mem=<size[units]|> : specify the memory required per node

Need more help? Have a look at the documentation

N. Richart, E. Lanti 24 / 76


https://slurm.schedmd.com/sbatch.html

Introduction to Slurm

How to submit simulations

Or you can put everything in a file called, e.g. my_simulation.job

#!/bin/bash -1

#SBATCH --account=phys-743
#SBATCH --time=01:10:00
#SBATCH --nodes=2

#SBATCH --ntasks=56

srun ./my_program

and submit the job with

$> sbatch my_simulation.job

® SCITAS N. Richart, E. Lanti 25 / 76



Introduction to Slurm

How to manage simulations

To list all your jobs

$> squeue -u <username>
$> squeue --me

To cancel a simulation

$> scancel <jobid>

The <jobid> can be found using squeue

® SCITAS N. Richart, E. Lanti 26 / 76



Cluster Architecture

Let's dive into a compute node!

B The compute node is the basic building bloc of a cluster

W |t is composed of one or more CPU with RAM (memory) and eventually one or more accelerator, e.g.
GPUs

® All the nodes are connected together with an interconnect

EiE e
[ [ [ [
-+ cpu Uk
| |
RAM RAM

® SCITAS N. Richart, E. Lanti 27 / 76



Cluster Architecture

Central processing unit

® The CPU is the “brain” of the node
® CPUs work in clock cycles; they are the “heart beat” of the CPU
B |t is composed of cores and different levels of memories called caches

B There are usually three levels of cache called L1, L2, and L3

Core Core Core Core Core
Event Latency Scaled Capacity
K] K] K] K] K]
= " = = = 1 CPUhcyt:'e 0.1ns 1s ;
e e S S — — L cache access ns 10s s
L2 cache access ins 10s MB
Core Core Core Core Core L3 cache access 10ns 1min MB
] ] 1 ] i RAM access 100 ns 10 min GB
e ar—ar - Solid-state disk access 100 pus 10 days TB
L2 L2 L2 L2 L2
L e e Hard-disk drive access 1-10 ms 1-12 months B
L3

® SCITAS N. Richart, E. Lanti 28 / 76



= SCITAS

Cluster Architecture

A few numbers

Let’s go back to Frontier

Second most powerful HPC cluster in the world according to the Top500 June 2024 list

B |t is composed of 9472 compute nodes (74 racks/cabinets containing 64 blades holding 2 nodes each)
B Around 145 km of interconnect cables

® Power consumption of 22/786 kW

B Equivalent consumption as a city with ~30’000 inhabitants

[

In Lausanne, running Frontier would cost ~110’000 CHF /d only for electricity!

3T

SO G {1

e
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i
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Cluster Architecture

Summary of SCITAS’ clusters

Helvetios

® CPU cluster
W 287 nodes each with

» 2 Intel Xeon Gold 6140
©2.3 GHz with 18 cores
each

» 192 GiB of DDR3 RAM

Jed

® CPU cluster

B 419 nodes, 2 Intel lIce Lake
Platinum with 36 cores each

» 375 nodes with 512 GiB of
DDR3 RAM

» 42 nodes with 1 TiB of
DDR3 RAM

» 2 nodes with 2 TiB of
DDR3 RAM

= SCITAS

N. Richart, E. Lanti
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®m CPU + GPU cluster
B 64 nodes each with

® CPU + GPU cluster
B 84 nodes each with
» 2 Intel Xeon Gold 6230 » 2 AMD EPYC 9334
©2.1 GHz with 20 cores ©2.7 GHz with 32 cores
each each
» 2 NVIDIA V100 PCle » 4 NVIDIA H100 94 GiB
32GiB GPUs GPUs
» 192 GiB of DDR4 RAM » 384 GiB of RAM
B 2 nodes each with B 20 nodes each with
» 2 Intel Skylake ©2.1 GHz » 2 AMD EPYC 9334
with 20 cores each ©2.7 GHz with 32 cores
» 4 NVIDIA V100 SMX2 each
32GiB GPUs » 8 NVIDIA L40S 48 GiB
» 192 GiB of DDR4 RAM GPUs
» 384 GiB of RAM

30 /76
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Goal of this section

m Key concepts to quantify performance
» Metrics

» Using a profiler
» Scalings, speedup, efficiency
B Roofline model

W SCITAS N. Richart, E. Lanti
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Performance metrics

B How can we quantify performance?
B We need to define a means to measure it

® We will focus on the most interesting metrics for HPC

® SCITAS N. Richart, E. Lanti 33 /76



Performance metrics

B How can we quantify performance?

We need to define a means to measure it

We will focus on the most interesting metrics for HPC

The first that comes in mind is time, e.g. time-to-solution

Derived metrics: speedup and efficiency
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Performance metrics

B How can we quantify performance?

We need to define a means to measure it

We will focus on the most interesting metrics for HPC

The first that comes in mind is time, e.g. time-to-solution

Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers

A second metric is the number of floating-point operations per second (FLOP/s)
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Performance metrics

B How can we quantify performance?

We need to define a means to measure it

We will focus on the most interesting metrics for HPC

The first that comes in mind is time, e.g. time-to-solution

Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers

A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers per unit of time

® SCITAS N. Richart, E. Lanti 33 /76



Profiling

A tool to measure various timings

® Where is my application spending most of its time?

» (bad) measure time “by hand” using timings and prints
» (good) use a tool made for this, e.g. Intel Amplifier, Score-P, gprof

B There are two types of profiling techniques

» Sampling: you stop the code every now and then and check in which function you are
» Code instrumentation: instructions are added at compile time to trigger measurements

B |n addition to timings, profilers give you a lot more information on

Memory usage
Hardware counters
CPU activity

MPI communications
etc.

vVVVYVYY
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E PF L Profiling

Interactive demonstration

B For the purpose of this exercise, we will use MiniFE
» 3D implicit finite-elements on an unstructured mesh
» C++ mini application
» https://github.com/Mantevo/miniFE
» You don't need to understand what the code does!

We will use Intel VTune, part of the OneAPI Base toolkit (free)

Download miniFE
Compile the basic version found in ref/src
Profile the code using the hotspot analysis

Open Intel VTune and select your timings

Play around and find the 5 most time-consuming functions

® SCITAS N. Richart, E. Lanti 35 / 76


https://github.com/Mantevo/miniFE
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit

Profiling

Compile MiniFE

B Download miniFE

$> git clone https://github.com/Mantevo/miniFE.git
$> cd miniFE

® Compile the basic version found in ref/src
» You will need to load a compiler and an MPI library

$> module load intel intel-mpi intel-vtune

» Change the Makefile to set CXX=mpiicpc and CC=mpiicc and compile

$> make

» Make sure to compile your code with -g -03

W SCITAS N. Richart, E. Lanti
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Profiling

Profile MiniFE

B Profile the code using

$> srun -n 1 amplxe-cl -collect hotspots -r prof_results -- ./miniFE.x -nx 128 -ny
— 128 -nz 128

® This will profile for the “hotspots” and store the timings in prof_results

B You can have more info on the types of analysis with

$> amplxe-cl -h collect

B Open Intel VTune and select your timings

$> amplxe-gui prof_results/prof_results.amplxe

B Play around and find the 5 most time-consuming functions

® SCITAS N. Richart, E. Lanti 37 / 76



Profiling

What do we learn?

B 50.0% of the time spent in matrix/vector multiplications
B 12.5% of time spent imposing boundary conditions
H etc.

B Does the problem size influence the timings?

® SCITAS N. Richart, E. Lanti 38 / 76



Profiling

Smaller problem

This time, we profile a problem of size (16, 16, 16)
13.6% of the time is spent opening libraries
13.6% of the time is spent initializing MPI

etc.

Depending on the problem size, different parts of the code will dominate

® SCITAS N. Richart, E. Lanti 39 / 76



Profiling

Some tips and tricks

Profile a code without bugs!
Choose the right problem size (representative of your simulations)

Focus on the functions taking the most time first
If the profile is not explicit, try refactoring into smaller functions
» Some profilers, e.g. ScoreP, let you define custom regions

® SCITAS N. Richart, E. Lanti 40 / 76



Speedup and efficiency

B Two important metrics are derived from timings

B Compare timings with n processes, T,, against the reference timing, T,f

Speedup Efficiency
T,
S(n) = Tef E(n) = @

® We want S(n) as close to n and E(n) as close to 1 (100%) as possible

® SCITAS N. Richart, E. Lanti 41 / 76



= SCITAS

Strong scaling

B Scalings are a way to assess how well a program performs when adding computational resources

B Strong scaling: add resources, keep total amount of work constant

S(n):%, E(n):#:%

B Strong scaling is an indication on how much profitable it is to add resources to solve your problem

W & [w] ®

N. Richart, E. Lanti 42 / 76



Weak scaling
=PrL

® Weak scaling: add resources and maintain amount of work per resource constant

M gy ST

S(n) = 2%
(m == T,

®m Weak scalings are an indication on how well your code will perform on a bigger machine (and with a
bigger problem)
B These scalings are always required for a proposal

» For strong scalings the metric is speedup (how do | improve performance)
» For weak scalings the metric is efficiency (how well performance is kept)

w W[ W|| W/ W

® SCITAS N. Richart, E. Lanti 43 / 76




Amdahl’s law

B Amdahl's law gives you an upper bound to the achievable speedup for a fixed problem size

B By definition it is a strong scaling analysis

® SCITAS N. Richart, E. Lanti 44 / 76



Amdahl’s law

B Amdahl's law gives you an upper bound to the achievable speedup for a fixed problem size
B By definition it is a strong scaling analysis

® Assume a fraction p of your code is (perfectly) parallel and timing with 1 process is Ty
B Timing with n processes is

T,,:(lfp)T1+BT1:[(lfp)+B] T
n n

p/n  p/n  p/n phn

=

awil
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Amdahl’s law

B Amdahl's law gives you an upper bound to the achievable speedup for a fixed problem size
B By definition it is a strong scaling analysis

® Assume a fraction p of your code is (perfectly) parallel and timing with 1 process is Ty
B Timing with n processes is

T,,:(lfp)T1+BT1:[(lfp)+p] T
n n

B Speedup becomes
Ty 1

S (n) _ . p/n  p/n  p/n phn

ST (-p)+E

=

awil
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Amdahl’s law

B Amdahl's law gives you an upper bound to the achievable speedup for a fixed problem size
B By definition it is a strong scaling analysis
® Assume a fraction p of your code is (perfectly) parallel and timing with 1 process is Ty
B Timing with n processes is
p p
To=(1-p)Ti+ Ti= [(1*p)+;] T
1-p 1-p
B Speedup becomes
S(n) _ E _ 1 p/n  p/n  p/n phn
T, (l-p)+2 "
P
B |n the limit of infinite resources
. 1
lim S(n) = —— n
n— o0 1—p g
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Amdahl’s law

Amdahl's law

1000

100

Speedup

Ideal scaling
o.

20

10

Number of processors

B Limited by the serial part (very sensitive)!
B Does this mean we cannot exploit large HPC machines?

= SCITAS
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https://en.wikipedia.org/wiki/Gustafson%27s_law

Amdahl’s law

Speedup

1000

100

Amdahl's law

Ideal scaling
p=050
p=075
p=0.90
p =095
p=099

20

10

Number of processors

1000

B Limited by the serial part (very sensitive)!
B Does this mean we cannot exploit large HPC machines?

® No, in general with more resources, we simulate larger systems = weak scaling (see Gustafson law)
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FLOP/s and memory bandwidth

FLOPs are floating point operations, e.g. +, —, X, +—

Can be evaluated by hand, dividing the number of operations by the running time

B Memory bandwidth measures the amount of data transferred by unit of time [B/s, KiB/s, MiB/s,
GiB/s, ...]

® Can be measured by hand dividing the amount of data transferred by the running time

In both cases, generally use tools such as PAPI, Tau, likwid, Intel Amplxe, STREAM, etc.
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Performance measurement

A simple DAXPY example

® Assume Intel Xeon Gold 6132 (Gacrux)

optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 cl[i] = a[il] + alpha * b[i];
3 }

® My code runs in 174.25 ms. It is amazingly fast!
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optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 cl[i] = a[il] + alpha * b[i];
3 }

® My code runs in 174.25 ms. It is amazingly fast!

B Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
® Our code 2 - 108 FLOP/174.25 - 10~3s = 0.001 TFLOP/s

® QOur hardware can achieve a theoretical peak performance of 1.16 TFLOP/s...
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Performance measurement

A simple DAXPY example

® Assume Intel Xeon Gold 6132 (Gacrux)

optimization /daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 cl[i] = a[il] + alpha * b[i];
3 }

® My code runs in 174.25 ms. It is amazingly fast!

B Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations
® Our code 2 - 108 FLOP/174.25 - 10~3s = 0.001 TFLOP/s

® QOur hardware can achieve a theoretical peak performance of 1.16 TFLOP/s...

B Each iteration has 3 memory operations (2 loads and 1 store)
B Our code 2.23 GiB/174.25- 1073 s = 12.82 GiB/s

® Our hardware can achieve a theoretical memory bandwidth of 125 GiB/s...
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Roofline model

B How well am | exploiting the hardware resources?

B The roofline model is a performance model allowing to have an estimate to this question
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Roofline model

B How well am | exploiting the hardware resources?

B The roofline model is a performance model allowing to have an estimate to this question

B Key concept: the arithmetic intensity, Al, of an algorithm is # FLOP/B of data transferred

B |t measures data reuse

0.1 - 1.0 FLOP per byte Typically < 2 FLOP per byte 0(10) FLOP per byte

A A A
— N N a)

ntensity

SpMV,
BLAS 1,2
FFTs, Particle

Stencils Spectral Methods Methods
(PDE)
BLAS 3

Lattice
Boltzmann
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Roofline model

How to find arithmetic intensity

B For very simple algorithms, you can compute the Al
Let's take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N3 ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)

Three 8-byte memory operations (2 loads and 1 store)
The Al is then 2/24 = 1/12
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Roofline model

How to find arithmetic intensity

B For very simple algorithms, you can compute the Al
Let's take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N3 ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)
Three 8-byte memory operations (2 loads and 1 store)
The Al is then 2/24 = 1/12

For more complex algorithms, use a tool, e.g. Intel Advisor
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Roofline model

Building the model

B Roofline model is plotted on log-log scale

» x-axis is the Al
» y-axis is FLOP/s

FLOP/s

® SCITAS N. Richart, E. Lanti 50 / 76



Roofline model

Building the model

B Roofline model is plotted on log-log scale
» x-axis is the Al
» y-axis is FLOP/s

B The hardware limits are defined by
P = min(Pmax, bs - Al)

» Prmax is the CPU peak FLOP/s
» Al is the intensity
» b is the memory BW
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» x-axis is the Al
» y-axis is FLOP/s

B The hardware limits are defined by
P = min(Pmax, bs - Al)

» Prmax is the CPU peak FLOP/s
» Al is the intensity
» b is the memory BW
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Roofline model

Building the model

B Refinements can be made to the Roofline model
B Adding a memory hierarchy with caches
® Adding different levels of DLP (Data-Level parallelism)

B They give you hint on what to optimize for
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Roofline model

How to find the peak performance

Front End

B Theoretical peak performance
Pmax = Number of FP ports (ILP)
x flops/cycles (e.g. 2 for FMA)
X vector size (DLP)

/
e

x frequency (in GHz)

x number of cores (TLP)
e T TTTTT

= Retrement [ oo rore ] [Zaroaioane
Rerer uter 224 enrs)
o

P

B Example: Intel Xeon Gold 6132
Pmax = 2 (ports)

Scheduler
Urifed Reservation Staton (RS)
(97 antries)

x 2FLOP/c (2 for FMA) == o
[t v, Em

e

64B/cycle
L

512 bit (AVX512)
64 bit (double)

x 2.3 GHz Execution Engine

Aem-91 8l T
auyed 71

opA>/av9.

x 14 (cores)

o é
=116 TFLOP/s i

0
Memory Subsystem

® SCITAS N. Richart, E. Lanti 52 / 76


https://en.wikichip.org/wiki/intel/xeon_gold/6132

Roofline model
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Front End
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Pmax = Number of FP ports (ILP)
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X vector size (DLP)
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® Or use a software that estimates it
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= SCITAS

Roofline model

How to find the memory bandwidth

B Theoretical memory bandwidth of the memory

BWmax = Number of transfers per second
x Bus width

X Number of interfaces

B |n general, we suppose that RAM matches CPU bandwidth (found on the CPU spec. list)
B Example: Intel Xeon Gold 6132

BWmax = 2666 MT /s (DDR4 2666)
x 8B/T (64bit bus)

X 6

» 19.86 GiB/s for 1 channel
» Maximum of 119.18 GiB/s
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Roofline model

How to find the memory bandwidth

B Theoretical memory bandwidth of the memory

BWmax = Number of transfers per second
x Bus width

X Number of interfaces

B |n general, we suppose that RAM matches CPU bandwidth (found on the CPU spec. list)
B Example: Intel Xeon Gold 6132

BWmax = 2666 MT /s (DDR4 2666)
x 8B/T (64bit bus)
X 6

» 19.86 GiB/s for 1 channel
» Maximum of 119.18 GiB/s

® Or use a software that estimates it

B A corollary from “theoretical” is that it is not achievable in practice!
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Roofline model

How to measure the actual values

B Peak performance measurement

» Using a compute bound kernel
» Using dgemm:
1 core: 98.0 GFLOP/s
14 cores: 965.0 GFLOP/s
® Bandwidth measurement
» Using a memory bound kernel
» Using stream (triad):
1 core: 12.7 GiB/s
6 core: 70.1GiB/s
9 core: 82.7GiB/s

= SCITAS
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Roofline model

Intel Amplifier

e

o™
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Optimization

® We now have a pretty good idea of which part of the code to optimize
m Different options are possible (by order of complexity)

1. Compiler and linker flags

2. Optimized external libraries

3. Handmade optimization (loop reordering, better data access, etc.)
4. Algorithmic changes
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Optimization

Compiler flags

®m Compilers have a set of optimizations they can do (if possible)

® You can find a list of options for GNU compilers on their doc
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Compiler flags

®m Compilers have a set of optimizations they can do (if possible)

® You can find a list of options for GNU compilers on their doc
® Common options are:
» -00, -01, -02, -03: from almost no optimizations to most optimizations
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Optimization

Compiler flags

®m Compilers have a set of optimizations they can do (if possible)
® You can find a list of options for GNU compilers on their doc

® Common options are:

» -00, -01, -02, -03: from almost no optimizations to most optimizations
» -Ofast: activate more aggressive options, e.g. -ffast-math (but can produce wrong results in some
particular cases)
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Optimization

Compiler flags

Compilers have a set of optimizations they can do (if possible)

You can find a list of options for GNU compilers on their doc

Common options are:

» -00, -01, -02, -03: from almost no optimizations to most optimizations
» -Ofast: activate more aggressive options, e.g. -ffast-math (but can produce wrong results in some
particular cases)

B Test your program with different options (-03 does not necessarily leads to faster programs)

Note that the more optimization the longer the compilation time
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Optimization

Optimized libraries

® Do not re-invent the wheel!
B A ot of optimized libraries exist with different purposes (solvers, data structures, 1/0, etc.). A few
examples:

» Solvers: PETSc, MUMPS, LAPACK, scaLAPACK, PARDISO, etc.
» 1/O: HDF5, ADIOS, etc.
» Math libraries: FFTW, BLAS, etc.
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Optimization

Handmade optimizations

B Sometimes, we cannot rely on compiler options or libraries and we must optimize “by hand”
®m Usually, the goal is to rewrite the code in such a way that the compiler can optimize it
B Start by having a correct program before trying to optimize

B “Premature optimization is the root of all evil”, D. Knuth
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= SCITAS

Pareto principle

The 80/20 rule

B General principle that states that 80% of the effect comes from 20% of causes
® Applies in many domains and especially in optimization
® 80% of the time is spent in 20% of your code

® Concentrate on those 20% and don't arbitrarily optimize
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Optimization

Algorithmic optimizations

® Example of matrix/matrix multiplication. Graph shows complexity (O(n“)) for different algorithms

® SCITAS N. Richart, E. Lanti 61 / 76



Optimization

Algorithmic optimizations

® Example of matrix/matrix multiplication. Graph shows complexity (O(n“)) for different algorithms

g,

S 4

SCITAS N. Richart, E. Lanti 61 / 76



Parallelization

When to parallelize

® Only when your code has no bugs and is optimized

® Are your ready to parallelize?

1. Is it worth to parallelize my code? Does my algorithm scale?
Performance prediction?
Profiling?

Bottelnecks?

2.
3.
4.

5. Which parallel paradigm should | use? What is the target architecture (SMP, cluster, GPU, hybrid, etc)?
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Parallelization
L= PF L
L= When to parallelize

In 1991, David H. Bailey published a famous paper: Twelve ways to fool the masses when giving
performance results on parallel computers

6: Compare your results against scalar, unoptimized code on Crays.

B84626433832795(;

71 6930937510580 7
253594081284811 s
X
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Single-core optimization

Goal of this section

B Better grasp how programming can influence performance

m We first review some basic optimization principles to keep in mind
B Deeper understanding of the working principles of the CPU

» How data transfers are handled
» Concept of vectorization
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Single-core optimization

Basic optimization techniques

®m Often, very simple changes to the code lead to significant performance improvements

B The following may seem trivial, but you would be surprised how often they could be used in scientific
codes

B The main problem is that we often make a one-to-one mapping between the equations and the
algorithm

B Note that a recent compiler will most likely do the work for you for small pieces of code.

Do less work

1 for (int i = 0; i < N; ++i) {
2 a[i] = (alpha + sin(x)) * b[i];
3 }

double tmp = alpha + sin(x);

for (int i = 0; i < Ny ++i) {
alil = tmp * b[il;

¥

L N S

® Constant term is re-computed at every iteration of the loop

® Can be taken out of the loop and computed once
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Single-core optimization

Basic optimization techniques

Avoid branches

1 for (i = 0; 1 < N; ++i) { 1 for (i = 0; i < N; ++i) {
2 for (j = 0; j < N; ++j) { 2 for (j = i; j < N3 ++j) {
3 if (3 >= i) { 3 blj]l = alil[j];

4 sign = 1.0; 4 }

5 } else { 5 for (j =0; j < i; ++j) {
& sign = -1.0; 6 bljl = -alilljl;

7 T 77

8 b[jl = sign * alil[j]; s

9 }

10 }

® Avoid conditional branches in loops

B They can often be written differently or taken out of the loop
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Single-core optimization

Tale of a smart librarian

To better understand the concepts behind caching, let's take the example of a librarian

The first customer enters and asks for a book. The librarian goes into the huge storeroom and returns
with the book when he finds it

After some time, the client returns the book and the librarian puts it back into the storeroom

A second customer enters and asks for the same book...

This workflow can take a lot of time depending on how much customers want to read the same book
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Single-core optimization

Tale of a smart librarian

Our librarian is a bit lazy, but clever. Since a lot of customers ask for the same book, he decides to put
a small shelf behind his desk to temporarily store the books he retrieves.

This way he can quickly grab the book instead of going to the storeroom.

When a customer asks for a book, he will first look on his shelf. If he finds the book, it's a cache hit
and he returns it to the customer. If not, it's a cache miss and he must go back in the storeroom.

B This is a very clever system, especially if there is temporal locality, i.e. if the customers often ask for
the same books.

® Can he do better ?
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Single-core optimization

Tale of a smart librarian

B Oftentimes, our librarian see that people taking one book will go back and ask for the sequels of the
book

B He decides to change a bit his workflow. Now, when he goes into the storeroom to retrieve a book, he
comes back with a few of them, all on the same shelf

B This way, when the customer brings back a book and asks for the sequel, it is already present on the
librarian shelf

B This workflow works well when there is spatial locality, i.e. when you ask for a book there is a
significant chance that you will read the sequel
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Single-core optimization

Data loading

® Now, what is the link between our librarian and the CPU? They work in a similar fashion!

B When a load instruction is issued the L1 cache logic checks if data is already present. If yes, this is a
cache hit and data can be retrieved very quickly. If no, this is a cache miss and the next memory levels
are checked.

B If the data is nowhere to be found, then it is loaded from the main memory

B As for our librarian, not only the required data is loaded for each cache miss, but a whole cache line
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Single-core optimization

Example: vector multiplication with a scalar

® Simple vector/scalar multiplication

B Focus on data loading (bli])
®m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 al[il = alpha * b[i];
3 }

L1

Ib[ﬂllbmlbmlb[s] Ib[4]Ib[S]|b[5]|b[7]|b[S]lb[9]|b[10]|b[11]Ib[1z]|b[|3]|b[14]|b[15]|
RAM
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Single-core optimization

Example: vector multiplication with a scalar

® Simple vector/scalar multiplication

B Focus on data loading (bli])
®m Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 al[il = alpha * b[i];
3 }

Load b[2]:
Cache miss
Fetch cache line from RAM

t

b[2]b[3]

b[0][b[1]

L1

Ib[U]|b[1]|b[Z]|b[3]|b[4]Ib[s]Ib[E]Ib[7]Ib[S]|b[9]|b[10]|b[11]|b[12]|b[|3]|b[14]|b[15]|
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Single-core optimization

Memory layout and data access

B How do we store ND arrays into memory?
B Memory is a linear storage. Arrays are stored contiguously, one element after the other.
® We have to choose a convention. Row major (C/C++) or column major (Fortran).

B Row major means that elements are stored contiguously according to the last index of the array. In
column-major order, they are stored according to the first index.

dq1 dqp di3
dy1 dpy dz3
d3q dszp ds3

HEEEEEEEEEEEN

Memory
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Single-core optimization

Memory layout and data access

B How do we store ND arrays into memory?
B Memory is a linear storage. Arrays are stored contiguously, one element after the other.
® We have to choose a convention. Row major (C/C++) or column major (Fortran).

B Row major means that elements are stored contiguously according to the last index of the array. In
column-major order, they are stored according to the first index.
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Memory
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Single-core optimization

Example: matrix/vector multiplication

B Focus on data loading (a[i][j])
B Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 clil += alil1[j]l * b[j1;

4 1

5 }

L1

[Por2orf2uela]an[avfaafanfaz] | | [ [ [ ] |
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Single-core optimization

Example: matrix/vector multiplication

B Focus on data loading (a[i][j])
® Assume only one level of cache with a cache line of two doubles (16 bytes)

for (int j = 0; j < N; ++j) {

1
2 for (int i = 0; i < N; ++i) {
3 clil += alil1[j]l * b[j1;
4 1
5 }
Load a[0][0]:
Cache miss

Fetch cache line from RAM
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Single-core optimization

Example: matrix/vector multiplication

B Focus on data loading (a[i][j])
B Assume only one level of cache with a cache line of two doubles (16 bytes)

for (int j = 0; j < N; ++j) {
for (int i = 0; i < N; ++i) {
clil += alil[j]l * b[jl;
}

[ST CR R

}

Load a[1][0]:
Cache miss
Fetch cache line from RAM
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Single-core optimization

Example: matrix/vector multiplication

B Focus on data loading (a[i][j])
® Assume only one level of cache with a cache line of two doubles (16 bytes)

for (int j = 0; j < N; ++j) {

1
2 for (int i = 0; i < N; ++i) {
3 clil += alil1[j]l * b[j1;
4 1
5 }
Load a[2][0]:
Cache miss

Fetch cache line from RAM
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Single-core optimization

Example: matrix/vector multiplication

B Focus on data loading (a[i][j])
B Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 clil += alil1[j]l * b[j1;

4 1

5 }

Load a[2][0]:
Cache miss
Fetch cache line from RAM
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Single-core optimization

Early conclusions

Caches are small, but very fast memories
Their purpose is to alleviate long latency and limited bandwidth of the RAM

Data is fetched by group, called cache line, and stored into the different levels of cache

In order to fully exploit caches, data in caches must be re-used as much as possible

Avoid random memory accesses that case many cache misses and prefer contiguous access

Be careful of the data types you use and how they are mapped onto memory
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= SCITAS

Single-core optimization

Single Instruction Multiple Data

® Modern CPUs can apply the same operation to multiple data

B Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles

ol [ | |
for (int i = 0; i < N; ++i) { +

c[i] = a[i] + b[i] ...

ol | ] |

}
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Single-core optimization

Single Instruction Multiple Data

® Modern CPUs can apply the same operation to multiple data

B Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles
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