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Administration

Course organization
This parallel programming course amounts to two full weeks of work (70 hours)
It is organized in two parts:
▶ A week of “theoretical” lectures completed by practical exercises
▶ A personal project realized within the two following weeks

An oral evaluation of your project (15’ + 5’) will conclude the course

If passed, you’ll get 3 ECTS

A few remarks
During the course, we’ll primarily use C++ for the examples, but you can also use C or Fortran

Do not hesitate to interrupt if you have questions

Exercises are important! Do not hesitate to play with them, change the parameters, see what happens,
make the code crash, try to understand why, etc.
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Administration

Lecture and exercises
We tried to build this course with as much exercises as possible

We often use exercises during the lectures to illustrate and understand concepts we presented

To easily differentiate between theory and exercises, there are two templates

This is a theory slide!
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Administration

Lecture and exercises
This is an exercise slide!
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Basic concepts



Goal of this section

Cluster access using ssh

Data transfers using scp and/or rsync

Software modules on the cluster

Code compilation

Debugging
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Connection to the cluster

Secure shell or better known as SSH

$> man ssh
ssh (SSH client) is a program for logging into a remote machine and
for executing commands on a remote machine. It is intended to
provide secure encrypted communications [...]. X11 connections [...]
can also be forwarded over the secure channel.

Basic usage

$> ssh <user>@<host>

<user> is your GASPAR username, <host> is any of {helvetios,izar,jed}.epfl.ch

Example

$> ssh jdoe@helvetios.epfl.ch
password: *****
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Connection to the cluster
Optional step

The alternative to password is to use a cryptographic key pair

$> ssh-keygen -b 4096 -t rsa
[Follow the instructions]
$> ssh-copy-id jdoe@helvetios.epfl.ch

ssh-keygen generates a public/private key pair
By default, they are found in ~/.ssh
▶ id_rsa.pub is the public key and can be shared with anyone (ssh-copy-id copies it to the remote)
▶ id_rsa is the private key and it is SECRET!
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Data transfer

We are working remotely and need to get your data back locally
There are two main commands:

$> man scp
scp copies files between hosts on a network. It uses ssh for data transfer, and

uses the same authentication and provides the same security as ssh.↪→

$> man rsync
Rsync is a fast and extraordinarily versatile file copying tool. It can copy
locally, to/from another host over any remote shell, or to/from a remote rsync
daemon. [...] It is famous for its delta-transfer algorithm, which reduces the
amount of data sent over the network by sending only the differences between the
source files and the existing files in the destination. Rsync is widely used for
backups and mirroring and as an improved copy command for everyday use.

Similar usage pattern. The path on a remote host is written hostname:/path/to/file. For example

$> scp jdoe@helvetios.epfl.ch:src/myCode/file.c src/
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Software modules
A tool to organize your environment

HPC clusters are particular because many software and versions of them are installed alongside

We need a tool to make the software easily available to everyone

The main tools used today are environment-modules and Lmod

At SCITAS, we chose Lmod (we’ll see later why)

Those tools package different software and their configurations into modules

When you need to use a software, you need to load the corresponding module
Examples of (made-up) modules:
▶ intel-19.0.2: provides Intel compiler version 19.0.2
▶ data-analysis: provides tools for data-analysis such as Python with different packages, and Matlab
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Software modules
Quick tutorial

Lmod is called using the module command followed by an action:
▶ avail: print a list of available modules
▶ load/unload <modules>: load/unload the <modules>
▶ purge: unload all modules
▶ swap <module1> <module2>: swap <module1> for <module2>
▶ list: print a list of currently loaded modules
▶ spider <module>: print all possible versions of <module>
▶ show: print the module configuration
▶ save/restore <name>: save/restore current module collection under <name>
▶ help: print help

Many of those commands are also available in environment-modules
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Software modules
Lmod main strength

Lmod supports a hierarchical software stack

When you switch a module, it will automatically reload the ones depending on it

You need to load a compiler, and an MPI and BLAS implementation to have access to all modules
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Compilation
0100101110101001010...

A computer only understands ON and OFF states (1 and 0)

It would be very inconvenient for us to code in binary

We therefore use different levels of abstraction (languages), e.g. C, C++, Fortran

We need a translator!
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Compilation
The four compilation steps

Translation is made by a compiler in 4 steps
Preprocessing Format source code to make it ready for compilation (remove comments, execute

preprocessing directives such as #include , etc.)
Compiling Translate the source code (C, C++, Fortran, etc) into assembly, a very basic

CPU-dependent language
Assembly Translate the assembly into machine code and store it in object files

Linking Link all the object files into one executable

In practice, the first three steps are combined together and simply called “compiling”
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Compilation
The four compilation steps (visually)

Note that in reality, everything is done
transparently

$> gcc -c file_1.c
$> gcc -c file_2.c
$> gcc file_1.o file_2.o -lexample -o

exec↪→

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

#include <stdio.h>
// This is my main function
int main(void) {
  // I declare i to be equal to 2
  int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

[...]
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);

int main(void) {
  int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

main:
.LFB0:
pushq  %rbp
movq  %rsp, %rbp
movl   $2, -4(%rbp)
movl   $0, %eax
popq   %rbp

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

0000000000000000 <main>:
   0: 55                   
   1: 48 89 e5             
   4: c7 45 fc 02 00 00 00 
   b: b8 00 00 00 00       
  10: 5d                   

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so
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Debugging
A few advices

Why bother debugging?
▶ Studies1 show ∼ 20 bugs/kloc in industry codes
▶ You don’t want to find a bug when on a deadline

Only optimize a correct code

There are different types of bugs:
Syntax error A code keyword is misspelled, e.g. dobule instead of double. The code doesn’t

compile and the compiler tells you where is the error.
Runtime error Division by 0 (fpe), out of bound access (seg. fault), etc. The code compiles fine, but

will (most likely) crash at runtime.
Logical errors Mistake that leads to an incorrect or unexpected behavior. You want to compute a

distance from a velocity and a time, but you use an acceleration instead.

Logical errors are clearly the most dangerous! The compiler doesn’t complain and your code runs. You
need to test it!

1Code Complete, S. McConnell
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Debugging
A few advices

Write tests (unit tests, application tests)!

Write tests!

Ask the compiler to complain (-g -Wall -Wextra)

Use debuggers (gdb, TotalView, Alinea DDT)

Use memory checkers (Valgrind, TotalView, Intel Inspector, -fsanitize=address)

Don’t use print statements (Heisenbug)
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Basic debugging
Write overflow

In the debugging folder, make the executable.

Execute the ./write executable

Run the code with gdb
$ gdb ./write

Run the code in gdb with run in gdb, it should stop at the line where the segfault happens.

You can print the value of the variables with print
(gdb) print i
(gdb) print data

At this point you should see the bug
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Basic debugging
Read overflow

Execute the ./read executable

It might run fine but there is a bug.

Run the code with valgrind
$ valgrind ./read

You can also compile with special sanitize options (this works only with gcc and clang)
$ CXXFLAGS=-fsanitize=address make
In this case the bound check is always done at execution.
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Cluster Architecture

The goal of this section is to understand what’s under the cluster’s hood

In order to take full advantage of your computer, you have to understand how it works, what are the
limits, etc.

We’ll go from the cluster level down to the core level
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Cluster Architecture
General presentation

An HPC cluster is composed of
▶ Login node(s)
▶ Compute nodes
▶ Storage system
▶ High performance interconnect

The simulation data is written on the storage
systems. At SCITAS:
▶ /home: store source files, input data, small files
▶ /work: collaboration space for a group
▶ /scratch: temporary huge result files

Please, note that only /home and /work have
backups! /scratch data can be erased at any
moment!

Compute nodes

Storage

Front node
(login node)

Users

/work
/home
/scratch

Interconnect
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Introduction to Slurm

Users do not run their calculations directly on the
compute nodes

A scheduler is used to ensure fair resource usage

At SCITAS, we use the Slurm scheduler

You submit your simulation and the resources you
need to Slurm

Slurm stores it into a queue and assigns it a starting
time depending on many parameters

Your job may not start right away and it is normal!

Compute nodes

Storage

Front node
(login node)

Users

/work
/home
/scratch

Interconnect

Compute nodes

Storage

Front node
(login node)

Users

/work
/home
/scratch

Interconnect
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Introduction to Slurm
How to submit simulations

To submit a job

$> srun -A phys-743 ./my_program

-A / --account=<account> : name of your Slurm account

-t / --time=<HH:MM:SS> : set a limit on the total run time of the job

-N / --nodes=<N> : request that a minimum of N nodes be allocated to the job

-n / --ntasks=<n> : advise Slurm that this job will launch a maximum of n tasks

-c / --cpus-per-task=<ncpus> : advise Slurm that job will require ncpus per task

--mem=<size[units]> : specify the memory required per node

Need more help? Have a look at the documentation

N. Richart, E. Lanti 24 / 76

https://slurm.schedmd.com/sbatch.html


Introduction to Slurm
How to submit simulations

Or you can put everything in a file called, e.g. my_simulation.job

#!/bin/bash -l
#SBATCH --account=phys-743
#SBATCH --time=01:10:00
#SBATCH --nodes=2
#SBATCH --ntasks=56

srun ./my_program

and submit the job with

$> sbatch my_simulation.job
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Introduction to Slurm
How to manage simulations

To list all your jobs

$> squeue -u <username>
$> squeue --me

To cancel a simulation

$> scancel <jobid>

The <jobid> can be found using squeue
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Cluster Architecture
Let’s dive into a compute node!

The compute node is the basic building bloc of a cluster

It is composed of one or more CPU with RAM (memory) and eventually one or more accelerator, e.g.
GPUs

All the nodes are connected together with an interconnect

CPU

GPU GPU

RAM

CPU

GPU GPU

RAM
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Cluster Architecture
Central processing unit

The CPU is the “brain” of the node

CPUs work in clock cycles; they are the “heart beat” of the CPU

It is composed of cores and different levels of memories called caches

There are usually three levels of cache called L1, L2, and L3

Event Latency Scaled Capacity

1 CPU cycle 0.1 ns 1 s –
L1 cache access 1 ns 10 s kB
L2 cache access 1 ns 10 s MB
L3 cache access 10 ns 1min MB
RAM access 100 ns 10 min GB
Solid-state disk access 100µs 10 days TB
Hard-disk drive access 1–10 ms 1–12 months TB

Core

L1

L2

L3

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2
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Cluster Architecture
A few numbers

Let’s go back to Frontier
Second most powerful HPC cluster in the world according to the Top500 June 2024 list

It is composed of 9472 compute nodes (74 racks/cabinets containing 64 blades holding 2 nodes each)

Around 145 km of interconnect cables

Power consumption of 22′786 kW

Equivalent consumption as a city with ∼30′000 inhabitants

In Lausanne, running Frontier would cost ∼110′000CHF/d only for electricity!

N. Richart, E. Lanti 29 / 76
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Cluster Architecture
Summary of SCITAS’ clusters

Helvetios

CPU cluster
287 nodes each with
▶ 2 Intel Xeon Gold 6140

@2.3 GHz with 18 cores
each

▶ 192GiB of DDR3 RAM

Jed

CPU cluster
419 nodes, 2 Intel Ice Lake
Platinum with 36 cores each
▶ 375 nodes with 512 GiB of

DDR3 RAM
▶ 42 nodes with 1 TiB of

DDR3 RAM
▶ 2 nodes with 2 TiB of

DDR3 RAM

Izar

CPU + GPU cluster
64 nodes each with
▶ 2 Intel Xeon Gold 6230

@2.1 GHz with 20 cores
each

▶ 2 NVIDIA V100 PCIe
32 GiB GPUs

▶ 192 GiB of DDR4 RAM

2 nodes each with
▶ 2 Intel Skylake @2.1 GHz

with 20 cores each
▶ 4 NVIDIA V100 SMX2

32 GiB GPUs
▶ 192 GiB of DDR4 RAM

Kuma

CPU + GPU cluster
84 nodes each with
▶ 2 AMD EPYC 9334

@2.7 GHz with 32 cores
each

▶ 4 NVIDIA H100 94 GiB
GPUs

▶ 384 GiB of RAM

20 nodes each with
▶ 2 AMD EPYC 9334

@2.7 GHz with 32 cores
each

▶ 8 NVIDIA L40S 48 GiB
GPUs

▶ 384 GiB of RAM
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Performance measurement



Goal of this section

Key concepts to quantify performance
▶ Metrics
▶ Using a profiler
▶ Scalings, speedup, efficiency

Roofline model
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Performance metrics

How can we quantify performance?

We need to define a means to measure it

We will focus on the most interesting metrics for HPC

The first that comes in mind is time, e.g. time-to-solution

Derived metrics: speedup and efficiency

Scientific codes do computations on floating point numbers

A second metric is the number of floating-point operations per second (FLOP/s)

Finally, the memory bandwidth indicates how much data does your code transfers per unit of time
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Profiling
A tool to measure various timings

Where is my application spending most of its time?
▶ (bad) measure time “by hand” using timings and prints
▶ (good) use a tool made for this, e.g. Intel Amplifier, Score-P, gprof

There are two types of profiling techniques
▶ Sampling: you stop the code every now and then and check in which function you are
▶ Code instrumentation: instructions are added at compile time to trigger measurements

In addition to timings, profilers give you a lot more information on
▶ Memory usage
▶ Hardware counters
▶ CPU activity
▶ MPI communications
▶ etc.
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Profiling
Interactive demonstration

For the purpose of this exercise, we will use MiniFE
▶ 3D implicit finite-elements on an unstructured mesh
▶ C++ mini application
▶ https://github.com/Mantevo/miniFE
▶ You don’t need to understand what the code does!

We will use Intel VTune, part of the OneAPI Base toolkit (free)

Download miniFE

Compile the basic version found in ref/src

Profile the code using the hotspot analysis

Open Intel VTune and select your timings

Play around and find the 5 most time-consuming functions
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Profiling
Compile MiniFE

Download miniFE

$> git clone https://github.com/Mantevo/miniFE.git
$> cd miniFE

Compile the basic version found in ref/src
▶ You will need to load a compiler and an MPI library

$> module load intel intel-mpi intel-vtune

▶ Change the Makefile to set CXX=mpiicpc and CC=mpiicc and compile

$> make

▶ Make sure to compile your code with -g -O3
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Profiling
Profile MiniFE

Profile the code using

$> srun -n 1 amplxe-cl -collect hotspots -r prof_results -- ./miniFE.x -nx 128 -ny
128 -nz 128↪→

This will profile for the “hotspots” and store the timings in prof_results

You can have more info on the types of analysis with

$> amplxe-cl -h collect

Open Intel VTune and select your timings

$> amplxe-gui prof_results/prof_results.amplxe

Play around and find the 5 most time-consuming functions
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Profiling
What do we learn?

50.0% of the time spent in matrix/vector multiplications

12.5% of time spent imposing boundary conditions

etc.

Does the problem size influence the timings?
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Profiling
Smaller problem

This time, we profile a problem of size (16, 16, 16)

13.6% of the time is spent opening libraries

13.6% of the time is spent initializing MPI

etc.

Depending on the problem size, different parts of the code will dominate
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Profiling
Some tips and tricks

Profile a code without bugs!

Choose the right problem size (representative of your simulations)

Focus on the functions taking the most time first
If the profile is not explicit, try refactoring into smaller functions
▶ Some profilers, e.g. ScoreP, let you define custom regions
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Speedup and efficiency

Two important metrics are derived from timings

Compare timings with n processes, Tn, against the reference timing, Tref

Speedup

S(n) =
Tref

Tn

Efficiency

E(n) =
S(n)

n

We want S(n) as close to n and E(n) as close to 1 (100%) as possible
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Strong scaling

Scalings are a way to assess how well a program performs when adding computational resources

Strong scaling: add resources, keep total amount of work constant

S(n) =
T1

Tn
, E(n) =

S(n)

n
=

T1

nTn

Strong scaling is an indication on how much profitable it is to add resources to solve your problem

W

P1
P2

P3

P5

P1

P7

P6 P4

P8

W

N. Richart, E. Lanti 42 / 76



Weak scaling

Weak scaling: add resources and maintain amount of work per resource constant

S(n) =
nT1

Tn
, E(n) =

S(n)

n
=

T1

Tn

Weak scalings are an indication on how well your code will perform on a bigger machine (and with a
bigger problem)
These scalings are always required for a proposal
▶ For strong scalings the metric is speedup (how do I improve performance)
▶ For weak scalings the metric is efficiency (how well performance is kept)

P1

WW

P1 P2

W

P3

W

P4

W
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Amdahl’s law

Amdahl’s law gives you an upper bound to the achievable speedup for a fixed problem size

By definition it is a strong scaling analysis

Assume a fraction p of your code is (perfectly) parallel and timing with 1 process is T1

Timing with n processes is

Tn = (1 − p)T1 +
p

n
T1 =

[
(1 − p) +

p

n

]
T1

Speedup becomes

S(n) =
T1

Tn
=

1
(1 − p) + p

n

In the limit of infinite resources
lim

n→∞
S(n) =

1
1 − p

1 - p

p

Tim
e

T1

Tn

1 - p

p/n p/np/np/n
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Amdahl’s law

Limited by the serial part (very sensitive)!

Does this mean we cannot exploit large HPC machines?

No, in general with more resources, we simulate larger systems ⇒ weak scaling (see Gustafson law)

1 10 100 1000
Number of processors

1

10

100

1000

Sp
ee

du
p

2

4

10

20

100

Amdahl's law
Ideal scaling
p = 0.50
p = 0.75
p = 0.90
p = 0.95
p = 0.99
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FLOP/s and memory bandwidth

FLOPs are floating point operations, e.g. +,−,×,÷
Can be evaluated by hand, dividing the number of operations by the running time

Memory bandwidth measures the amount of data transferred by unit of time [B/s, KiB/s, MiB/s,
GiB/s, ...]

Can be measured by hand dividing the amount of data transferred by the running time

In both cases, generally use tools such as PAPI, Tau, likwid, Intel Amplxe, STREAM, etc.

N. Richart, E. Lanti 46 / 76



Performance measurement
A simple DAXPY example

Assume Intel Xeon Gold 6132 (Gacrux)

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

My code runs in 174.25ms. It is amazingly fast!

Each iteration has 2 FLOP (1 add and 1 mul) and there are N = 1e8 iterations

Our code 2 · 108 FLOP/174.25 · 10−3 s = 0.001TFLOP/s

Our hardware can achieve a theoretical peak performance of 1.16TFLOP/s...

Each iteration has 3 memory operations (2 loads and 1 store)

Our code 2.23 GiB/174.25 · 10−3 s = 12.82GiB/s

Our hardware can achieve a theoretical memory bandwidth of 125GiB/s...
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Roofline model

How well am I exploiting the hardware resources?

The roofline model is a performance model allowing to have an estimate to this question

Key concept: the arithmetic intensity, AI , of an algorithm is # FLOP/B of data transferred

It measures data reuse

Arithmetic intensity

SpMV,
BLAS 1,2

Stencils
(PDE)

Lattice
Boltzmann

FFTs,
Spectral Methods

BLAS 3

Particle 
Methods

O(10) FLOP per byteTypically < 2 FLOP per byte0.1 - 1.0 FLOP per byte
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Roofline model
How to find arithmetic intensity

For very simple algorithms, you can compute the AI

Let’s take back the DAXPY example

optimization/daxpy.cc

1 for (int i = 0; i < N; ++i) {
2 c[i] = a[i] + alpha * b[i];
3 }

There are 2 operations (1 add and 1 mul)

Three 8-byte memory operations (2 loads and 1 store)

The AI is then 2/24 = 1/12

For more complex algorithms, use a tool, e.g. Intel Advisor
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Roofline model
Building the model

Roofline model is plotted on log-log scale
▶ x-axis is the AI
▶ y-axis is FLOP/s

The hardware limits are defined by
P = min(Pmax, bs · AI )

▶ Pmax is the CPU peak FLOP/s
▶ AI is the intensity
▶ bs is the memory BW

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

1/8 1/4 1/2 1 2 4 8 16 32 64 AI

FL
O
P
/s

Pmax

bs  AI

Lot of potential improvement!

Ridge point

Memory bound Compute bound
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Roofline model
Building the model

Refinements can be made to the Roofline model

Adding a memory hierarchy with caches

Adding different levels of DLP (Data-Level parallelism)

They give you hint on what to optimize for

Pmax

L3
 c
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L2
 c
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RA
M

No FMA

FMA

AVX
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FL
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P
/s

N. Richart, E. Lanti 51 / 76



Roofline model
How to find the peak performance

Theoretical peak performance

Pmax =×Number of FP ports (ILP)

× flops/cycles (e.g. 2 for FMA)

× vector size (DLP)

× frequency (in GHz)

× number of cores (TLP)

Example: Intel Xeon Gold 6132

Pmax =×2 (ports)

× 2 FLOP/c (2 for FMA)

×
512 bit (AVX512)
64 bit (double)

× 2.3GHz

× 14 (cores)

=1.16TFLOP/s

Front End Instruction
Cache Tag

µOP Cache
Tag

L1 Instruction Cache
32KiB 8-Way Instruction

TLB

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue

MOP

MicroCode
Sequencer

ROM
(MS ROM)

Decoded Stream Buffer (DSB)
(µOP Cache)

(1.5k µOPs; 8-Way)
(64 B window)

Branch
Predictor

(BPU)

Allocation Queue (IDQ) (128, 2x64 µOPs)

U
n
ifie

d
 S

T
LB

 

To L3

Execution Engine

Memory Subsystem

L1 Data Cache
32KiB 8-Way

Data TLB

Scheduler
Unified Reservation Station (RS)

(97 entries)

Integer Physical Register File
(180 Registers)

Vector Physical Register File
(168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

INT ALU
INT DIV

AES
Vect String

FP DIV

INT ALU
INT MUL

Bit Scan

INT ALU
LEA

INT ALU
Branch

AGU
Load Data

AGU
Load Data

AGU

(56 entries)
Store Buffer & Forwarding

6
4
B

/c
y
c
le

(50, 2x25 entries)

16 Bytes/cycle

µOPµOPµOPµOPµOPµOP

Macro-Fusion

MOP MOP MOP MOP

MOPMOP MOP MOP MOP MOP

Micro-Fusion

6
4
B

/c
y
c
le

6
4
B

/c
y
c
le

Stack
Engine

(SE)

Adder Adder Adder

1-4 µOPs µOP µOPµOPµOP

Complex
Decoder

5-Way Decode 

Simple
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

4 µOPs

MUX

5 µOPs

 Loop Stream
Detector (LSD) 

Register Alias Table (RAT)
2x4 µOP

Branch Order Buffer
(BOB) (48-entry)

µOPµOPµOPµOPµOPµOPµOPµOP

Rename / Allocate / Retirement
ReOrder Buffer (224 entries)

Zeroing IdiomsMove Elimination Ones Idioms

Line Fill Buffers (LFB)
(10 entries)

Store Data

6
4
B

/c
y
c
le

64B/cycle

512bit/cycle

Load Buffer
(72 entries)

6 µOPs

EUs

µOPµOPµOPµOPµOPµOPµOPµOP

C
o
m

m
o
n

 D
a
ta

 B
u

s
e
s
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D
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s
)

Int
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t V

e
c
t

FP

Load

Store

Branch

L2
 C

a
ch

e
1

 M
iB

 1
6

-W
a
y

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

INT Vect ALU
INT Vect MUL

FP FMA

512b (zmm only)
(optional)

512b fused

64B/cycle

Or use a software that estimates it
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Roofline model
How to find the memory bandwidth

Theoretical memory bandwidth of the memory

BWmax =×Number of transfers per second

× Bus width

× Number of interfaces

In general, we suppose that RAM matches CPU bandwidth (found on the CPU spec. list)
Example: Intel Xeon Gold 6132

BWmax =×2666MT/s (DDR4 2666)

× 8B/T (64bit bus)

× 6

▶ 19.86 GiB/s for 1 channel
▶ Maximum of 119.18 GiB/s

Or use a software that estimates it

A corollary from “theoretical” is that it is not achievable in practice!
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▶ Maximum of 119.18 GiB/s

Or use a software that estimates it

A corollary from “theoretical” is that it is not achievable in practice!
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Roofline model
How to measure the actual values

Peak performance measurement
▶ Using a compute bound kernel
▶ Using dgemm:

1 core: 98.0 GFLOP/s
14 cores: 965.0 GFLOP/s

Bandwidth measurement
▶ Using a memory bound kernel
▶ Using stream (triad):

1 core: 12.7 GiB/s
6 core: 70.1 GiB/s
9 core: 82.7 GiB/s
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Roofline model
Intel Amplifier
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Optimization

We now have a pretty good idea of which part of the code to optimize
Different options are possible (by order of complexity)

1. Compiler and linker flags
2. Optimized external libraries
3. Handmade optimization (loop reordering, better data access, etc.)
4. Algorithmic changes
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Optimization
Compiler flags

Compilers have a set of optimizations they can do (if possible)

You can find a list of options for GNU compilers on their doc

Common options are:
▶ -O0, -O1, -O2, -O3: from almost no optimizations to most optimizations
▶ -Ofast: activate more aggressive options, e.g. -ffast-math (but can produce wrong results in some

particular cases)

Test your program with different options (-O3 does not necessarily leads to faster programs)

Note that the more optimization the longer the compilation time
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Optimization
Optimized libraries

Do not re-invent the wheel!
A lot of optimized libraries exist with different purposes (solvers, data structures, I/O, etc.). A few
examples:
▶ Solvers: PETSc, MUMPS, LAPACK, scaLAPACK, PARDISO, etc.
▶ I/O: HDF5, ADIOS, etc.
▶ Math libraries: FFTW, BLAS, etc.
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Optimization
Handmade optimizations

Sometimes, we cannot rely on compiler options or libraries and we must optimize “by hand”

Usually, the goal is to rewrite the code in such a way that the compiler can optimize it

Start by having a correct program before trying to optimize

“Premature optimization is the root of all evil”, D. Knuth

N. Richart, E. Lanti 59 / 76



Pareto principle
The 80/20 rule

General principle that states that 80% of the effect comes from 20% of causes

Applies in many domains and especially in optimization

80% of the time is spent in 20% of your code

Concentrate on those 20% and don’t arbitrarily optimize
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Optimization
Algorithmic optimizations

Example of matrix/matrix multiplication. Graph shows complexity (O(nω)) for different algorithms
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Optimization
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Parallelization
When to parallelize

Only when your code has no bugs and is optimized
Are your ready to parallelize?

1. Is it worth to parallelize my code? Does my algorithm scale?
2. Performance prediction?
3. Profiling?
4. Bottelnecks?
5. Which parallel paradigm should I use? What is the target architecture (SMP, cluster, GPU, hybrid, etc)?
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Parallelization
When to parallelize

In 1991, David H. Bailey published a famous paper: Twelve ways to fool the masses when giving
performance results on parallel computers

6: Compare your results against scalar, unoptimized code on Crays.
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Single-core optimization



Single-core optimization
Goal of this section

Better grasp how programming can influence performance

We first review some basic optimization principles to keep in mind
Deeper understanding of the working principles of the CPU
▶ How data transfers are handled
▶ Concept of vectorization
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Single-core optimization
Basic optimization techniques

Often, very simple changes to the code lead to significant performance improvements

The following may seem trivial, but you would be surprised how often they could be used in scientific
codes

The main problem is that we often make a one-to-one mapping between the equations and the
algorithm

Note that a recent compiler will most likely do the work for you for small pieces of code.

Do less work

1 for (int i = 0; i < N; ++i) {
2 a[i] = (alpha + sin(x)) * b[i];
3 }

1 double tmp = alpha + sin(x);
2 for (int i = 0; i < N; ++i) {
3 a[i] = tmp * b[i];
4 }

Constant term is re-computed at every iteration of the loop

Can be taken out of the loop and computed once
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Single-core optimization
Basic optimization techniques

Avoid branches

1 for (i = 0; i < N; ++i) {
2 for (j = 0; j < N; ++j) {
3 if (j >= i) {
4 sign = 1.0;
5 } else {
6 sign = -1.0;
7 }
8 b[j] = sign * a[i][j];
9 }

10 }

1 for (i = 0; i < N; ++i) {
2 for (j = i; j < N; ++j) {
3 b[j] = a[i][j];
4 }
5 for (j = 0; j < i; ++j) {
6 b[j] = -a[i][j];
7 }
8 }

Avoid conditional branches in loops

They can often be written differently or taken out of the loop
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Single-core optimization
Tale of a smart librarian

To better understand the concepts behind caching, let’s take the example of a librarian

The first customer enters and asks for a book. The librarian goes into the huge storeroom and returns
with the book when he finds it

After some time, the client returns the book and the librarian puts it back into the storeroom

A second customer enters and asks for the same book...

This workflow can take a lot of time depending on how much customers want to read the same book
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Single-core optimization
Tale of a smart librarian

Our librarian is a bit lazy, but clever. Since a lot of customers ask for the same book, he decides to put
a small shelf behind his desk to temporarily store the books he retrieves.

This way he can quickly grab the book instead of going to the storeroom.

When a customer asks for a book, he will first look on his shelf. If he finds the book, it’s a cache hit
and he returns it to the customer. If not, it’s a cache miss and he must go back in the storeroom.

This is a very clever system, especially if there is temporal locality, i.e. if the customers often ask for
the same books.

Can he do better ?
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Single-core optimization
Tale of a smart librarian

Oftentimes, our librarian see that people taking one book will go back and ask for the sequels of the
book

He decides to change a bit his workflow. Now, when he goes into the storeroom to retrieve a book, he
comes back with a few of them, all on the same shelf

This way, when the customer brings back a book and asks for the sequel, it is already present on the
librarian shelf

This workflow works well when there is spatial locality, i.e. when you ask for a book there is a
significant chance that you will read the sequel
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Single-core optimization
Data loading

Now, what is the link between our librarian and the CPU? They work in a similar fashion!

When a load instruction is issued the L1 cache logic checks if data is already present. If yes, this is a
cache hit and data can be retrieved very quickly. If no, this is a cache miss and the next memory levels
are checked.

If the data is nowhere to be found, then it is loaded from the main memory

As for our librarian, not only the required data is loaded for each cache miss, but a whole cache line
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Single-core optimization
Example: vector multiplication with a scalar

Simple vector/scalar multiplication

Focus on data loading (b[i])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int i = 0; i < N; ++i) {
2 a[i] = alpha * b[i];
3 }

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[0]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[1]:
Cache hit
Fetch from L1

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM

Load b[2]:
Cache miss
Fetch cache line from RAM

b[0] b[1]

b[2] b[3]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9] b[10]b[11]b[12]b[13]b[14]b[15]

L1

RAM
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Single-core optimization
Memory layout and data access

How do we store ND arrays into memory?

Memory is a linear storage. Arrays are stored contiguously, one element after the other.

We have to choose a convention. Row major (C/C++) or column major (Fortran).

Row major means that elements are stored contiguously according to the last index of the array. In
column-major order, they are stored according to the first index.

a11 a12 a13
a21 a22 a23
a31 a32 a33

Memory

a11 a12 a13
a21 a22 a23
a31 a32 a33

Memory

a11 a12 a13 a21 a22 a23 a31 a32 a33
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Single-core optimization
Example: matrix/vector multiplication

Focus on data loading (a[i][j])
Assume only one level of cache with a cache line of two doubles (16 bytes)

1 for (int j = 0; j < N; ++j) {
2 for (int i = 0; i < N; ++i) {
3 c[i] += a[i][j] * b[j];
4 }
5 }

L1

RAM

a00 a01 a02 a10 a11 a12 a20 a21 a22

Load a[0][0]:
Cache miss
Fetch cache line from RAM
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Single-core optimization
Early conclusions

Caches are small, but very fast memories

Their purpose is to alleviate long latency and limited bandwidth of the RAM

Data is fetched by group, called cache line, and stored into the different levels of cache

In order to fully exploit caches, data in caches must be re-used as much as possible

Avoid random memory accesses that case many cache misses and prefer contiguous access

Be careful of the data types you use and how they are mapped onto memory
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Single-core optimization
Single Instruction Multiple Data

Modern CPUs can apply the same operation to multiple data

Special registers xmm, ymm and zmm holding 2, 4 or 8 doubles

for (int i = 0; i < N; ++i) {
    c[i] = a[i] + b[i]
}

+

=

a[0]

b[0]

c[0]

for (int i = 0; i < N; ++i) {
    c[i] = a[i] + b[i]
}

+

=

a[0]

b[0]

c[0]

a[1]

b[1]

c[1]

a[2]

b[2]

c[2]

a[3]

b[3]

c[3]
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