

Parallel Programming

Presentation of the exercises

Nicolas Richart

Emmanuel Lanti

14th - 18th of November 2022

- The goal of this exercise is to compute an approximate value of π
- To compute π , we will use two identities:

$$\arctan(1) = \frac{\pi}{4} \quad (1)$$

$$\int_0^x \frac{1}{1+y^2} dy = \arctan(x) \quad (2)$$

Then, it follows that

$$\pi = 4 \int_0^1 \frac{1}{1+x^2} dx \quad (3)$$

- Using a Riemann sum, we can approximate the integral in Eq. (2)

$$\pi \approx \frac{4}{n} \sum_{i=0}^n \frac{1}{1 + (i/n)^2} \quad (4)$$

- Let us consider the following Poisson problem

$$\begin{cases} \Delta u = f(x, y) & \text{in } \Omega, \\ u(x, y) = 0 & \text{on } \partial\Omega. \end{cases} \quad (5)$$

- The 2D domain is uniformly discretized using $N + 1$ points in each direction:

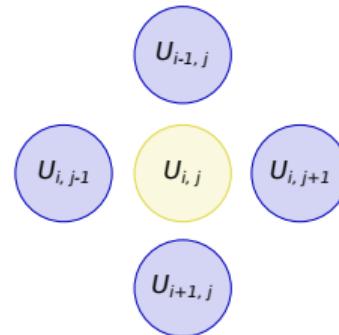
$$\left\{ \begin{array}{l} (x_i, y_j), \\ \{x_i\}, i = 1, \dots, N + 1, \\ \{y_j\}, j = 1, \dots, N + 1. \end{array} \right. \quad (6)$$

The grid spacings are $\Delta x = \Delta y = 1/N$ (we assume domains of length one).

- The Laplacian is approximated using second-order centered finite-differences:

$$\begin{aligned} \Delta u(x, y) &= \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta y^2} \\ &= \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{\Delta x^2} \end{aligned}$$

- This defines a 4-point stencil



- The system of linear equations is solved using the Jacobi method
- Iterations are done until the error is lower than a prescribed tolerance

- Let solve the Poisson problem with

$$u(x, y) = 0 \quad (7)$$

on the boundaries and

$$f = -200\pi^2 \sin(10\pi x) \sin(10\pi y) \quad (8)$$

